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Abstract
In recent years, with the advances in remote sensing and geospatial technology, various machine learning algorithms found

applications in determining potentially flooded areas, which have an important place in basin planning and depend on

various environmental parameters. This study uses ensemble models of decision trees (DT), gradient boosting trees (GBT),

support vector machines (SVM) and artificial neural network (ANN) algorithms to generate flood susceptibility maps of the

Eastern Mediterranean Basin located in the Eastern Türkiye where intense short-duration rainfall causes flash floods with

devastating effects on the densely populated coastal region and agricultural areas. Results of test-set analyses showed that

all algorithms were more successful with ensemble models included compared to the models alone. Among the ensemble

models created, the ensemble ANN model substantially increased performed best when sued with training and test sets. It

was observed from the flood susceptibility maps that the flood areas formed by ensemble models were more distributed

than those created by a single machine learning algorithm, and with the help of ensemble models, the distribution of the

parameters affecting the floods at the flood points more elucidating. Furthermore, the McNemar test was applied to assess

the differences between the predictions of the generated models using test data. It is concluded, in general, that ensemble

models created with the ANN and GBT algorithms can help decision-makers in identifying flood susceptibility areas.

Keywords Flood susceptibility mapping � Decision trees � Support vector machines � Artificial neural network �
Gradient boosting trees

1 Introduction

Floods are natural events that interrupt regional economic

and social frameworks, sometimes with devastating results.

It is estimated that 31% of global economic losses due to

natural events are caused by flood hazards and are the

costliest natural disaster (Dano et al. 2019). Floods occur at

varying intervals and durations and with varying magni-

tudes. Therefore, floods are very complex events that are

difficult to predict. However, reliable predictions of floods

in a basin are critical for engineers to design effective and

safe infrastructure and guide decision-makers concerning

flood risk assessment and watershed management. Water-

shed management is a complex task and demands inte-

grated thinking and sound science. It involves challenges

such as appropriate approaches for flood control, effects of

land-use changes, and floodplain regulations, which all

require understanding the frequency, duration, and mag-

nitude of flood events (Knuepfer and Montz 2008). Studies

showed that factors such as meteorological, hydrological,

geomorphological and human intervention affect the

occurrence and magnitude of flash floods (Roy et al. 2020).

Once the effects of those parameters on the occurrence of

floods and the identification of flood areas are determined,

various structural and non-structural measures can be taken
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to reduce or prevent flash flood events sustainably. One of

these measures is to map the areas of flash flood

susceptibility.

A significant challenge in determining flood areas is to

identify the relations between the factors above that affect

flooding. With the development of geospatial technology,

different statistical methods have been extensively used in

flood susceptibility studies, with GIS tools and remote

sensing data (Membele et al. 2021; Pradhan and Youssef

2011; Omran et al. 2011; Koçyiğit et al. 2021). However,

these studies are insufficient to create a generalized model

for small areas, as they generally determine the flood

potential by using the parameters of sub-basins as a ref-

erence but without considering the effect of the relation-

ships between parameters. Various studies showed that

parameters that directly or indirectly affect flood events

and impact a basin are interconnected rather than inde-

pendent (Ouma and Tateishi 2014; Wang et al. 2018;

Khosravi et al. 2019). Thus, new approaches and methods

are required to consider the effects of parameter interde-

pendency on flood events. In the last decade or so, Multi-

Criteria Decision Making (MCDM) methods that take into

account the effects of complex inputs have been widely

used in determining flood-prone areas (Ouma and Tateishi

2014; Roy and Blaschke 2015; Jaiswal et al. 2015; Dan-

dapat and Panda 2017; De Brito et al. 2018; Wang et al.

2018; Dano et al. 2019; Hoque et al. 2019; Khosravi et al.

2019; Ishtiaque et al. 2019; Meshram et al. 2020).

Since flash floods occur non-linearly over a wide range

of spatial and temporal scales, accurate and advanced tools

and models are required to identify floodplains (Ahmadlou

et al. 2019). Hence, Machine Learning (ML) algorithms

with complex input and fast learning capabilities have

attracted much attention from researchers. ML algorithms

are generally used in flood, landslide, gully erosion sus-

ceptibility and groundwater potential mapping (Su et al.

2015; Hong et al. 2016; Rahmati et al. 2017; Naghibi et al.

2017; Ali et al. 2020). Various ML algorithms have

become widespread with the development of technology

for flood susceptibility mapping, where many geo-envi-

ronmental parameters are effective (Abdollahi et al. 2019;

Nhu et al. 2020; Band et al. 2020; Chakrabortty et al.

2021).

For flood prediction, some ML algorithms stand out due

to their approaches and learning styles. One of these

algorithms is the Support Vector Machines (SVM) algo-

rithm, which has been used in studies to create linear and

nonlinear models with the help of various kernel functions

(Tehrany et al. 2015b; Su et al. 2015; Hong et al. 2016;

Abdollahi et al. 2019). Another frequently used ML algo-

rithm is the Artificial Neural Network (ANN) algorithm

that has been shown to have the capacity to learn, memo-

rize and reveal the relationship between data. With the help

of these features, the ANN algorithm has been used to

determine flood susceptibility maps (Jahangir et al. 2019;

Andaryani et al. 2021; Ahmed et al. 2021). In addition to

the SVM and ANN algorithms, the ML algorithm fre-

quently used in the previous studies is the Decision Tree

(DT) algorithm, which generally adapts well to a given

data set due to the simple decision rules it creates (Tehrany

et al. 2013; Choubin et al. 2019). When creating a model

with decision trees, complex models (larger decision trees)

may be required to increase the model’s success. However,

more complex models tend to produce lower generalization

performance (Kotsiantis 2013).

To enhance the generalization ability of ML algorithms,

ensemble models have been used to prepare flash flood

susceptibility maps instead of a single ML model (Choubin

et al. 2019). Ensemble models are generally developed by

integrating several statistical or ML models and appear to

give improved results in obtaining the best performance

with high prediction accuracy. Various new ensemble and

statistical models have been used to prepare flood suscep-

tibility maps (Tehrany et al. 2015a; Bui et al. 2016;

Mojaddadi et al. 2017; Shafizadeh-Moghadam et al. 2018;

Band et al. 2020; Prasad et al. 2021; El-Magd et al. 2021).

Studies showed ensemble models have a more complex

structure and generally perform better than single ML

models in determining flood and landslide susceptibility

areas (Bui et al. 2016; Naghibi et al. 2017; Prasad et al.

2021). However, during the application of ensemble

models, a number of significant problems may arise, such

as the model not being suitable for the data, the require-

ment of extensive time to build the model that gives the

best performance, the inadequacy of modelling data that

have not undergone any preprocessing, and a prolonged

meta-learning process. To overcome such problems, pre-

processing procedures of ML models and optimization of

hyperparameters have been enhanced by the use of Auto-

matic Machine Learning (AutoML) algorithms (Gijsbers

et al. 2019). These algorithms are frequently used in arti-

ficial intelligence studies, enhancing the learning phase for

a given data set using different preprocessing and opti-

mization techniques. The auto-sklearn algorithm, devel-

oped using the scikit-learn library formed for data analysis

and ML algorithms in Python language, is one of the most

frequently used AutoML algorithms (Feurer et al. 2015).

By using this algorithm, preprocessing a given data set,

creating ensemble models and optimizing hyperparameters

of the ML algorithm can be performed very quickly and

efficiently.

Of natural disasters in Türkiye, floods are second only to

earthquakes of in terms of loss of life and property. Floods

are weather-related hazards, so climate change will most

likely have substantial effects on flood occurrences, fre-

quency and magnitude. In a recent study conducted by the
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Republic of Türkiye Ministry of Agriculture and Forestry

General Directorate of Water Management (GDWM),

future projections of the most important climate parame-

ters, such as temperature and precipitation obtained using

ensembles of regional climate models with a spatial reso-

lution of 10 km within the framework of the Effect of

Climate Change on Water Resources Project were analyzed

(GDWM 2016). When those future projections of the

annual total precipitation based on basins were analyzed, it

was noted that the highest changes were in the Asi, Eastern

Mediterranean and Ceyhan Basins. Despite a general

decrease in precipitation in the Eastern Mediterranean

Basin, increasing temperatures and evaporation can result

in flash floods due to short, intense bursts of rainfall,

especially in densely populated areas near the coast, as

noted in recent years. So, in our study, the Eastern

Mediterranean Basin was chosen as the case study con-

sidering the increasing effect of climate change on flash

floods and the densely populated coastal regions prone to

flash floods.

Our study aims to create ensemble models for flood

susceptibility mapping of the Eastern Mediterranean Basin

in Eastern Türkiye using DT, Gradient Boosting Trees

(GBT), SVM and ANN algorithms. In the ArcGIS 10.8.1

environment, using a Digital Elevation Model (DEM) of

the basin, the parameters thought to influence floods, such

as elevation, slope, aspect, profile curvature, sediment

transport index (STI), stream power index (SPI), topo-

graphic wetness index (TWI), terrain ruggedness index

(TRI), distance from the river, surface runoff curve number

(CN), drainage density and precipitation were obtained.

Our main goal is to create ensemble models with better

performance and high accuracy by preprocessing the data

set and optimizing the hyperparameters using the Auto-

sklearn algorithm. During the comparison and optimization

of the models, the success of the training and test data was

evaluated regarding the area under the Receiver Operating

Characteristic (ROC) curve. In addition, the McNemar test,

which can test the consistency between binary variables,

was applied to observe whether the models used make a

difference in estimating the test data due to their unique

approaches in the learning process (Dietterich 1997).

2 Study area

In our study, the Eastern Mediterranean Basin was used as

a case study area (Fig. 1). The Eastern Mediterranean

Basin is located in the south of Türkiye between 36� and

37� north parallels and 32�–35� east meridians and has a

drainage area of approximately 22 048 km2. The basin

houses 2.4% of Türkiye’s population and constitutes

approximately 3% of the country’s surface area. The rivers

in the basin are short and have steep beds except for the

Göksu and Berdan Rivers, the two largest rivers in the

basin. There is no alluvial floor along the river beds in the

basin, and the rivers pass through narrow valleys. The

average altitude varies between 0–2000 m and exceeds

3000 m at the peaks (Koçyiğit et al. 2021). Mediterranean

climate is observed in many parts of the Eastern Mediter-

ranean Basin. Regarding soil structure, 14 large soil groups

are determined depending on precipitation and climate in

the Eastern Mediterranean region with red and red-brown

Mediterranean soil, non-calcareous brown and brown for-

est soil, alluvial and colluvial soils being the most com-

mon. The Eastern Mediterranean Region is rich in forest

area (42.1%) while country-wide approximately 27% of

Türkiye is forested.

2.1 Flood inventory map

An accurate flood inventory map is one of the prerequisites

for successful flood modeling and must be carefully pre-

pared. Some important information can also be obtained

from this inventory map, such as the flood’s locations,

frequencies, causes, and triggers (infiltration and heavy

rainfall).

We obtained data for 188 flood events from the inven-

tory of the General Directorate of State Hydraulic Works

(DSİ) in Türkiye. A total of 352 points were used for

analysis and within these 164 points had no flood occur-

rence. We considered the values of 12 parameters to be

effective for flood prediction and these were determined at

those points using. The flood inventory classes for each

point within the borders of the Eastern Mediterranean

Basin are shown in Fig. 1.

2.2 Flood conditioning factors

To prepare a flood susceptibility map, it is essential to

obtain the principal factors affecting the flood event

(Tehrany et al. 2015a). In our study, a DEM with

10 9 10 m pixels was created using the relevant data and

topographic maps of the basin. Elevation, slope, aspect,

profile curvature, STI, SPI, TWI, TRI, distance from the

river, drainage density and CN maps were obtained with

the DEM model using spatial analyst tools in ArcGIS

version 10.8.1. An overview of the factors used for flood

susceptibility mapping is shown in Table 1. The maps of

the flood conditioning factors considered in the study are

given in Fig. 2.

The elevation parameter, presented in Fig. 2a, is among

the most influential parameters in flood susceptibility

mapping. There is an inverse relationship between altitude

and flood susceptibility, as surface runoff after precipita-

tion flows from higher elevations to lower elevations. A
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related factor that is strongly affects flood events is the

slope of the land shown in Fig. 2b. As water flows from

higher to lower elevations, the basin slope affects runoff

and seepage rate. Hence, flat areas at low elevations can be

inundated faster than areas at higher elevations with steeper

slopes.

Hydrological processes, local climatic conditions,

physiographic trends and soil moisture patterns are affected

by aspect (Rahmati et al. 2016). We divided the aspect

parameter into nine categories: Flat, North, Northeast, East,

Southeast, South, Southwest, West and Northwest, as

shown in Fig. 2c. Since curvature supports projections over

water depths and model calibration, its inclusion is thought

to be useful for accurately representing velocity (Horritt

2000). We delineated the profile curvature parameter as

flat, convex and concave, as shown in Fig. 2d.

A geometric parameter that can be used to determine

floodplains is the distance from the area to the river. The

flood potential is predicted to decrease as the distance from

the river increases since floods generally occur with the

overflow of water around the rivers. The distance map from

the river was obtained using the drainage network gener-

ated in the ArcGIS environment, as shown in Fig. 2e.

SPI, shown in Fig. 2f, is an important factor in deter-

mining the flood potential of the region since it determines

the level of the erosive power of the runoff and the degree

of discharge relative to a particular area within the catch-

ment area (Moore et al. 1991). STI is another critical

parameter considered effective in flood formation as shown

in Fig. 2g. During flooding, sediment transport occurs in

the river bed due to high value of water velocity and water

power. Indication of the sediment density to be transported

on the map provides guidance on the sensitivity of the

flood. TWI, shown in Fig. 2h combines local upslope

contributing area and slope and is widely used to measure

topographic control over hydrological processes (Sørensen

2006). TWI is a function of slope and upstream con-

tributing flow area per unit width perpendicular to the flow

direction. Areas with high wetness values are more

exposed to flooding than areas with low TWI values

(Samanta 2018).

TRI, a parameter developed by Riley et al. (1999),

determines topographic heterogeneity. TRI refers to the

Fig. 1 Eastern Mediterranean Basin location and flood inventory
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elevation difference between adjacent cells in the elevation

model. A small TRI value represents a flat land surface,

while a higher value represents an extremely uneven sur-

face. Thus, a small TRI value in flat terrain is more sus-

ceptible to flooding than areas with a higher TRI value (Ali

et al. 2020). Figure 2i shows the TRI map of the basin.

Drainage density is another important factor that has a

direct impact on flooding. In general, areas with higher

stream density are more prone to flooding. Drainage den-

sity can be expressed by dividing the total river length in a

drainage basin by the total area of the drainage basin (Ali

et al. 2020). The map of drainage density is given in

Fig. 2j.

Another parameter affecting floods is the precipitation

parameter. Precipitation is the most critical factor in cre-

ating a flood, and precipitation amount is the key factor for

flooding. However, it is not certain how much an increase

in precipitation will result in an increase in flooding. A

basin map showing the annual precipitation data over the

region was obtained using the recorded data at the stations

operated by the Turkish State Meteorological Service. We

chose annual precipitation as the influential factor in flood

susceptibility mapping over different regions as shown in

Fig. 2k.

Another important parameter in flood susceptibility is

land use. Land use affects surface runoff and sediment

transport and, consequently, the frequency of flooding.

Instead of using soil and land use data as two different

features in the models, the surface flow curve number

(CN), as shown in Fig. 2l was obtained with based on these

two parameters and used in our models. Thus, the number

of dimensions used in the model was reduced, and the

effect of these two critical parameters was considered.

3 Methods

Ensemble models created with different ML models have a

complex structure. Therefore, instead of creating ensemble

models with different ML algorithms, various ML algo-

rithms with strong, unique approaches and features can be

used to create ensemble models. Frequently preferred ML

algorithms such as ANN, SVM and DT have effective

hyperparameters that increase performance and enable the

formation of a generalized model. Generalized models with

higher performance can be attained with ensemble models

created by adjusting models with different preprocessing

processes and hyperparameters. Hence, we chose the DT,

GBT, SVM and ANN models of the ML algorithms for our

study. Another reason for selecting those algorithms is that

they are available in the Auto-sklearn algorithms (Feurer

et al. 2015).

We used k-fold cross-validation to test the accuracy of

the trained models and to determine whether or not any

independent data set entered into the model generally

represented the model (Kohavi 1995). Figure 3 shows the

process we applied.

Table 1 An overview of the factors used for flood susceptibility mapping

Factors Resolution Obtaining

Elevation 10 9 10 m ArcGIS 10.8.1 ? DEM

Slope 10 9 10 m DEM ? Spatial Analyst Tools ? Surface ? Slope

Aspect 10 9 10 m DEM ? Spatial Analyst Tools ? Surface ? Aspect

Profile

curvature

10 9 10 m DEM ? Spatial Analyst Tools ? Surface ? Curvature

SPI 10 9 10 m DEM ? Spatial Analyst Tools ? Raster Calculator ? f* (Flow Accumulation, Slope) ? SPI

STI 10 9 10 m DEM ? Spatial Analyst Tools ? Raster Calculator ? f* (Flow Accumulation, Slope) ? STI

TWI 10 9 10 m DEM ? Spatial Analyst Tools ? Raster Calculator ? f* (Flow Accumulation, Slope) ? TWI

TRI 10 9 10 m DEM ? Spatial Analyst Tools ? Raster Calculator ? f* (DEM) ? TRI

Distance from

river

10 9 10 m DEM ? Terrain Preprocessing ? Drainage Line ? Spatial Analyst Tools ? Distance ? Euclidean

Distance ? Distance from River

Drainage

density

50 9 50 m DEM ? Terrain Preprocessing ? Drainage Line ? Spatial Analyst Tools ? Density ? Line

Density ? Drainage Density

CN 25 9 25 m DEM ? Land-use and Soil Data ? CN

Rainfall 10 9 10 m Rainfall Data ? Spatial Analyst Tools ? Interpolation ? IDW ? Rainfall

*Where f represents the raster calculator, one of the spatial analyst tools available in ArcGIS
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3.1 Support vector machines (SVM)

SVM is a useful machine learning algorithm for two-group

classification problems. SVM creates hyperplanes by sep-

arating the training set in the best way possible. It searches

for the plane that makes the best distinction between these

two classes according to the hyperplanes it creates (Cortes

and Vapnik 1995).

For the given {(xi, yi)} i=1,2…, n training set, SVM dis-

tinguishes two classes using Eq. 1 to identify the optimal

hyperplane.

min
w;b;n

:
kwk2

2
þ c

Xn

i¼1

ni ð1Þ

where w is the parameter of the hyperplane equation and b

is the offset of the hyperplane from the beginning. In the

classification model created, some features may be mis-

classified. These misclassified features can be penalized

with a specific penalty point, ni in Eq. 1, representing the

error of the misclassified feature, where c represents the

penalty coefficient for situations that exceed the

Fig. 2 Flood conditioning factors: a Elevation, b Slope, c Aspect, d Profile curvature, e Distance from the river, f SPI, g STI, h TWI, i TRI,
j Drainage density, k Rainfall, l CN
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constraints. The optimization problem specified by Eq. 1

must satisfy the constraint conditions given by Eq. 2.

yi w:£ xið Þ þ bð Þ� 1� ni; ni � 0fori ¼ 1; 2; . . .; n ð2Þ

where £ is an unknown and nonlinear mapping function.

The separation plane used in Eq. 1 is linear, however, due

to effects uncertainty, it is an inadequate approach to

accept only linear hyperplanes (Özdemir 2022). Therefore,

different hyperplane approaches were tested using the

nonlinear vector function K (kernel functions). The Kernel

functions we are given in Eqs. 3–6 (Erdem et al. 2016;

Pedregosa et al. 2011).

K xi; xj
� �

¼ xTi xj LinearKernel ð3Þ

K xi; xj
� �

¼ cxTi xj þ r
� �d

; c[ 0 PolynomialKernel ð4Þ

K xi; xj
� �

¼ exp �ckxi � xjk2
� �

; c[ 0 RadialBasisKernel

ð5Þ

K xi; xj
� �

¼ tanh cxTi xj þ r
� �

; c[ 0 SigmoidKernel ð6Þ

where xj is the parameter vector of the hyperplane equa-

tion, xi
T is the transpose of the parameter matrix, r is a free

parameter adjusting the influence of higher-order lower-

order terms in the polynomial, c (gamma) is a constant, and

d is the degree of the polynomial kernel function.

3.2 Artificial neural networks (ANN)

ANN is an information-processing technology inspired by

the information-processing technique of the human brain.

Neurons form networks by connecting to each other in

various ways. These networks have the capacity to learn,

memorize and reveal the relationship between data. Given

a set of features and a target, a neural network can con-

struct a nonlinear model for classification or regression.

Unlike the Logistic Regression algorithm, there may be one

or more nonlinear layers, called hidden layers, between the

input and output layers.

Learning in a neural network occurs by changing the

connection weights after each data is processed, depending

on the expected result according to the amount of error in

the output. The model’s weights are developed by back-

propagation, a generalization of the least mean squares

algorithm.

For the given {(xi, yi)} i=1,2…, n training set, the error of

the output node can be expressed by Eq. 7 as the difference

between the estimated and actual values.

ej nð Þ ¼ yj nð Þ � byj nð Þ ð7Þ

Here byj is the estimated value and yj is the actual value.

Then, node weights can be adjusted according to the cor-

rections that minimize the error value n in the entire output

given by Eq. 8.

Fig. 3 A flow chart representing the general modeling strategy
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n nð Þ ¼ 1

2

X

j

e2j nð Þ ð8Þ

Using the gradient descent method, the change in each

weight can be expressed by Eq. 9 (Rumelhart et al. 1986).

Dwij nð Þ ¼ �g
on nð Þ
owij nð Þ ð9Þ

Here, wij is the weight of the interconnected nodes, and

g is the learning rate chosen to allow the weights to con-

verge rapidly to a response without oscillations.

3.3 Decision trees (DT)

DT is a non-parametric supervised learning method used

for classification and regression. The goal is to build a

model that predicts the value of a target variable by

learning simple decision rules derived from data features.

DT learns from data to approximate a training set with a set

of if–then-else decision rules. The deeper the tree, the more

complex the decision rules and the more appropriate the

model will be (Quinlan 1986). DT iteratively partitions the

feature space so that samples with the same characteristics

or similar target values are grouped. DT makes classifica-

tion regarding any cross-entropy, Gini index or misclassi-

fication error.

3.4 Gradient boosting trees (GBT)

GBT is a machine learning technique for regression and

classification problems. It generates a prediction model,

which creates a group of weak prediction models as a

decision tree using ensemble models. When the decision

tree is a weak learner, gradient boosting, like other boost-

ing methods, iteratively combines the weak learners into a

single strong learner (Friedman 1999). It builds the model

stepwise as other boosting strategies do and generalizes it

by allowing optimization of an arbitrary differentiable loss

function.

For the given {(xi, yi)} i=1,2…, N training set, as in all

other ML methods, the GBT algorithm aims to optimize

the losses that will occur during the training of the models.

The objective function to be optimized is expressed by

Eq. 10.

obj ¼
Xn

I

L yi; byi
ðtÞ

� �
ð10Þ

where obj is the objective function to be optimized, byi
ðtÞ

is

a matrix of the predictions of the model created in tth steps,

yi is its true value, and L is the loss function. Since it would

be difficult to learn by optimizing all trees at once, a

strategy that corrects what is learned at each step and adds

it to the next tree can be implemented. This additional

strategy is illustrated by Eq. 11.

byi
ðtÞ ¼

Xt

k¼1

f k xið Þ ¼ byi
ðt�1Þ þ gf t xið Þ ð11Þ

where ft represents the function of the tree in t
th step, and g

represents the learning rate that considers the contributions

of the generated weak trees. Generally, the first-order

Taylor series approach given by Eq. 12 can be used to

optimize the loss function quickly (Pedregosa et al. 2011).

L yi; byi
t�1ð Þ þ gf t xið Þ

� �
¼ L yi; byi

t�1ð Þ
� �

þ gf t xið Þgi ð12Þ

where gi is the first derivative of the loss function obtained

in the previous learning and is given by Eq. (13) as

gi ¼
o

obyi
t�1ð Þ L yi; byi

t�1ð Þ
� �h i

ð13Þ

An important advantage of the definition given by

Eq. 12 is that the value of the objective function depends

only on the gradient of the loss function obtained in the

previous step.

3.5 Building of ensemble models

The same type of ML model may require different con-

straints, weights or learning rates to generalize different

data models. Such properties are called hyperparameters

and need to be adjusted so that the model can best solve

classification and regression problems. Therefore, it is

necessary to continuously adjust the hyperparameters, train

a set of models with different combinations of values, and

then compare the model performance to select the best

model (Wu et al. 2019). Using Auto-Sklearn 0.14.7, an

AutoML algorithm that efficiently supports the creation of

new ML applications, such optimization problems can be

solved more easily (Feurer et al. 2015).

Raw data may not be in a format to which all algorithms

can be applied. In ML applications, it is necessary to

optimize the hyperparameters of the model to be used, as

well as preprocessing data and its features. Preprocessing

includes improving the performance of ML models by

performing operations such as detecting and correcting

corrupt or incorrect records, reviewing and adjusting data,

and simplifying and correcting complex data.

Auto-sklearn has different data and feature preprocess-

ing approaches. Data preprocessing consists of 4 main

steps: scaling inputs, assigning missing values, categorical

coding and balancing target classes. Feature preprocessing

methods can be categorized as feature selection (select

percentile, select rate), kernel approximation (Nystroem

sampler, random kitchen sinks), matrix decomposition
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(Principial Component Analysis (PCA), kernel PCA, fast

Independent Component Analysis (fast ICA)), embeddings

(Random tree embedding), feature clustering (Feature

agglomeration), polynomial feature expansion (Polynomial

feature) and methods that use a classifier for feature

selection (Linear SVM, Extremely Random Trees) (Feurer

et al. 2015).

3.6 Evaluation of model performance

In evaluating the performance of ML models, the metrics

to be referenced should be carefully selected. One of the

features of the auto-sklearn algorithm is that the metric to

be taken as a reference can be selected while creating the

models. The ROC curve is often used because it considers

criteria such as accuracy, sensitivity and precision in the

confusion matrices it creates. We evaluated the efficiency

and precision of each model was the area under the curve

(AUC).

During the evaluation of the models, the extent to which

the models created do not differ much in their predictions

for the given test set should be assessed. We used the

McNemar test, frequently used on nominal data in statis-

tics, to examine these differences. In comparing two binary

classification algorithms, the test interprets whether the two

models agree (or do not agree) in the same way (Dietterich

1997). The McNemar test does not indicate whether one

model is more or less accurate or error-prone than the

other. The McNemar test converts the estimation results of

two binary classification models into a probability

table and calculates the chi-square value given by Eq. 14.

v2 ¼
n1=0 � n0=1
� �2

n1=0 þ n0=1
ð14Þ

where, n1=0 represents the number of samples predicted by

the second model as 0 while the first model predicts 1, and

n0=1 refers to the number of samples predicted by the

second model as 1 while the first model predicts 0. The

McNemar test can be interpreted for the corresponding

probability value p at the test statistic v2 calculated by the

test, given a choice of a significance level: If p[ a, the
null hypothesis cannot be rejected, there is no significant

difference between the models. If p\ a, the null hypoth-

esis is rejected, there is a significant difference between the

models. Comparing the models in our study, the value of

the a significance level was taken as 0.05 for the 99%

confidence interval.

4 Results and discussion

The 352 points obtained for the flood inventory were

allocated as 264 training and 88 test sets according to the

percentage distribution of flooded and non-flooded points.

A fivefold cross-validation process was applied to verify

whether the obtained training and test set adequately rep-

resent the data set.

Models created in Python 3.10 have a probability cal-

culation feature for binary classification. Using this feature,

for each model generated we were able to calculate the

flooding potential for the parameter values to be defined.

The Eastern Mediterranean Basin was divided into

50 9 50 pixels, and the parameters of each pixel were

calculated with ArcGIS. Flooding potential was calculated

with the order of these pixels whose parameters are known.

Each pixel that had flood potential was then transferred

back to the ArcGIS environment, and a flood susceptibility

map was prepared. The models created for 4 different ML

algorithms were sequentially mapped, and then differences

between each other were examined.

The models are given in Fig. 4. According to the AUC,

the ensemble model created by the ANN algorithm had the

highest success with 0.936. The model that achieved the

least success in AUC was the ANN single model, which

was created without preprocessing and hyperparameter

optimization.

Table 2 shows the performances of the models created

by single ML and ensemble ML models for training and

test sets, respectively. When the results are analyzed, it is

seen that the success of ensemble models created with

SVM and ANN algorithms in the training set has increased

substantially. The success of the models with GBT and DT

algorithms in the training set are similar between single and

ensemble models. In all cases the success of the algorithms

increased for the test set with ensemble models compared

to the models created alone.

Among the ensemble models created in this study, the

ensemble ANN model had the most increased success in

the training and test set. In .

Table 3, preprocesses, hyperparameters and ensemble

weights of the models created by the single and ensemble

ANN models are given. Ensemble ANN model, which was

created by combining 3 different models with different

hyperparameters such as a correction term, hidden layer

size, and learning rate, used a power transformer in the data

preprocessing process, feature agglomeration in the feature

preprocessing process, and gave the best results in

approximating the training and test sets. These results show

that creating ensemble models by preprocessing and

hyperparameter optimization is a valuable exercise in

improving performance.
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The flood susceptibility maps created by ANN models

shown in Fig. 5 are examined. The single ANN model

generated areas with very sharp separations over the basin.

Most flooding points in the inventory are close to the basin

drainage network. The single ANN model, which generally

focuses on the success of the estimations, was found to be

insufficient to represent the basin, in general, since it

generally classifies by reference to points close to the

drainage network. However, this situation differs in the

flood susceptibility map obtained with the ensemble ANN

model. While the ensemble ANN model predicted the flood

areas, it discerned the distribution of the parameters

affecting the flood in flood points more effectively with the

help of combined models. This situation effectively creates

areas that show a better distribution in the basin and con-

sider the effects of all parameters on the flood. The

ensemble ANN model generally determined the flood

potential as high at low elevations, low slope, convex

profile curvature, areas close to river drainage network,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

 P
os

i�
ve

 R
at

e

False Posi�ve Rate

SVM (AUC= 0.854)

Ensemble SVM (AUC=0.876)

ANN (AUC=0.834)

Ensemble ANN (AUC=0.936)

GBT (AUC=0.889)

Ensemble GBT (AUC=0.922)

DT (AUC=0.868)

Ensemble DT (AUC=0.910)

Fig. 4 The ROC curves for the

test data of the models

Table 2 Performance of models in training and test set

Model Single model Ensemble model

Train Test Train Test

SVM 0,861 0,854 0,919 0,877

ANN 0,845 0,834 0,952 0,936

GBT 0,989 0,889 0,989 0,922

DT 0,921 0,868 0,923 0,910

Table 3 Preprocesses and hyperparameters of ANN models

Single ANN Ensemble ANN

Ensemble weights – 0,2 0,2 0,6

Data preprocessing Rescaling type – – Power transformer Power transformer

Categorical encoding Yes Yes Yes Yes

Feature preprocessing – Feature agglomeration – Feature agglomeration

Regularization term* 0,0001 0,04472 0,000455 1,0848 9 10–7

Hidden layer size (38,2) (46,1) (30,1) (167,1)

Learning rate 0,002248 0,02125 0,09518 0,0001767

Activation function tanh relu tanh relu

Maximum iteration 200 64 64 256

*Regularization (L2 regularization) term, which helps in avoiding overfitting by penalizing weights with large magnitudes
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regions with high topographic wetness index and high

drainage density.

In Table 4, preprocesses, hyperparameters and ensemble

weights of the models created for single and ensemble

SVM models are given. In the ensemble model, SVM has

combined models with different types of kernel functions,

which have undergone different data and feature prepro-

cessing, into a single ensemble model. This explains the

success of the model in the training and test set.

Flood susceptibility maps obtained from models created

with the SVM algorithm are shown in Fig. 6. the SVM

model created alone generally predicts the areas close to

the basin drainage network with a potential close to 1, and

the remaining areas with a potential close to 0. In the

ensemble SVM model, it was observed that, unlike the

single SVM model, areas with a distribution between 0.5

and 1 were predicted close to the drainage network. Flood

susceptibility maps created by the SVM models show that

areas with high flood potential generally occurred at low

elevations, with low slopes, convex profile curvatures, and

close to the drainage network. However, in the ensemble

SVM model created with Auto-sklearn, it was observed

that the flood susceptibility areas form regions that include

more parameters and can provide more clarity with a dis-

tribution between 0 and 1.

The preprocessing, hyperparameters and model weights

of GBT models that show the most success in the training

set are given in Table 5. The ensemble GBT model had

increased performance in the test data by creating more

complex tree models using a standard and robust scaler

with different hyperparameters and preprocessing for fea-

ture selection.

Flood susceptibility maps of GBT models are shown in

Fig. 7. Generally, the results of the two models are similar.

However, the ensemble GBT model estimated the flood

potential of the areas near major streams and the seaside

Fig. 5 Flood susceptibility maps of ANN models: a ANN, b Ensemble ANN

Table 4 Preprocesses and hyperparameters of SVM models

Single SVM Ensemble SVM

Ensemble weights – 0,2 0,4 0,2 0,2

Data preprocessing Rescaling type – – Standard scaler Robust scaler Standard scaler

Categorical encoding Yes Yes Yes Yes Yes

Feature preprocessing – Random tree embedding Linear SVM Nystroem sampler Fast ICA

Kernel function Polynomial Polynomial Polynomial Linear Linear

C (Penalty Coefficient) 250 249,344 0,4812 0,8116 1,43,258

Tolerance 0,0003 0,000296 0,000817 0,009447 0,08805

Gamma – 0,093 0,017679 – –

Degree 3 2 5 – –

r 15 0,77,045 0,73,186 – –

Shrinking Yes No No – –
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closer to 1 than did the single GBT model. Single and

ensemble GBT models generally predicted high flood

potential in low slope and convex profile curvature areas.

These models also relied on the topographic wetness index

parameter as well as the slope and profile curvature

parameters. This is evident by the similarities of the single

GBT model flood susceptibility map and the topographic

wetness index map for large rivers.

In Table 6, preprocesses, hyperparameters and weights

of the models created by single and ensemble DT models

are given. That the ensemble DT model with different

preprocessing processes and hyperparameters approaches

the test set by creating more complex trees explains the

success of the ensemble DT model in the test set.that the

DT models generally predicted high flood potential in areas

close to the sea, with low slopes and low elevations as

shown in Fig. 8. Since susceptibility areas created by a

single DT model cannot represent the basin generally, it

can be concluded that it is insufficient in flood suscepti-

bility mapping. This is because decision trees created

during the learning phase insufficiently estimate the overall

watershed with the decision rules. However, it was

observed that flood susceptibility areas created by the

ensemble DT model exhibited a better distribution over the

basin due to preprocessing and hyperparameter

optimization.

To examine the difference in flood susceptibility areas

predicted by the models more clearly, the flood suscepti-

bility prediction of all models in the Mersin province and

its vicinity are shown in Fig. 9. The ensemble SVM model,

while determining the potential of floodplains, generally

estimated areas with low slope and convex profile curva-

ture as areas with flood potential close to 1 (Fig. 9b). The

ensemble SVM model estimated areas with low slope and

convex curvature to generally range from 0.85 to 0.95 in

terms of flood potential. However, the areas with these

features had indices very close to 1 in the SVM model

created alone (Fig. 9a).

The single ANN model classifies areas similarly to the

distance from the river map and ignores the effect of

parameters other than elevation, aspect, distance from the

river and profile curvature (Fig. 9c). On the other hand, the

Fig. 6 Flood susceptibility maps of SVM models: a SVM, b Ensemble SVM

Table 5 Preprocesses and hyperparameters of GBT models

Single GBT Ensemble GBT

Ensemble weights – 0,2 0,2 0,4 0,2

Data preprocessing Rescaling type – Standard scaler Robust scaler – –

Categorical encoding Yes Yes Yes Yes Yes

Feature preprocessing – – Extremely random trees – Select Percentile

Maximum leaf nodes – 31 36 1986 837

Regularization term – 1.0 9 10–10 1,768 9 10–8 0,41,663 5,364 9 10–5

Learning rate 0,08 0,1 0,05117 0,030356 0,019534

Minimum samples leaf 1 20 4 16 15

Maximum iteration – 512 64 256 256
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ensemble ANN model considered more parameters and

better reflected the overall watershed (Fig. 9d).

The single GBT and ensemble GBT models generally

have similar flood hazard estimates, but the ensemble GBT

model predicted areas with higher flood potential in near-

sea areas than the single GBT model. (Fig. 9e and f). In

addition, in areas very close to the drainage network out-

side the areas close to the sea, the single GBT model

resulted in areas with more flood potential than the

ensemble GBT model.

Fig. 7 Flood susceptibility maps of GBT models: a GBT, b Ensemble GBT

Table 6 Preprocesses and hyperparameters of DT models

Single DT Ensemble DT

Ensemble weights – Select Rate Linear SVM Select percentile Select percentile Select percentile

Data preprocessing Entropy Gini Gini Gini Entropy Gini –

4 12 10 12 6 2 Var

Feature preprocessing 1 15 7 4 19 20

Criterion 5 20 10 16 2 18

Maximum depth 4 12 10 12 6 2

Minimum samples leaf 1 15 7 4 19 20

Minimum samples split 5 20 10 16 2 18

Fig. 8 Flood susceptibility maps of DT models: a DT, b Ensemble DT
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Both DT models made similar estimates of areas with no

flood potential. However, the models made different pre-

dictions in areas with high flood risk (Fig. 9g, and h).

The McNemar test results given in Table 7 indicate that

the models created are consistent in estimating the test

dataset with all values exceeding the critical alpha. The

similarity of the GBT models visually evident in the flood

susceptibility maps is also discernable in the McNemar test

results of these two models. However, although predictions

from the ANN and DT models created alone are consistent

those of the other models, they are insufficient in flood

susceptibility areas. This indicates that these algorithms

successfully estimate test data but are inadequate in eval-

uating new situations with different parameters not inclu-

ded in the training set. This situation is not detected in the

McNemar test results.

5 Conclusion

Floods that cause deadly events and socio-economic

damage worldwide can be ameliorated by identifying

potential flood hazard areas and taking necessary precau-

tions. Determination of flood areas, which is a complex

work dependent on many parameters, has an important

place in watershed management, and can be achieved with

appropriate data sets and correct approaches by using ML

algorithms and ensemble models. The use of ensemble

methods in different disciplines and study areas with the

AutoML algorithms can guide decision-makers. In this

context, findings of the study can assist decision makers at

local response agencies such as councils, municipalities

and at national governmental bodies such as State Water

Works, General Directorate of Water Management, Min-

istry of Environment, Urbanization and Climate Change by

enabling the use of such powerful and advanced algorithms

in the preliminary flood risk assessment phase, which is

compulsory for effective flood and basin management

plans. Planners and engineering consultants involved with

flooding can also benefit from the results in terms of

implementation of necessary actions by considering sus-

ceptible areas with higher accuracy.

One of the most important factors in determining the

success of the models is that the models can predict the

flooding points in the test data with high success rate. In the

test set, the single ANN model correctly predicted the 36

points out of 47 flooded spots, while the Ensemble ANN

model correctly predicted the 41 out of 47. Likewise, the

single DT model correctly predicted the 38 of the flooded

spots, while the Ensemble DT model predicted the 42 out

of 47. Therefore, the number of points that are estimated to

have no flood risk is also reduced by estimating the flooded

points with higher accuracy. All ensemble models reduced

the number of incorrectly predicted locations compared to

their single models. The most outstanding of these models,

the Ensemble ANN model, correctly predicted all the 41

non-flooding points in the test set.

We believe that results of the current study can be a

valuable guide for local and central authorities in terms of

strategic implications and they can be implemented to the

Eastern Mediterranean Basin Flood Management Plan

prepared by the Ministry of Agriculture and Forestry

General Directorate of Water Management, Türkiye.

When the performances of the created models in the

training and test sets are considered as a whole, results

obtained by preprocessing and hyperparameter optimiza-

tion with Auto-sklearn regarding the AUC results of the

chosen algorithms showed good performance in adapting to

the data. These results show how important it is to adapt a

bFig. 9 Flood susceptibility areas of Mersin province and its vicinity.

a SVM, b Ensemble SVM, c ANN, d Ensemble ANN, e GBT,

f Ensemble GBT, g DT, h Ensemble DT

Table 7 Pairwise comparison of each model with the McNemar test

Algorithms GBT ANN SVM DT Ensemble GBT Ensemble ANN Ensemble SVM Ensemble DT

GBT – 0,581* 1 0,727 1 0,687 1 0,687

ANN – 0,289 1 0,388 1 0,344 0,267

SVM – 0,508 1 0,453 1 1

DT – 0,453 1 0,581 0,219

Ensemble GBT – 0,375 1 1

Ensemble ANN – 0,453 0,219

Ensemble SVM – 1

Ensemble DT –

*The cell values show the probability value corresponding to v2 value calculated with the McNemar test in the Chi-square test statistic. For the

test, the a significance level was 0.05 for the 99% confidence interval
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given data set to machine learning and adjust the algo-

rithms’ hyperparameters in the models’ performance.

When the success rates of different algorithms in the val-

idation set are examined, the ensemble models created by

preprocessing and hyperparameter optimization with Auto-

sklearn successfully estimate the validation set.

The flood susceptibility maps that were generated gen-

erally estimated regions close to Mersin, Mut, Erdemli,

Mezitli, Silifke, Toroslar, Yenişehir and the Akdeniz pro-

vinces, Tarsus and Gazipaşa districts and their surrounding

areas with high flood potential. The results obtained from

this study and the flood management plan prepared for the

Eastern Mediterranean Basin using hydrodynamic models

can be evaluated together to develop a reliable watershed

management plan so that governmental bodies and

landowners can take necessary precautions for the areas

having flooding risks in the basin. In this way, an accurate

estimation of floods in a watershed can guide watershed

management and planning.

The results generally show that the ensemble models are

successful. However, these results are mainly focused on

correct predictions. Therefore, the flood areas obtained in

the study can be verified by comparing the flood areas to be

obtained with the two- or three-dimensional hydraulic

model used in the flood risk preliminary assessment

studies.

In general, results showed that ensemble ML algorithms

with preprocessing and hyperparameter optimization for

the given data set more successfully modeled flood sus-

ceptibility areas in a watershed. However, the biggest

problem limiting those who use ML algorithms in this

context is the availability of a reliable data set that can

accurately represent the basin. Attention should be given to

the suitability of the data used to represent the studied

study area more clarity in the prediction of flood suscep-

tibility areas can be obtained throughout the basin by

increasing the number of points in the flood inventory used

in flood susceptibility mapping and diversity in the

parameters affecting the flood. In this way, more general-

ized linear or non-linear models can be obtained using

parameters that are thought to be effective on the flood

instead of concentrating on a few parameters.
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NTT, Nguyen HQ, Ahmad A, Ghorbani MA (2020) GIS-based

comparative assessment of flood susceptibility mapping using

hybrid multi-criteria decision-making approach, naı̈ve Bayes

tree, bivariate statistics and logistic regression: a case of Topl’a

basin, Slovakia. Ecol Indicators. https://doi.org/10.1016/j.eco

lind.2020.106620

Andaryani S, Nourani V, Haghighi AT, Keesstra S (2021) Integration

of hard and soft supervised machine learning for flood suscep-

tibility mapping. J Environ Manag 291:112731. https://doi.org/

10.1016/j.jenvman.2021.112731

Band SS, Janizadeh S, Pal SC, Saha A, Chakrabortty R, Melesse AM,

Mosavi A (2020) Flash flood susceptibility modeling using new

approaches of hybrid and ensemble tree-based machine learning

algorithms. Remote Sensing 12:3568. https://doi.org/10.3390/

rs12213568

Bui DT, Pradhan B, Nampak H, Bui QT, Tran QA, Nguyen QP (2016)

Hybrid artificial intelligence approach based on neural fuzzy

inference model and metaheuristic optimization for flood

susceptibilitgy modeling in a high-frequency tropical cyclone

area using GIS. J Hydrol 540:317–330. https://doi.org/10.1016/j.

jhydrol.2016.06.027

Chakrabortty R, Pal SC, Rezaie F, Arabameri A, Lee S, Roy P, Saha

A, Chowdhuri I, Moayedi H (2021) Flash-flood hazard suscep-

tibility mapping in Kangsabati River Basin, India. Geocarto Int.

https://doi.org/10.1080/10106049.2021.1953618

Choubin B, Moradi E, Golshan M, Adamowski J, Hosseini FS,

Mosavi A (2019) An ensemble prediction of flood susceptibility

using multivariate discriminant analysis, classification and

4288 Stochastic Environmental Research and Risk Assessment (2023) 37:4273–4290

123

https://doi.org/10.1007/s10064-018-1403-6
https://doi.org/10.1080/10106049.2018.1474276
https://doi.org/10.1080/10106049.2018.1474276
https://doi.org/10.1080/10106049.2021.2005698
https://doi.org/10.1080/10106049.2021.2005698
https://doi.org/10.1016/j.ecolind.2020.106620
https://doi.org/10.1016/j.ecolind.2020.106620
https://doi.org/10.1016/j.jenvman.2021.112731
https://doi.org/10.1016/j.jenvman.2021.112731
https://doi.org/10.3390/rs12213568
https://doi.org/10.3390/rs12213568
https://doi.org/10.1016/j.jhydrol.2016.06.027
https://doi.org/10.1016/j.jhydrol.2016.06.027
https://doi.org/10.1080/10106049.2021.1953618


regression trees, and support vector machines. Sci Total Environ.

https://doi.org/10.1016/j.scitotenv.2018.10.064

Cortes C, Vapnik V (1995) Support-Vector Networks. Mach Learn

20:273–297

Dandapat K, Panda GK (2017) Flood vulnerability analysis and risk

assessment using analytical hierarchy process. Model Earth Syst

Environ 3(4):1627–1646. https://doi.org/10.1007/s40808-017-

0388-7

Dano UL, Balogun A, Matori A, Yusouf KW, Abubakar IR,

Mohamed MAS, Aina YA, Pradhan B (2019) Flood susceptibil-

ity mapping using gis-based analytic network process: a case

study of Perlis, Malaysia. Water. https://doi.org/10.3390/

w11030615

De Brito MM, Evers M, Almoradie ADS (2018) Participatory flood

vulnerability assessment: a multi-criteria approach. Hydrol Earth

Syst Sci 22(1):373–390. https://doi.org/10.5194/hess-22-373-

2018

Dietterich TG (1997) Approximate statistical tests for comparing

supervised classification learning algorithms. Neural Comput

10(7):1895–1923

El-Magd SAA, Pradhan B, Alamri A (2021) Machine learning

algorithm for flash flood prediction mapping in Wadi El-Laqeita

and surroundings, Central Eastern Desert, Egypt. Arab J Geosci.

https://doi.org/10.1007/s12517-021-06466-z

Erdem M, Boran FE, Akay D (2016) Classification of risks of

occupational low back disorders with support vector machines.

Hum Factors Ergon Manufact Serv Ind. https://doi.org/10.1002/

hfm.20671

Feurer M, Aaron K, Eggensperger K, Jost S, Manuel B, Hutter F

(2015) Efficient and robust automated machine learning. Adv

Neural Inf Process Syst 28:2962–2970

Friedman JH (1999) Greedy function approximation: a gradient

boosting machine http://www.salford-systems.com/doc.Greedy

FuncApproxSS.pdf.

General Directorate of Water Management, Republic of Türkiye

Ministry of Forestry And Water Management, (2016). The Effect

of Climate Change on Water Resources Project Final Report,

Ankara. https://www.tarimorman.gov.tr/SYGM/Belgeler/iklim%

20de%C4%9Fi%C5%9Fikli%C4%9Finin%20su%20kay-

naklar%C4%B1na%20etkisi/Iklim_NihaiRapor.pdf.

Gijsbers P, LeDell E, Thomas J, Poirier S, Bischl B, Vanschoren J

(2019) An open source AutoML benchmark. arXiv preprint

arXiv:1907.00909.

Hong H, Pradhan B, Jebur MN, Bui DT, Xu C, Akgun A (2016)

Spatial prediction of landslide hazard at the Luxi area (China)

using support vector machines. Environ Earth Sci 75(1):1–14.

https://doi.org/10.1007/s12665-015-4866-9

Hoque MAA, Tasfia S, Ahmed N, Pradhan B (2019) Assessing spatial

flood vulnerability at Kalapara Upazila in Bangladesh using an

analytic hierarchy process. Sensors 19(6):1302. https://doi.org/

10.3390/s19061302

Horritt MS (2000) Calibration of a two-dimensional finite element

flood flow model using satellite radar imagery. Water Resour

Res. https://doi.org/10.1029/2000WR900206

Ishtiaque A, Eakin H, Chhetri N, Myint SW, Dewan A, Kamruzza-

man M (2019) Examination of coastal vulnerability framings at

multiple levels of governance using spatial MCDA approach.

Ocean Coast Manag 171:66–79. https://doi.org/10.1016/j.ocecoa

man.2019.01.020

Jahangir MH, Reineh SMM, Abolghasemi M (2019) Spatial predi-

cation of flood zonation mapping in Kan River Basin, Iran, using

artificial neural network algorithm. Weather Clim Extrem

25:100215. https://doi.org/10.1016/j.wace.2019.100215

Jaiswal RK, Ghosh NC, Lohani AK, Thomas T (2015) Fuzzy AHP

based multi crteria decision support for watershed prioritization.

Water Resourc Manag. https://doi.org/10.1007/s11269-015-

1054-3

Khosravi K, Shahabi H, Pham BT, Adamowski J, Shirzadi A, Pradhan
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