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Abstract
Partitioning algorithms, and in particular K-means clustering, are widely used in time series analysis. K-means clustering is

intrinsically related to the use of the Euclidean distance as a measure of dissimilarity. When other dissimilarity measures,

such as dynamic time warping, are involved, K-means clustering is usually replaced by the optimisation of a sums-of-the-

stars clustering criterion, giving rise to an algorithm other than that of K-means, such as K-medoids. Another common

restriction in the implementation of K-means concerns the need to estimate the average as the cluster prototype, which may

represent a drawback for this method in time series when elastic measures such as dynamic time warping are used. In this

paper, we propose a multidimensional scaling based K-means clustering algorithm that enables the use of K-means

clustering together with any dissimilarity measure, and in particular with dynamic time warping, without requiring us to

estimate cluster prototypes for the time series. This procedure is a true K-means clustering algorithm that searches for the

partition in an equivalent auxiliary configuration, usually in a dimension lower than the time series length. The approach

proposed is of particular interest when dynamic time warping is used in the analysis of series of unequal length and/or

when some data are missing, and hence Euclidean distances cannot be used. The performance of our procedure is tested by

conducting an extensive Monte Carlo experiment, comparing the results with those obtained by K-medoids. The procedure

is also illustrated with the analysis of carbon dioxide emissions from 133 countries.

Keywords K-means clustering � K-medoids � Time series � Dynamic time warping � Cluster prototype � Multidimensional

scaling

1 Introduction

Cluster analysis is a popular data analysis tool that has been

widely used in diverse fields, for different types of data

sets; one such is the analysis of time series (Liao 2005).

Many studies have sought to identify homogeneous group

structures in time-varying data, and recent increases in

storage and manipulation capacities for large real-world

data sets have enabled significant technical developments

in this context. Applications of time series clustering can

be found, for instance, in the determination of singular

patterns (Sfetsos and Siriopoulos 2004), in pattern dis-

covery (Pavlidis et al. 2006) and in the detection of similar

dynamic changes (He et al. 2012). A comprehensive

review of time series clustering and its applications is given

in Aghabozorgi et al. (2015).

In addition to computational difficulties inherent to the

size of the data sets considered in time series analysis,

comparisons in terms of dissimilarity measures are subject

to certain difficulties, related to the characteristics of the

measurement scale, the uniformity of the sample and the

length of the series. Various dissimilarity measures have

been proposed to overcome these issues, which may also

affect the clustering procedure adopted (see Montero and

Vilar 2014). Several methods have been employed for

whole time series clustering. Among many partition clus-

tering approaches, the traditional K-means clustering
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technique stands out, together with optimisation algorithms

related to a generalised K-means procedure, in which

Euclidean distances are replaced by dissimilarities and/or

the centroid is replaced by an exemplar or cluster prototype

(see Liao 2005, for a comprehensive review).

The K-means algorithm (MacQueen 1967; Hartigan and

Wong 1979), produces a partition of the rows of an N � p

matrix X into a specified number K of non-overlapping

groups, on the basis of their (squared) Euclidean distances.

For application in this framework, the rows of X are con-

sidered as N time series of equal length p, and each

observation is classified into the cluster with the nearest

mean (centroid) value. The useful data dispersion proper-

ties of the K-means algorithm are well known (Anderson

1958). These properties are intrinsically related to the use

of the group means or centroids as the cluster exemplars,

together with Euclidean distances (see Vera and Macı́as

2021). In time series analysis, K-means clustering can be

performed either directly on the raw data, or with the prior

use of feature-based approaches to reduce the high

dimensionality of the data, in which the same time units are

used to consider the data being sampled.

However, as noted above, the presence of series of

unequal length, feature-value pair vectors or transition

matrices is common in this framework, which means that

the Euclidean distance cannot always be used. On many

occasions, this means that a sums-of-the-stars clustering

criterion must be optimised (see Everitt et al. 2011,

Chapter 5) based on a (non-Euclidean) measure of dis-

similarity between the series. Such algorithms usually

allocate a time series into the group whose exemplar or

prototype (not necessarily the centroid) is nearest in terms

of the dissimilarity measure. The group exemplars or

medoids (Kaufman and Rousseeuw 1990) are not neces-

sarily the centroids, but a time series within the data set,

giving rise to a non-K-means algorithm, such as the well-

known technique of partitioning around medoids or the

PAM algorithm (Kaufman and Rousseeuw 1990). In

another approach, avoiding the need to estimate cluster

prototypes, Witten and Tibshirani (2010) proposed a gen-

eralised criterion for clustering in a dissimilarity matrix,

pointing out that their criterion is equivalent to K-means

only when the dissimilarities are considered to be squared

Euclidean distances (see also Hastie et al. 2009,

Section 14.3.6).

Various approaches to perform time series partitioning

have been suggested. None of these, however, although

related to K-means, correspond to a true K-means algo-

rithm. For instance, Kakizawa et al. (1998) minimised the

lack-of-homogeneity criterion (Everit et al. 2011) replacing

the squared Euclidean distances by measures of divergence

between series. Previously, in a feature-based framework,

Wilpon and Rabiner (1985) described a procedure that

combined the substitution of Euclidean distances by one

based on log-likelihood, with the determination of the

centroids by a minimax or pseudo-average procedure to

determine the centres of the clusters. In another proposal,

Vlachos et al. (2003) suggested using wavelets together

with a procedure to progressively select the initial centroids

in K-means.

In many of the above cases, the primary consideration is

that, in some experimental situations, the estimation of the

cluster centroid for time series is a challenge in itself,

particularly in the presence of time series of unequal length

(Gupta et al. 1996), or when the similarities between series

are based on their shape. This problem has been addressed

in relation to the use of elastic approaches such as dynamic

time warping (DTW) and longest common sub-sequence

(LCSS). In this respect, for example, Niennattrakul and

Ratanamahatana (2007) and Hautamaki et al. (2008) have

highlighted the existence of convergence problems in

K-means because of the difficulty of accurately reflecting

the average shape of time series. Aghabozorgi et al. (2015)

have also observed the fact that elastic approaches have

sometimes been experimentally eluded when related to the

need for the use of cluster prototypes. Specifically, Nien-

nattrakul and Ratanamahatana (2007) pointed out that

dynamic time warping should not be used in conjunction

with K-means clustering because it may fail to average the

shape of the time series, but that K-medoids with dynamic

time warping gives satisfactory results.

Without involving the estimation of the cluster exem-

plars, Vera and Macı́as (2017) proposed a method to per-

form (generalised) K-means clustering and to select the

number of clusters when the information is given in terms

of a dissimilarity matrix. More recently, Vera and Macı́as

(2021) demostrated the usefulness of multidimensional

scaling (MDS) in relation to K-means clustering in a dis-

similarity matrix. One of the most interesting outcomes of

this study is the conclusion that minimising a lack-of-ho-

mogeneity criterion in terms of the squared dissimilarities

is equivalent to applying a true K-means clustering pro-

cedure, whilst avoiding the need to estimate cluster pro-

totypes in the raw data set. In addition, these authors

identify an auxiliary embedding space with respect to

which the clustering partition is equivalent, and an efficient

procedure to determine the number of clusters using any

existing criteria for rectangular data.

In this paper we propose a K-means clustering proce-

dure for the analysis of time series of equal or unequal

length. As it makes use of any appropriate dissimilarity

measure, this procedure does not require the estimation of

the cluster representatives in the raw data set. Neither is it

exposed to the above-mentioned problems in the applica-

tion of K-means clustering in this framework (Aghabozorgi

et al. 2015, Section 4), in particular, those related to the
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inaccuracies of K-means in conjunction with a distance

time warping procedure (Niennattrakul and Ratanama-

hatana 2007). Our method is based on the use of MDS in

full dimension together with a suitable translation of the

off-diagonal elements of the matrix of squared dissimilar-

ities. A further benefit is that this methodology allows the

use of any traditional criterion for determining the number

of clusters in K-means for time series.

The rest of the paper is organised as follows. In the next

section, we describe the dynamic time warping method for

comparing time series in shape, and discuss the use of

traditional K-means clustering, generalised K-means and

K-medoids procedures for time series. In Sect. 3, we

introduce a procedure to perform K-means clustering

without estimating cluster prototypes, and consider criteria

for determining the number of clusters derived from a

dissimilarity matrix. Section 4 then details the proposed

procedure for K-means clustering in time series. In Sect. 5,

a Monte Carlo experiment is conducted to determine and

analyse the performance of this procedure, for well-known

real and simulated data sets. In addition, its application to

the case of carbon dioxide emissions is described. In the

final section, we discuss the results obtained and sum-

marise the main conclusions drawn.

2 Dynamic time warping and generalised
K-means clustering

Dynamic time warping is a well known elastic method to

obtain the dissimilarity in shape between two time series of

equal or unequal length. Broadly speaking, the idea is to

align the two time series by finding an optimal mapping on

which to calculate the minimum distance, usually Eucli-

dean, between the series.

For two time series a ¼ a1; . . .; anð Þ and

b ¼ b1; . . .; bmð Þ, of lengths n and m, respectively, first the

n� m matrix of distances dðai; bjÞ, i ¼ 1; . . .; n,

j ¼ 1. . .;m, is calculated. Then, a warping path w ¼
w1; . . .;wRð Þ of pairs wr ¼ ðir; jrÞ, ir 2 f1; . . .; ng,
jr 2 f1; . . .;mg, r ¼ 1; . . .;R, such that minimises the nor-

malized cumulative distance, i.e.

dDTWða; bÞ ¼ min
P

1

R

XR

r¼1

dwr
; ð1Þ

where dwr
¼ dðair ; bjrÞ, r ¼ 1; . . .;R, is found within the set

P of warping paths, defined under the following condi-

tions: (1) the path must start and finish in the diagonally

opposite cells (1, 1) and (n, m), respectively; (2) the

allowable steps of the path must be to adjacent cells in a

non-reversal time direction, that is, with a maximum

increment of one positive unit in each index. These

constraints ensure that all the elements of both time series

are included (at least once) in the path, with the length R

satisfying maxðn;mÞ�R�mþ n� 1.

Operationally, the warping path is usually calculated by

dynamic programming, based on the recursive evaluation

of elements of the n� m matrix of optimal partial cumu-

lative distances, as follows:

dcumði; jÞ ¼ dðai; bjÞ
þminfdcumði� 1; j� 1Þ; dcumði� 1; jÞ; dcumði; j� 1Þg:

ð2Þ

As mentioned in Sect. 1, dynamic time warping is widely

used in conjunction with clustering procedures, due to its

suitability for comparing the shapes of two time series,

particularly when they are of unequal length. However, and

as noted above, estimating a representative of the cluster as

the average shape of the time series in that cluster,

according to the optimal mapping between them, may

produce inaccuracies. Difficulties with the estimation of the

average shape have led to K-means clustering in time series

being rejected in favour of alternative partitioning algo-

rithms such as K-medoids, in which the prototype is one of

the group’s time series, the medoid (see Aghabozorgi et al.

2015, for an extensive overview).

2.1 K-means, generalised K-means and K-
medoids clustering procedures

Let us denote by X an N � m matrix representing a set of N

time series of equal length m, xi ¼ fxi1; . . .; ximg, arranged
by rows, and all observed at the same time periods. Assume

a partition of the rows of X into K clusters, and denote by E

an N � K indicator matrix, whose elements eik are equal to

one if xi belongs to cluster k and zero otherwise. The dis-

persion of X measured by the trace of its covariance matrix

S can be written in terms of the Euclidean distances as

tr T ¼ tr NS ¼ tr
XN

i¼1

ðxi � �xÞðxi � �xÞ
0
¼

XN

i¼1

dðxi; �xÞ2:

ð3Þ

where dðxi; �xÞ2 is the squared Euclidean distance of the ith

time series to the overall time series average. Hence, per-

forming K-means clustering on X consists in finding E, by

minimising the within-cluster dispersion given by (see

Everit et al. 2011)

min
E

WðKÞ ¼ min
E

XK

k¼1

XN

i¼1

eikd
2
ik; ð4Þ

where d2ik ¼ ðxi � �xkÞ0ðxi � �xkÞ is the Euclidean distance of

each time series to the average of the time series in each

cluster k, denoted by �xk.
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When the time series are not comparable in times, or the

series are of different length, the use of Euclidean distances

is usually preceded by a transformation stage (Keogh and

Kasetty 2003). Otherwise, a generalised K-means proce-

dure is normally used.

Various partitioning algorithms have been proposed to

generalise K-means, although none can be properly con-

sidered a K-means clustering procedure, and so the latter’s

useful properties in terms of dispersion (Anderson 1958)

are not available. A currently popular approach in time

series is to apply the K-means subroutine by simply

replacing the squared Euclidean distances with another

measure of dissimilarity, and the cluster prototypes

accordingly (see, e.g., Liao 2005, or Aghabozorgi et al.

2015). This method has been used with dynamic time

warping on raw time series data by minimising (Niennat-

trakul and Ratanamahatana 2007)

min
E

XK

k¼1

XN

i¼1

eikdDTWðxi; ckÞ; ð5Þ

where ck is the average shape of the time series in cluster

k according to the dynamic time warping optimal mapping

between these series (see, e.g., Aghabozorgi et al. 2015).

Alternatively, the K-medoids procedure (Kaufman and

Rousseeuw 1990), in addition to considering in (4) any

measure of dissimilarity instead of the squared Euclidean

distance, takes ck as the nearest time series xk in the cluster

to all the others in terms of such a dissimilarity, which for

dynamic time warping is

min
E

XK

k¼1

XN

i¼1

eikdDTWðxi; xkÞ: ð6Þ

This method does not suffer from the inaccuracies that can

arise when using the averaged shape as a cluster prototype,

but even for Euclidean distances, it does not represent a

true K-means clustering procedure. However, the problem

with the representatives of the groups in time series can be

avoided since a true K-means clustering algorithm can be

properly applied with any dissimilarity measure without

the need to estimate cluster prototypes.

3 K-means clustering without estimating
prototypes of time series groups

Contrary to many views that have been expressed in the

time series literature (see, e.g., Aghabozorgi et al.

2015, Section 5.2), the application of K-means does not

require us to estimate the raw representatives of the clus-

ters. Instead, the optimal partition E can be obtained in a

K-means framework by minimising (see, e.g., Vera and

Macı́as 2017, Section 2)

WðKÞ ¼
XK

k¼1

XN

i¼1

eikd
2
ik ¼

XK

k¼1

1

2Nk

XN

i¼1

XN

j¼1

eikejkd
2
ij; ð7Þ

where d2ij ¼ ðxi � xjÞ
0
ðxi � xjÞ represents the squared

Euclidean distance between the rows xi and xj of X, and Nk

is the cardinality of cluster k. This problem is also equiv-

alent to maximising

BðKÞ ¼ 1

2N

XN

i¼1

XN

j¼1

d2ij �
XK

k¼1

1

2Nk

XN

i¼1

XN

j¼1

eikejkd
2
ij; ð8Þ

which represents the between-group dispersion in terms of

pairwise squared Euclidean distances, since the first com-

ponent on the right-hand side of (8) represents the disper-

sion (tr T), and there is no need to consider the time series

average. Whether (7) or (8) is used, Euclidean distances are

considered together with K-means to group similar time

series in time. However, as noted above, there are many

practical situations in which the time series comparison is

performed in terms of other dissimilarity measures, and for

this purpose a generalised K-means clustering algorithm is

often used.

In general, for any matrix of dissimilarities between

time series, D ¼ ðdijÞ, the above-described expressions

allow us to perform generalised K-means clustering with-

out the need to estimate cluster prototypes, for instance, by

minimising the lack of homogeneity criterion in which (7)

is formulated in terms of dissimilarities instead of squared

Euclidean distances. It is important to note that this crite-

rion is equivalent to K-means clustering only when dis-

similarities are considered to be squared Euclidean

distances (Hastie et al. 2009, Section 14.3.6).

3.1 Selecting the number of clusters

As shown by Vera and Macı́as (2017), since any partition E

induces a block-shaped partition of D, the overall disper-

sion of a dissimilarity matrix can be expressed as

X

k� l

XN

i¼1

XN

j¼1

eikejlwijðdij � dÞ2 ¼
X

k� l

XN

i¼1

XN

j¼1

eikejlwijðdij � dklÞ2

þ
X

k� l

�wklðdkl � dÞ2;

ð9Þ

where the coefficients wij represent weights (usually

wij ¼ 1, and wij ¼ 0 for missing dissimilarities, but their

values can be set by the researcher), d is the overall mean

of dissimilarities, and dkl and �wkl are the averaged dis-

similarity and the number of dissimilarities in the block

Dkl, respectively. The first component on the right-hand

side of (9) represents the within-block dispersion with

ðNðN � 1Þ � KðK þ 1ÞÞ=2 degrees of freedom, whereas
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the second component represents the between-block dis-

persion with KðK þ 1Þ=2 degrees of freedom. The within-

block dispersion and the between-block dispersion are

respectively denoted as

W�ðKÞ ¼
X

k� l

XN

i¼1

XN

j¼1

eikejlwijðdij � dklÞ2;

B�ðKÞ ¼
X

k� l

�wklðdkl � dÞ2;
ð10Þ

which enables us to formulate variance-based criteria to

select the number of clusters. In this respect, Vera and

Macı́as (2017) proposed two criteria, CH� and H�, as an

alternative to the Calinski–Harabasz index (Calinski and

Harabasz 1974) and to Hartigan’s rule (Hartigan 1975),

respectively, in terms of the block-shaped partition of the

dissimilarity matrix. In the first case, the optimum number

of clusters, K, is associated with a large value of

CH�ðKÞ ¼ B�ðKÞ=ðKðK þ 1Þ=2Þ
W�ðKÞ=ð½NðN � 1Þ � KðK þ 1Þ�=2Þ ; ð11Þ

where, for K ¼ 1, B�ð1Þ ¼ 0 and thus CH�ð1Þ ¼ 0.

Therefore, the maximum will never be reached for K ¼ 1.

For the second criterion, these authors proposed selecting

the number of clusters when H�ðKÞ� 5N, where

H�ðKÞ ¼ W�ðKÞ
W�ðK þ 1Þ � 1

� �

� ðð½NðN � 1Þ � KðK þ 1Þ�=2Þ � 1Þ:
ð12Þ

4 A unified approach to K-means clustering
in time series

We now consider squared dissimilarities instead of squared

Euclidean distances, and denote by D2 the matrix of

squared dissimilarities, and by ~D2 ¼ D2 þ cð11t � IÞ a

linear transformation of the off diagonal elements of D2,

with c ¼ �2kN , where k1 � � � � � kN are the eigenvalues

of B ¼ � 1
2
HD2H, and H ¼ I � 1

N 11
0
is the centring

matrix. Note that c� 0, and c ¼ 0 when D is a matrix of

Euclidean distances. Then ~D2 is a matrix of squared

Euclidean distances (Lingoes 1971; Vera and Macı́as

2021). Vera and Macı́as (2021) have also shown that per-

forming K-means clustering on the classical multidimen-

sional scaling configuration Xc in dimension

p ¼rankðBÞ�N � 2, related to the Euclidean distance

matrix ~D, is equivalent to doing so by minimising (7)

directly using D2.

These results have important implications for time series

clustering, as this approach allows the application of K-

means clustering relative to any dissimilarity matrix

between time series. In addition, it does not require the

estimation of representative time series for each group.

This outcome is achieved by means of an auxiliary matrix

Xc, whose dimension p�ðN � 2Þ only depends on the

number of time series, N, which is usually considerably

smaller than the maximum length m of the time series.

Hence, this procedure avoids the two main drawbacks in

the application of K-means to time series. The proposed

dissimilarity-based K-means clustering algorithm for time

series can be summarised as follows (see Fig. 1 for a

schematic version):

1. A dissimilarity matrix D of dimension N � N is

obtained between the time series for each particular

experimental situation. In particular, dynamic time

warping can be used to obtain dissimilarities between

series of unequal length. For asymmetric patterns in

dynamic time warping matrices, the dissimilarity

matrix is symmetrized (see, for example, Vera and

Rivera 2014, and Vera and Mair 2019), for a more

detailed description of asymmetric dissimilarity anal-

ysis in MDS), or the lower triangular matrix is

considered.

2. The minimum eigenvalue kN of the matrix

B ¼ � 1
2
HD2H, with H ¼ I � 1

n 11
0
, is obtained, and

the matrix of Euclidean distances ~D2 ¼ D2 �
2kNð11t � IÞ is calculated.

3. The classical scaling solution in full dimension Xc ¼
C ~K

1=2
for the spectral decomposition of ~B ¼

�ð1=2ÞH ~D2H ¼ C ~KC
0
is obtained. Therefore, the time

series are represented exactly with respect to their K-

means partition in terms of the dissimilarities in a

Euclidean space of dimension p�ðN � 2Þ, while the

dispersion is preserved (except for a constant

�2kNðN � 1Þ� 0, which does not depend on K).

4. K-means clustering is performed on Xc for a selected

value of K, and the partition matrix E is estimated

accordingly. To address the problem of determining the

number of clusters, different partitions EðKÞ can be

estimated for different values of K using this proce-

dure. Hence, any criterion formulated directly in terms

of the corresponding partition of D can be used to

determine the number of clusters. Another advantage

of the MDS is that it also allows us to use any classical

criterion on the full dimensional scaling configuration

(Vera and Macı́as 2021). Since there is no unique

criterion to determine the number of clusters, this also

confers an important added value on the proposed

procedure.
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5 Experimental results

The performance of the proposed procedure was analysed

for both simulated and real data sets using R Statistical

Software (v4.2.2; R Core Team 2022), and the results

obtained were compared with those achieved by the

K-medoids procedure using the pam function implemented

in the cluster R package (v2.1.4; Maechler et al. 2022).

The dissimilarity between each pair of time series was

calculated by dynamic time warping using the dtw package

(v1.23.1; Giorgino 2009), and each data set was analysed

considering 50 random starts and a maximum of 100 iter-

ations for each procedure. It is important to note that dif-

ferent packages in R may implement different dynamic

time warping algorithms. For example, when using the

lower bound technique, or when large time series matrices

are involved, the dtwclust package (v5.5.11; Sardá-Espi-

nosa 2019, 2022) is a more advisable alternative. Where

possible, the accuracy of the resulting classification was

measured using the cluster similarity index defined by

Gavrilov et al. (2000), as implemented in the TSclust

package (v1.3.1; Montero and Vilar 2014; see also Dı́az

and Vilar 2010), which is given by

Sim ðE;E0 Þ ¼ 1

K

XK

k¼1

max
1� t�K

jJk
T
J
0
t j

jJkj þ jJ 0
t j
; ð13Þ

where E ¼ fJ1; . . .; Jkg and E
0 ¼ fJ 0

1; . . .; J
0
kg are two par-

titions for the same data set, and j � j denotes the cardi-

nality. This index varies between zero meaning total

dissimilarity, and one, which indicates that the two clas-

sifications are identical. As a criterion to determine if two

classifications are comparable, values below 0.7 are con-

sidered here as not advisable.

5.1 UCR data sets

Fifteen well-known data sets from the UCR Time Series

Classification Archive (Chen et al. 2015) were considered,

including both real and simulated data. The GesturePeb-

bleZ1 and GesturePebbleZ2 sets of series of unequal

length, together with the CBF, Mallat, SmoothSubspace,

SyntheticControl, and TwoPattern sets of series of equal

length, were analysed. Each set was divided into a training

sample and a test sample, and together with the complete

set, all were analysed separately, except for the Mallat and

TwoPattern sets, due to their large size. In addition, the

eight real data sets BasicMotions, DiatomSizeReduction,

DistalPOAgeGroup, FaceFour, InsectEPGRegular, Oli-

veOil, Plane and Trace, were considered. In this experi-

ment, only the data sets producing an accuracy greater than

0.7 in at least one of the procedures used were taken into

account.

Table 1 shows the characteristics of these data sets,

together with the results obtained with the procedures using

dynamic time warping. For the proposed K-means proce-

dure, the dimensionality of the MDS auxiliary configura-

tion is also shown. As can be appreciated, in all simulated

data sets the proposed K-means procedure outperformed

the K-medoids procedure in terms of the quality of the

classification obtained, while the two procedures presented

similar levels of performance in terms of CPU time.

Comparable results were obtained for the real data sets,

although the differences were less apparent. Note that the

dimensionality of the MDS auxiliary configuration, in most

of the data sets analysed, was significantly lower than the

time series length. Only when the size of the data set, that

is, the number of time series in the set, was larger than the

maximum length of the series, was the dimensionality

larger.

5.2 Simulated time series of unequal length

We also performed Monte Carlo simulations to compare

the efficiency of the proposed K-means procedure with that

of the K-medoids procedure for dynamic time warping in

grouping time series of unequal length. Specifically, we

Fig. 1 K-means clustering algorithm for dissimilarities
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simulated ten time series for each of the time series lengths

of 100, 200, 300, 400, 500, and each of the nine different

processes described below.

For each pair of length combinations, ten time series

were generated using the corresponding process, for each

of the five process pairs described below. Thus, we obtain

for each situation a set of twenty series in which there are

two groups, one for each process. Therefore, 125 sets of

time series were analyzed, each one with 20 series

belonging to two groups of 10 time series related to the

process and length of the corresponding pairs. The fol-

lowing comparisons were then made:

1. AR(1), / ¼ 0:9, versus AR(1), / ¼ 0:5;

2. AR(1), / ¼ 0:95, versus ARIMA(0,1,0);

3. AR(2), /1 ¼ 0:6, /2 ¼ �0:3, versus MA(2),

h1 ¼ �0:6, h2 ¼ 0:3;

4. ARFIMA(0,0.45,0), versus white noise;

5. ARMA(1,1), / ¼ 0:95, h ¼ 0:74, versus white noise.

In all cases, the models are considered to be driven by

Gaussian white noise. The first situation compares low-

order models of similar type and autocorrelation function

structure. In the second case, a nonstationary process and a

near-nonstationary AR process are compared. In the third,

we compare the performance of two selected second-order

ARMA processes in order to deal with peak spectra. In the

fourth and fifth situations, near-nonstationary long and

short-memory processes, respectively, are compared with a

white noise process.

For each of the five pairs of processes, 5� 5 sets of time

series corresponding to all combinations of the sizes were

analysed. This procedure was repeated ten times, and

therefore 1250 sets of time series were analysed using the

proposed K-means and the K-medoids procedures. The

resulting classifications were then compared with the

original.

Table 2 shows the average values of the similarity index

(13), when the classifications obtained with the MDS-based

K-means procedure and with the pam algorithm are com-

pared with the true classification. In general, the proposed

K-means procedure outperforms the K-medoids procedure

in all data sets where the partitioning may be considered as

acceptable (similarity index above 0.70). This was the case

in practically all the comparisons except for AR(1), / ¼
0.95, versus ARIMA(0,1,0), although the performance of

both procedures, in general, improves with larger series.

Table 1 Results for the UCR

data sets using dynamic time

warping

Data set Size Length K K-means K-medoids

Sim Dim Time (s) Sim Time (s)

Simulated series of unequal length

GesturePebbleZ1(TEST) 172 455 6 0.70 88 60 0.62 60

GesturePebbleZ2(TRAIN) 146 455 6 0.72 75 72 0.52 72

Simulated series of equal length

CBF 930 128 3 0.88 549 1187 0.87 1196

Mallat(TRAIN) 55 1024 8 0.95 32 98 0.80 98

SmoothSubspace 300 15 3 0.90 149 47 0.73 47

SyntheticControl 600 60 6 0.98 335 246 0.94 252

TwoPatterns(TRAIN) 1000 128 4 0.99 507 1047 0.97 1059

Real data sets with series of equal length

BasicMotions 80 100 4 0.78 51 9 0.77 9

DiatomSizeReduction 322 345 4 0.81 167 645 0.77 71

DistalPOAgeGroup 439 80 3 0.70 230 283 0.62 285

FaceFour 102 350 4 0.73 71 80 0.73 71

InsectEPGRegular 311 601 3 1 148 1221 1 1221

OliveOil 60 570 4 0.80 43 55 0.80 55

Plane 210 144 7 1 110 66 0.98 69

Trace 200 275 4 0.76 101 141 0.76 142

The size (number of instances), length of the series, number of clusters and similarity index (13) values,

together with the CPU time for the proposed K-means and the K-medoids procedures, are shown. For the

proposed procedure, the dimensionality of the MDS auxiliary configuration is also shown. For the first two

sets of series of unequal length, the largest length value is shown. The complete data set was analysed,

except for the very large sets, in which case only the training or test subsets were considered. The results for

the data sets with an accuracy greater than 0.7 are shown
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5.3 Analysis of carbon dioxide emissions
from 133 countries

To illustrate the performance of the proposed method, a

real data set consisting of 133 time series of unequal length

was analysed. These series correspond to the carbon

dioxide emissions (MtCO2e) from the use of coal, oil and

gas (combustion and industrial processes), the process of

gas flaring and the manufacture of cement from 1960 to

2019 for 133 countries (GCP 2019). The data set is freely

available at the online platform Climate Watch 2020. All

the series were matched in length to 60, and the emission

Table 2 Average value of similarity indices for the classifications obtained with K-means and K-medoids corresponding to the simulated time

series

Groups K-means K-medoids

(100) (200) (300) (400) (500) (100) (200) (300) (400) (500)

Lengths (100)

AR1,0.9 versus AR1,0.5 0.73 0.98 1.00 1.00 1.00 0.73 0.92 0.99 1.00 1.00

AR1,0.95 versus ARIMA010 0.66 0.66 0.67 0.69 0.67 0.67 0.68 0.68 0.69 0.67

AR2 versus MA2 0.63 1.00 1.00 1.00 1.00 0.62 0.87 1.00 1.00 1.00

ARFIMA versus ARIMA000 0.60 1.00 1.00 1.00 1.00 0.61 0.94 1.00 1.00 1.00

ARMA11 versus ARIMA000 0.62 1.00 1.00 1.00 1.00 0.59 0.91 1.00 1.00 1.00

Lengths (200)

AR1,0.9 versus AR1,0.5 0.73 0.83 0.99 1.00 1.00 0.73 0.79 0.92 0.97 1.00

AR1,0.95 versus ARIMA010 0.67 0.67 0.67 0.66 0.67 0.70 0.67 0.67 0.69 0.68

AR2 versus MA2 1.00 0.66 0.88 1.00 1.00 0.99 0.65 0.68 0.83 0.98

ARFIMA versus ARIMA000 1.00 0.65 1.00 1.00 1.00 0.95 0.59 0.78 0.99 1.00

ARMA11 versus ARIMA000 1.00 0.59 0.97 1.00 1.00 0.96 0.61 0.82 1.00 1.00

Lengths (300)

AR1,0.9 versus AR1,0.5 0.78 0.81 0.92 0.99 1.00 0.81 0.76 0.81 0.90 0.99

AR1,0.95 versus ARIMA010 0.67 0.67 0.67 0.67 0.67 0.69 0.70 0.69 0.69 0.69

AR2 versus MA2 1.00 1.00 0.69 0.73 0.99 1.00 0.94 0.63 0.65 0.62

ARFIMA versus ARIMA000 1.00 0.99 0.60 0.95 1.00 1.00 0.87 0.63 0.75 0.99

ARMA11 versus ARIMA000 1.00 0.98 0.60 0.95 1.00 0.99 0.82 0.60 0.77 0.96

Lengths (400)

AR1,0.9 versus AR1,0.5 0.83 0.89 0.91 0.97 1.00 0.86 0.81 0.76 0.80 0.91

AR1,0.95 versus ARIMA010 0.72 0.71 0.72 0.72 0.72 0.76 0.75 0.74 0.75 0.72

AR2 versus MA2 1.00 1.00 1.00 0.67 0.67 1.00 1.00 0.91 0.64 0.62

ARFIMA versus ARIMA000 1.00 1.00 0.94 0.62 0.84 1.00 1.00 0.73 0.62 0.65

ARMA11 versus ARIMA000 1.00 1.00 0.90 0.63 0.87 1.00 0.99 0.82 0.63 0.68

Lengths (500)

AR1,0.9 versus AR1,0.5 0.89 0.94 0.92 0.97 0.99 0.86 0.86 0.86 0.87 0.90

AR1,0.95 versus ARIMA010 0.68 0.65 0.65 0.65 0.65 0.72 0.72 0.68 0.65 0.66

AR2 versus MA2 1.00 1.00 1.00 1.00 0.68 1.00 1.00 1.00 0.82 0.60

ARFIMA versus ARIMA000 1.00 1.00 1.00 0.85 0.62 1.00 1.00 0.95 0.66 0.60

ARMA11 versus ARIMA000 1.00 1.00 1.00 0.85 0.61 1.00 1.00 0.96 0.73 0.62

For each pair of processes (Groups), twenty series were generated for each pair of sizes, thus ten time series per process and size. For each pair of

processes, and each combination of two sizes, the twenty corresponding series were analysed. The experiment was repeated ten times
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Fig. 2 Carbon dioxide emissions (MtCO2e) for 133 countries from

1960 to 2019
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data which in some cases were not provided were consid-

ered missing values. Figure 2 shows the emissions for the

60-year period. Strikingly, the curves corresponding to

China and India differ sharply from the rest.

With the proposed procedure, K-means clustering is first

performed using the values of K ¼ 2; . . .; 10 to determine

the number of clusters. Working directly on the dynamic

time warping dissimilarity matrix, the CH� criterion sug-

gests three clusters, while the H� criterion indicates four

clusters, and together with a closer inspection of the aug-

mented Fig. 2, K ¼ 4 clusters were selected. First, the

proposed K-means clustering procedure was performed on

the basis of the full MDS-based configuration in 65

dimensions, obtaining four clusters of sizes n1 ¼ 1, n2 ¼ 1,

n3 ¼ 15, and n4 ¼ 116. The first cluster corresponds to

China, the second to India, the third to Iran, Indonesia,

Saudi Arabia, South Africa, Brazil, Thailand, Malaysia,

Pakistan, Vietnam, Egypt, Iraq, United Arab Emirates,

Argentina, Algeria and Venezuela, and the remaining

countries form the last cluster.

Figure 3 shows the time series clusters obtained with the

MDS-based K-means procedure. The series that belong to

group 3 are relatively homogeneous in shape, with some

small differences over the sixty years represented. The

largest cluster is the fourth, in which, according to its

shape, North Korea (dashed line) appears to be misclassi-

fied. Although some of the shapes within this group vary

somewhat, the emission levels are similar in every case.

This data set was also analysed with K-medoids for K ¼
4 clusters using the pam function in the cluster R package.

Four clusters, of sizes n1 ¼ 1; n2 ¼ 6; n3 ¼ 20; n4 ¼ 106,

were found with this method. The first cluster, as in

K-means, corresponds to China. The second contains India,

Iran, Indonesia, Saudi Arabia, South Africa and Brazil. The

countries belonging to the third cluster are Thailand,

Malaysia, Pakistan, Vietnam, Egypt, Iraq, United Arab

Emirates, Argentina, Algeria, Philippines, Nigeria, Vene-

zuela, Qatar, Kuwait, Colombia, Bangladesh, Turk-

menistan, Chile, Morocco and North Korea, and the

remaining countries are classified in the fourth cluster.

Hence, different classifications are found according to

whether the K-means or the K-medoids procedure is used.

Figure 4 shows the times series in each cluster. As can be

seen, the second group obtained with K-medoids is fairly

inaccurate, since the time series corresponding to India

seems to be misclassified, while for the third cluster the

time series for North Korea (dashed line) also shows a

different shape, and so this too seems to be misclassified.

The remaining series are grouped within the fourth cluster.

Here, in general, the time series all have similar shapes,

with the notable exception of North Korea, as was the case

with K-means. A comparison of the classifications pro-

vided by both methods reveals a cluster similarity index

value of 0.7, which confirms a comparable behaviour for

both procedures to a certain extent, as expected. In general,

better results are obtained by the K-means procedure than
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Fig. 3 Carbon dioxide emissions (MtCO2e) for the four clusters found
using K-means
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by K-medoids, particularly with regard to the time series

for China and India.

In addition to illustrating the behavior of both proce-

dures for the complete data set using the objective criterion

of K ¼ 4 clusters, we have also considered two situations

for which much closer results could be expected between

both procedures. First of all, and despite the fact that K-

medoids are assumed to be a more robust procedure than

K-means, we have analyzed the data by previously elimi-

nating the time series for China and India, considering K ¼
3 clusters. On the other hand, we have analyzed the com-

plete data set considering K ¼ 5 clusters subjectively,

according to what can be seen at first sight in cluster 3 of

Fig. 3 and cluster 2 of Fig. 4. For K ¼ 5, both clustering

procedures show identical results in the first three clusters,

with cluster 1 for China, cluster 2 for India, and cluster 3

for Iran, Indonesia, Saudi Arabia, South Africa, and Brazil.

The differences between both procedures appear in the two

remaining clusters, with sizes of 18 and 108 for K-means,

and 20 and 106 for K-medoids, where the two time series

that represent these differences correspond to Bangladesh

and Morocco. For K ¼ 3, the results are identical to those

of the last three groups for K ¼ 5, both for K-means and

for K-medoids. Figure 5 shows the classification of the two
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using K-medoids

CO2 emissions in Cluster 5 for K−means (108 countries)
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Fig. 5 Classification of Bangladesh and Morocco time series (in

dotted lines) by the two procedures for K ¼ 5

4564 Stochastic Environmental Research and Risk Assessment (2023) 37:4555–4566

123



time series in the clusters obtained by the K-means (cluster

5) and K-medoids (cluster 4) procedures.

In terms of the dynamic time warping dissimilarity

matrix, let us now consider the average of the 18 dissim-

ilarity vectors related to the elements of cluster 4, as well as

that corresponding to the 106 elements of cluster 5, after

excluding the vectors for Bangladesh and Morocco. Then,

the Euclidean distance between the dissimilarity vectors of

both countries and the average vectors of clusters 4 (312.4

and 309.4) and cluster 5 (220.6 and 199.9) are considerably

smaller for cluster 5 in both countries. Therefore, as in the

previous situation, the proposed K-means procedure pro-

vides the best results in this data set.

6 Conclusions

In this paper, we present a true K-means clustering pro-

cedure for time series that, based on multidimensional

scaling in full dimension, makes use of any appropriate

measure of dissimilarity, particularly when dealing with

dynamic time warping. This method is especially useful

when the time series are of unequal length and/or when

some values are missing, as frequently occurs when elastic

measures of dissimilarity are used.

In the proposed procedure, K-means clustering is per-

formed using a particular auxiliary configuration, generally

of a dimension less than the greatest length of the time

series, the main characteristic of which is that the optimal

partition is equivalent to what can be found by directly

applying K-means clustering to the dissimilarity matrix

(Vera and Macı́as 2021). This novel methodology does not

suffer from the problems mentioned above regarding the

application of K-means in this framework (see Aghabo-

zorgi et al. 2015, Section 4), in particular, as concerns the

inaccuracy of K-means clustering in reflecting the average

shape of time series in conjunction with a distance time

warping procedure (Niennattrakul and Ratanamahatana

2007). In addition, our method enables the use of any

K-means algorithm for the analysis of time series together

with any dissimilarity matrix, as well as the application of

any classical criterion to determine the number of clusters

in the time series. Furthermore, cluster prototypes can be

determined afterwards using any criteria on the K-means

partition obtained.

The performance of the proposed procedure is analysed

together with that of the K-medoids method, for both

simulated and real data sets. In this analysis, we first

consider simulated and well-known real data sets from the

UCR Time Series Classification Archive (Chen et al.

2015). In addition, we conduct a Monte Carlo experiment

to investigate the performance of each procedure, analysing

the two groups of simulated time series and comparing

pairs of processes with different characteristics. In general,

the solutions obtained with the proposed procedure out-

perform those obtained with K-medoids in terms of clas-

sification quality and also, albeit slightly, in terms of CPU

time.

The proposed methodology was applied to analyse car-

bon dioxide emissions (MtCO2e) from the use of coal, oil

and gas (combustion and industrial processes), the process

of gas flaring and the manufacture of cement from 1960 to

2019, using data from 133 countries (GCP 2019). The

results of this analysis were compared with those obtained

using K-medoids. These results vary according to the cri-

teria employed to determine the number of clusters. While

most of the classical criteria only indicate two clusters, the

extended criteria of Vera and Macı́as (2017) indicate K ¼
3 for CH� and K ¼ 4 for H�. For K ¼ 4, the proposed

K-means procedure generates a partition that seems to be

more in agreement with the actual emissions recorded,

especially with respect to the second group, for which the

K-medoids procedure clearly obtains a deficient

classification.

The problem of estimating the cluster prototype as the

average when dynamic time warping is used together with

K-means clustering, can be extended to the framework of

spatiotemporal processes. In this respect, we are currently

investigating the behaviour of the proposed procedure,

together with various elastic measures of dissimilarity in

this context. Another aspect of interest for practical con-

siderations concerns the CPU time growth under different

alternatives when the proposed procedure is used with

large data sets.
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Sardá-Espinosa A (2019) Time-series clustering in R using the

dtwclust package. R J 11:22–43
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