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Abstract
The present study uses the Kapur entropy to derive the two-dimensional velocity distribution applicable to the entire flow

depth for wide and narrow open channel flows. Using the Maximum Entropy Principle and the predefined constraints, the

Kapur entropy was maximized to derive the new velocity model under the assumption of velocity as a random variable.

Moreover, the whole flow depth considered as a single region is predicted precisely by the derived velocity model, as

evident from the validation performed using experimental and field data. The comparative analysis of the present model

with four existing entropy-based models was done using a vast array of published velocity data. The new model has

demonstrated excellent concordance with observed data, and its prediction accuracy is also checked through the statistical

analysis of the absolute error.

Keywords Velocity distribution � Entropy parameter � Shannon and Tsallis entropy � Renyi and fractional entropy �
Kapur entropy � Channel cross-section

1 Introduction

Natural channel flow may be laminar, turbulent, or mixed

depending on the flow and channel characteristics. For flow

characterization, velocity distribution studies play an

essential role in open channel hydrodynamics and aid the

determination of several important quantities, such as flow

rate, bridge pier scouring, channel bed erosion, and sedi-

ment concentration (Singh 2016). The laminar flow is

easily characterized; however, in a natural scenario, the

turbulent flow predominates, which tends the velocity to

vary in multiple directions. Numerous techniques are dis-

cussed in the literature for quantifying the open channel

flow’s velocity distribution, including the renowned clas-

sical laws (Power and Logarithmic laws) or the proba-

bilistic methods based on the famous Information entropy

(Shannon 1948). Briefing the classical laws, they were

initially devised to study smooth pipe flows (Blasius 1913).

Later, the classical laws advanced to examine open-

channel hydraulics (Vanoni 1941; Rouse 1959; Sarma et al.

1983) but only apply to the wide-open channel flows in

which the velocity increases monotonically in the vertical

direction toward the free surface owing to the absence of

the secondary currents.

Additionally, the researchers presented many theoretical

single equation models to study the open channel flows.

Guo (1998) presented the Modified log wake (MLW) law

that contained a correction factor for the free-surface

boundary. Later, Yang et al. (2004) carried the analysis of

the RANS equations and proposed the dip-modified log

(DML) law. Based on the modifications in the DML law,

Absi (2011) introduced the full dip-modified log wake

(fDMLW) law. Further, due to the inherited complex

numerical calculation associated with Absi’s law, the Total

dip-modified log wake (TDMLW) law was developed

(Kundu and Ghoshal 2012). However, the traditional laws

assumed the velocity as a deterministic flow feature with-

out any element of uncertainty and have restricted preci-

sion because of the straightforward applicability as they

fail to accurately estimate the velocity close to the

boundary regions subjected to the turbulence effects.

Summing up, the classical laws catered well to the one-

dimensional flow situations.
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However, the naturally occurring turbulent flows need a

thorough study of the flow hydrodynamics as the presence

of the secondary currents increases the flow complexity

(through the momentum transport), which tends the max-

imum value of velocity to happen below the free-surface.

This was termed as the dip phenomenon, which has intri-

gued academics for a long time (Stearns 1883). This way,

the velocity distribution varies in vertical and horizontal

(transverse) directions, i.e., two-dimensionally. The infor-

mation about the exact dip-position in natural flows is

critical as it characterizes the velocity profile shapes (Chen

and Chiu 2004; Bonakdari and Moazamnia 2015; Kundu

2017; Termini and Moramarco 2018). Hence, the natural

flows were studied by applying the probability-based

methods involving the use of the Information entropy

concept, which facilitates the creation of an effective

approach for studying the complicated two-dimensional

flow behaviors in addition to the one-dimensional analysis

(Termini and Moramarco 2017, 2020; Mirauda et al. 2018).

Henceforth, the entropy concept acted as a basis and link

between the deterministic and probabilistic worlds. The

entropy concept’s fundamental is quantifying the system’s

disorder or uncertainty. Extensive research has been con-

ducted for a long time employing experimental or deter-

ministic approaches to investigate the open channel flow

(Singh et al. 1986; Singh 1997, 2010, 2011). In contrast,

the velocity profile characterization based on the entropy

concept is limited to a few entropy types (such as Shannon,

Tsallis, Renyi, and Fractional entropies), leaving much

room for expansion. Using Kapur entropy, this paper

examines the open channel flow velocity distribution.

At first, Chiu (1988) introduced the idea of entropy

application to water resources by assuming the velocity as

a random variable due to the inherited uncertainties

alongside formulating a new n-g coordinate system com-

prising of the orthogonal curvilinear curves simulating the

velocity isovels and developed entropy-based 2-D velocity

distribution equation (Chiu and Lin 1983; Chiu and Chiou

1986; Chiu and Murray 1992). Further, the connection

between the conventional x–y system and n-g coordinate

system was established (Chiu 1987, 1989; Chiu and Tung

2002). A new entropy parameter (M) to characterize the

velocity distribution was introduced (Chiu 1989) that was

able to link the maximum and mean velocities facilitating

direct flow discharge computation (Chiu and Said 1995).

Advancing the research, the energy and momentum coef-

ficients were revisited in terms of entropy parameter M

(Chiu 1991). Recently, the Shannon entropy approach has

been successfully employed to establish a link between the

free surface velocity and cross-sectional mean velocity and

thereby quantifying the discharge quickly (Moramarco

et al. 2017; Fulton et al. 2020; Bahmanpouri et al.

2022a, b). In line, the subsequent development was the

employment of the non-extensive Tsallis entropy (Tsallis

1988), and thereby the velocity and sediment distribution

equations were derived (Luo and Singh 2011; Singh and

Luo 2011; Cui and Singh 2014; Singh 2016). A new

dimensionless entropy parameter G was also defined in

Tsallis’ case to fulfill the same purpose. In order to reduce

the parameter estimation related to Chiu’s curvilinear

coordinate system, a new cumulative distribution function

(CDF) was developed and experimented with the Shannon

entropy to derive the 2-D velocity model (Marini et al.

2011). The same was also employed for deriving the Tsallis

entropy-based velocity model (Cui and Singh 2013).

Further, the Renyi entropy (Renyi 1961) was explored to

study open channel hydrodynamics, and the relations like

one- and two-dimensional velocity distribution, suspended

sediment, and shear stress distribution models were derived

(Kumbhakar and Ghoshal 2016, 2017; Ghoshal et al.

2018, 2019; Khozani and Bonakdari 2018). Similarly, the

dimensionless entropy parameter R was defined in Renyi’s

case. Interestingly, the Renyi entropy model provided

better results than the earlier Shannon and Tsallis entropy-

based models. Further advancing the application of the

entropy concept, fractional entropy (Wang 2003) was

recently employed to examine the open channel flow

(Ahamed and Kundu 2022), which thoroughly considered

the dip phenomenon in contrast to all the previous velocity

models. However, the fractional entropy-based model

rendered improved results compared to others but ended up

in a complex and tedious two different velocity distribution

equations applicable to the two zones separated by the

location of the maximum velocity below the water surface.

Secondly, the main drawback is the extensive calculations

of several parameters to characterize the whole flow depth

completely. Table 1 summarizes the above-discussed

entropy-based velocity equations for the different

entropies.

In literature, many distinct entropy types and the gen-

eralized forms of the earlier versions exist, and a brief

review is reported in Singh (2019). Among them, the

Kapur entropy (Kapur 1986) of the fourth kind is being

utilized in the present study to examine the open channel

flow hydrodynamics. Similar to Tsallis and Renyi entropy,

Kapur entropy also hosts an additional parameter (entropy

index, a) whose value influences the probability distribu-

tion type. To date, the Kapur entropy’s potential remains

unexplored in the water resources domain though it has

demonstrated decent results in image multi-threshold seg-

mentation (Kapur et al. 1985; Manic et al. 2016; Zhao et al.

2021). To further clarify, this study applies Kapur entropy

to the water resources field for the first time and further

derives the Kapur entropy-based model for characterizing

the open channel flow. Finally, the velocity model is val-

idated based on the laboratory and field velocity
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observations and compared with the four existing entropy-

based models.

2 Theoretical framework

The fundamental nature of the methodology for the entropy

theory-based derivation of the velocity distribution in the

open channel flows remains the same as employed in the

existing velocity models. The main difference arises in

entropy type and, thereby, forthcoming results. The

framework for the proposed derivation is as follows: (1)

Kapur entropy definition, (2) specifying the required con-

straints, (3) POME-based entropy maximization, (4) derive

velocity probability distribution and Lagrange multipliers,

(5) velocity CDF hypothesis, (6) derivation of the desired

velocity distribution and involved parameters. The said

procedure is discussed in detail and implemented in the

later sections.

2.1 Kapur (4th order) entropy

Kapur defined several families of entropy measures with

and without parameter involvement (Kapur 1986). Kapur’s

entropy (Ha) of the fourth kind, having one parameter and

applicable to the complete probability law, is used in the

present study.

Ha p1; p2; p3. . .pnð Þ ¼ 1�
Xn
i¼1

pai

 ! 1
a�1

ð1Þ

where a is Kapur entropy index (subjected to the a[ 0); n

is the total number of outcomes that the random variable

can have; pi’s are the probability values associated with the

random variable for each i ¼ 1; 2; 3. . .; n. Considering the

cross-sectional time-averaged velocity (u) as a random

variable, Eq. (1) can be written in a continuous manner

given by Eq. (2).

Ha uð Þ ¼ 1�
Z umax

0

f uð Þ½ �adu
� � 1

a�1

ð2Þ

where f uð Þ is the probability density function (PDF) of the

random variable (u). The velocity is bounded, having the

lower value as zero and the upper value as the maximum

velocity (umax), which may be at the water’s surface or

some depth below.

2.2 Specification of constraints

The meaningful outcome of the entropy concept through

utilizing the principle of maximum entropy (POME) is

based on fulfilling the particular constraints for which the

information on flow characteristics must be gathered via

observations. In natural channels, the flow must adhere to

mass, momentum, and energy conservation rules, which

can be utilized to design specific constraints.

C1 !
Z umax

0

f uð Þdu ¼ 1 ð3Þ

C2 !
Z umax

0

uf uð Þdu ¼ umean ð4Þ

C3 !
Z umax

0

u2f uð Þdu ¼ bu2mean ð5Þ

C4 !
Z umax

0

u3f uð Þdu ¼ cu3mean ð6Þ

where b and c are the momentum and energy distribution

coefficients, respectively. Here, the constraint (C2) for the

PDF of velocity, f uð Þ is defined with umean as the mean

value of u; which equals the Q=A (Q is the flow rate in m3/

s, and A is the channel cross-sectional area in m2). The

constraint (C2) ensures the uniform distribution (mass

conservation) of the random variable (u), i.e., the equality

(umean ¼ Q=A) holds. Constraints C3 and C4 involving the

b and c are excluded in the present study due to their

minimal effect. Mass conservation is adequate for obtain-

ing the velocity distribution, as demonstrated by Barbé

et al. (1991). Hence, only the first two constraints, i.e., the

total probability law (C1) and conservation of mass con-

straint (C2) are applied to entropy maximization in this

study.

2.3 Entropy maximization

Theoretically, the maximum entropy value can be obtained

if the uniform probability distribution exists within the

bounds and, due to constraints, uniformity is frequently not

possible. However, entropy maximization creates a way to

approach uniformity maximally while fulfilling the

requirements laid in the form of constraints. Hence, to

achieve the required velocity probability density function

with the least amount of bias, the considered Ha uð Þ (Eq. 2)
is maximized subjected to the constraints (Eqs. 3, 4) in

agreement with the maximum entropy principle (Jaynes

1957). The required f uð Þ is obtained by utilizing the

Lagrange multipliers method, and the Lagrangian function

(L) is constructed as follows.

L ¼ 1�
Z umax

0

f uð Þ½ �adu
� � 1

a�1

� ko

Z umax

0

f uð Þdu� 1

� 	

þ k1

Z umax

0

uf uð Þdu� umean

� 	

ð7Þ

Equation (7) can be expressed without the integration

sign as follows.
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L ¼ 1� f a uð Þð Þ1=a�1 þ kof uð Þ þ k1uf uð Þ ð8Þ

where ko and k1 are the Lagrange’s multipliers to be

evaluated using the respective constraints (Eqs. 3, 4).

Further, the Calculus of variation’s Euler–Lagrange for-

mula was used to determine the desired f uð Þ having the

least bias, i.e., it maximizes entropy subject to predefined

constraints. In this procedure, the f uð Þ is considered to be

dependent on the independent variable uð Þ and the Euler–

Lagrange formula is restructured as follows.

oL

of
� d

du

oL

of
0

� �
¼ 0 ð9Þ

Evident from the Eq. (8), the L is independent of the

derivative f
0
 �
. Hence, the Eq. (9) becomes,

oL

of
¼ 0 ð10Þ

Solution of the Eq. (10) results in,

� a
a� 1

� �
fð Þ

1
a�1 þ ko þ k1u ¼ 0 ð11Þ

2.4 Probability distribution and Lagrange
multipliers

Addressing the main objective of the study, the least-biased

velocity PDF, f uð Þ is derived by employing the POME,

which resulted in an exponential-type relation. The derived

f uð Þ in terms of the ko and k1 represents the velocity

probability distribution satisfying the predefined

constraints.

f uð Þ ¼ a� 1

a
ko þ k1uð Þ

� �a�1

ð12Þ

Now, the derived f uð Þ along with the constraints (Eqs. 3,
4), was utilized to solve for the Lagrange multipliers.

Solving for the ko and k1 starts with the substitution of the

Eq. (12) into the Eqs. (3) and (4), and integrating both

equations within the defined limits results in two implicit

relations given by the Eqs. (13) and (14), respectively.

ak1
a

a� 1

� �a�1

¼ ko þ k1umaxð Þa � koð Þa ð13Þ

1

k21 að Þ aþ 1ð Þ
ko þ k1umaxð Þa � ak1umax � koð Þ þ koð Þaþ1

n o

¼ umean

ð14Þ

The solution of the resulting non-linear system renders

the expressions of the ko and k1 given the values of the

umean, umax and parameter a.

2.5 Influence of parameter (a) on PDF
and velocity profile

Evident from the Eq. (12), the Kapur entropy-based

velocity PDF depends on the Kapur entropy index að Þ. The
PDF dependence for different a values is shown in Fig. 1.

Run 25 of the experimental velocity data measured in a

rectangular laboratory flume having dimensions as 30.9 cm

(width), 45 cm (depth), and 7.5 m (length) (Singh 2019,

personal communication) with flow details given in

Table 2, was used to determine the Lagrange multipliers.

Figure 1 demonstrates the usual trend, i.e., for the given

velocity data, the velocity PDF rises with increasing veloc-

ity. Initially, the velocity gradient is comparatively lower for

the higher a values whereas, the situation is vice versa as the
velocity increases gradually. Further, to narrow down the

value of a, the field and experimental velocity data were

utilized. Two field datasets, namely, P. Nuovo gauging sta-

tion (June 3, 1997 flood event) of Tiber River (Luo and Singh

2011) and Iran (Run 1)River data (Luo 2009).Also, run 25 of

the experimental velocity dataset (Singh 2019, personal

communication) was considered. The relevant flow charac-

teristics of the selected datasets are listed in Table 2. From

Fig. 4, it can be inferred that the derived velocity distribution

depicts the usual monotonic increasing behavior of the

velocity with depth being measured from the channel bed.

Further, the velocity distribution can be seen as sensitive to

the changes in a values. Figure 2 (Tiber River data Luo and

Singh 2011) and Fig. 4 (Singh 2019, personal communica-

tion) are based on the velocity observations, which demon-

strates the dip-phenomena whereas, the Fig. 3 (Iran Run 1

Luo 2009) was based on the velocity data from a wide

channel cross-section. Further, to fix a single value of the

Fig. 1 Variation of the Kapur entropy-based velocity PDF (Eq. 12)

for different entropy index að Þ values for the Run 25 for clear water

flow (Singh 2019)
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entropy index for the whole study, the Mean, lðEÞ and

Standard deviation, rðEÞ of error (E) between the predicted

and observed velocity data corresponding to different a
values was performed (Table 3). It is evident from the

Table 3 that the a ¼ 10 gave the lowest mean and standard

deviation values for all three figures in comparison to the

other a values. As a result, the a value of 10 is adopted to

generalize the entropy index for all types of flow data

throughout the present study.

3 2-D velocity distribution

The Kapur entropy-based velocity distribution can be

generated using the entropy theory discussed in the pre-

ceding section. A prerequisite for obtaining the desired

velocity distribution is formulating the hypothesis on the

velocity cumulative distribution function (CDF).

3.1 Spatial variation and cumulative density
function (CDF) of velocity

In a narrow open channel, the notable change of longitu-

dinal velocity can be observed in both directions, i.e.,

vertical (y) and horizontal (z). Along with other variables,

the effect of the channel walls causes the isovels (lines of

equal velocity) to curve upwards toward the water’s sur-

face. Secondly, the maximum velocity happens at some

depth below the free surface because of the dip phe-

nomenon (Fig. 5), leading to the many-to-one mapping of

depth (y) and velocity. Figure 5 shows a typical rectangular

cross-section showing the dip-phenomena. In order to

conveniently model the velocity distribution and get the

one-to-one mapping of velocity with involved coordinates,

Table 2 Flow Characteristics of considered velocity datasets

Datasets Measurement device Discharge, Q

m3/s

Aspect

ratio, Ar

Flow depth,

D

Umean (m/

s)

Umax (m/s)

Alzette River data (Mirauda et al. 2018) Current meter and

ADCP

0.5–197.9 8.0–92.5 0.7–5.65 m 0.09–1.83 0.13–2.54

Transect A6—Amazon River (Bahmanpouri

et al. 2022a)

ADCP 89,267 – 33.9 m 1.08 1.96

Tiber River data (Luo and Singh 2011) Current meter 2.023–541.58 7.07–7.55 0.8–6.7 m 0.262–2.12 0.42–3.365

Iran River data (Luo 2009) Micro-current

propeller meter

– 1.62–2.5 0.34–0.59 m 0.412–0.89 0.535–1.046

Experimental data (Singh 2019) Personal

communication

Current meter 0.012–0.027 2.41–1.55 12.8–20 cm 0.23–0.47 0.29–0.57

Experimental data (Xingkui and Ning 1989) 1 mm Pressure probe 0.034–0.046 3.33–4.17 8.1–9 cm 1.41–1.56 2.00–2.23

Experimental data (Coleman 1981) 10 mm Pitot tube 0.064 2.04–2.13 16.7–17.2 cm 0.93–0.99 1.03–1.12

Fig. 2 Vertical velocity profile for different entropy index að Þ values,
using the velocity observations taken at the P. Nuovo gauging station

of Tiber River. Flood event selected—June 3, 1997 (Luo and Singh

2011)

Fig. 3 Vertical velocity profile for different entropy index að Þ values,
using the Iran (Run 1) River data (Luo 2009)
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it is advantageous to translate the Cartesian (y–z) coordi-

nate system (Fig. 5) into another suitable system. Here, the

n–g coordinate system is employed, and the whole idea of

the coordinate system transformation can be traced to the

circular pipe studies where the cylindrical coordinate sys-

tem was used instead of the cartesian system. In the n–g
system, the n coordinate curves represent the isovels,

whereas the g coordinate curves are their corresponding

orthogonal trajectories. Detailed insights about the n–g
coordinate system can be found in Chiu and Chiou (1986),

Chiu and Lin (1983), which includes the derivation of the

relation between the n coordinate curves and the cartesian

coordinates (Eq. 15) that efficiently correlates the isovel

characteristics.

n ¼ y

Dþ h
exp 1� y

Dþ h

� �
ð15Þ

where, y varies from 0 (channel bed) to D (free-surface),

and the y-axis is located at the middle of the channel cross-

section (as shown in Fig. 5) or appropriately chosen to

contain the maximum velocity point. h denotes the location

of the maximum velocity from the free-surface. Hence, it

takes on values from �D to þ1. For the h[ 0, it is

merely a coefficient without any physical significance that

influences the pattern of maximum velocity isovels.

However, if h\0, its magnitude denotes the actual location

of the maximum velocity below the free-surface termed as

a dip of the maximum velocity. Further, the hypothesis on

the Cumulative Density Function, F uð Þ of velocity can be

given by Eq. (16),

F uð Þ ¼
Z umax

0

f uð Þdu ¼ n� n0
nmax � no

ð16Þ

where no and nmax are the least and maximal values of the

Eq. (15) representing the zero velocity isovel (i.e.,

boundary line) and maximum velocity, respectively. The

velocity PDF can be obtained by differentiating Eq. (16)

as,

f uð Þ ¼ dF uð Þ
du

¼ dF uð Þ
dn

dn
du

¼ 1

nmax � no

dn
du

ð17Þ

Fig. 4 Vertical velocity profile for different entropy index að Þ values,
using the experimental (Run 25) velocity data (Singh 2019)

Table 3 Mean, lðEÞ and
Standard deviation, rðEÞ of
error (E) for predicting velocity

distribution corresponding to

different a values

a P. Nuovo June 3, 1997 (Fig. 2) Iran Run 1 (Fig. 3) Run 25 (Fig. 4)

lðEÞ rðEÞ lðEÞ rðEÞ lðEÞ rðEÞ

5 0.077 0.073 0.068 0.069 0.095 0.067

7 0.084 0.076 0.057 0.060 0.139 0.078

10 0.036 0.038 0.051 0.058 0.036 0.077

12 0.070 0.050 0.065 0.063 0.109 0.069

15 0.111 0.121 0.071 0.066 0.079 0.068

18 0.086 0.076 0.077 0.069 0.122 0.072

20 0.100 0.102 0.088 0.076 0.134 0.077

Fig. 5 Schematic diagram of rectangular cross-section, with origin

(0,0) at the middle of the channel cross-section
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3.2 Derivation of velocity distribution equations

Finally, the Kapur entropy-based velocity distribution can

be obtained by combining the Eqs. (12) and (17) and

integrating the result within the limits of u (0 to u) and n
(no to n).

u ¼ 1

k1
�ko þ koð Þa þ aa�k1

a� 1ð Þa�1
� n� n0
nmax � no

" #1=a8<
:

9=
;

ð18Þ

The CDF or the ratio involving the n, n0 and nmax can be

evaluated for the h� 0 (Eq. 19), as h[ 0 does not hold any

physical meaning. For any vertical, the no will be zero as it

represents the zero velocity isovel and nmax will occur at

y ¼ Dþ h.

n� n0
nmax � no

¼ y

Dþ h
exp 1� y

Dþ h

� �
ð19Þ

Eventually, the desired velocity distribution in the

parametric form is given by Eq. (20) and these parameters

(such as ko; k1; a; h;D) are needed to be evaluated for the

precise analysis. As discussed in Sect. 2.5, the a ¼ 10 is

fixed for the present analysis.

u¼ 1

k1
�koþ koð Þaþ aa�k1

a�1ð Þa�1
� y

Dþh
exp 1� y

Dþh

� �" #1=a8<
:

9=
;

ð20Þ

3.3 Entropy parameter (B)

The nonlinear system constituting (Eqs. 13, 14), when

solved programmatically using Matlab, furnishes the val-

ues of Lagrange’s multipliers (ko and k1). Avoiding the

complicated nonlinear system solution and making the

calculations simpler and straightforward. Similar to the

other entropy-based velocity distributions such as Shannon

entropy (Chiu 1988), Tsallis entropy (Cui and Singh 2013),

and Renyi entropy (Kumbhakar and Ghoshal 2016), a new

dimensionless entropy parameter B was introduced. Evi-

dent from the Eq. (21), parameter B links both the

Lagrangian multipliers. Hence, it acts as an index for

characterizing and comparing diverse velocity distribution

patterns.

B ¼ 1þ k1
ko

umax ð21Þ

The earlier studies related to the entropy-based velocity

distributions have demonstrated that their respective

entropy parameters tend to remain constant in the purview

of the flow and channel characteristics within a particular

river reach (Chiu et al. 2005), which was later substantiated

theoretically (Moramarco and Singh 2010) and experi-

mentally (Singh 2019; Singh and Khosa 2022a, b). Infer-

ences regarding the variation of parameter B with the flow

and channel characteristics can be examined as a separate

study.

3.4 Mean and Maximum velocity ratio, /(BÞ

In hydrological studies especially involving the use of flow

rates, the mean velocity is an essential component, and it

cannot be calculated directly from the raw data. Addi-

tionally, the mean velocity is a prerequisite for the mass,

momentum, and energy transfer calculations in natural

flows. The relation or the ratio of the mean and maximum

velocity is not a novel approach as its roots can be traced to

the Chiu (1988), which deals with Shannon entropy-based

distribution, and the relation in terms of Shannon entropy

parameter M is given as,

umean
umax

¼ eM

eM � 1
� 1

M
ð22Þ

Similarly, Tsallis and Renyi entropy-based velocity

distributions have their respective relationship given by

Eqs. (23) and (24), respectively.

umean
umax

¼ Gþ 12

24
ð23Þ

umean
umax

¼ a�

1� a�

1� R
a�

1�a�
� ��1

R� 1ð Þ
a�

1�a�

a� � 1

2a� � 1

1

R� 1

� �2a��1
a��1

"(

� R

R� 1

� �2a��1
a��1

� þ a� � 1

a�
R

1� R

1

R� 1

� � a�
a��1

� R

R� 1

� � a�
a��1

" #
g

ð24Þ

where G and R are the entropy parameters involved in

Tsallis and Renyi entropy-based velocity distributions,

respectively. However, to avoid confusion, the parameter a
as involved in the Kumbhakar and Ghoshal (2016) is

replaced here as a� and its value ranges in the interval

(0; 1). Interestingly, the lengthy-expression (Eq. 24) was

modified and shortened to a new expression given by

Eq. (25) (Singh and Khosa 2022c). The modified relation

retained the same accuracy as the original work, as con-

firmed in Fig. 6.

umean
umax

¼ R

R� 1
1þ a�

2a� � 1

1� R
2a��1
a��1ð Þ

� �

R
2a��1
a��1ð Þ � R

� �
2
4

3
5 ð25Þ

Similarly, the use of parameter B into Eqs. (13, 14),

furnishes a simple expression for the / Bð Þ in terms of B

and a only (Eq. 26). Here, the / Bð Þ is equal to the ratio of
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the time-averaged mean velocity (umean) and the maximum

velocity (umax).

/ Bð Þ ¼ umean
umax

¼ Ba

Ba � 1
1þ

1� Baþ1

 �

aþ 1ð ÞBa B� 1ð Þ

� �
ð26Þ

The numerical value of the entropy parameter (B) can be

evaluated using the historical datasets comprised of umean
and umax available for a particular open channel’s cross-

section. Based on the Eq. (26), the theoretical range of B

was evaluated mathematically as 1;1ð Þ. However, in

accordance with the field and experimental data, its interval

will be reduced as the highest velocity value exceeds the

mean velocity by 25–50% only. Moreover, owing to the

surmised constant behavior of the new entropy parameter

(B), the mean and maximum velocity ratio holds significant

importance in the context of the entropy theory as it will

furnish the mean velocity directly for the established his-

torical velocity data.

3.5 Velocity distribution

Finally, with the application of the parameter B along with

the Eq. (13), the simpler and straightforward version of the

Eq. (20), i.e., the desired Kapur entropy-based velocity

distribution can be obtained as,

u ¼ umax
B� 1

�1þ 1þ Ba � 1ð Þ � FðuÞ½ �1=a
n o

ð27Þ

F uð Þ ¼
y

D
; h� 0

y

D� h
exp 1� y

D� h

� �
; h\0

8<
: ð28Þ

Equation (27) involves only a single parameter (B) that

can be obtained by several methods, such as from the

historical datasets of mean and maximum velocity; or using

the solution of the non-linear system of equations (Eqs. 13,

14). The other parameter (a) appearing in the resulted

equation was fixed for the present study as discussed ear-

lier. Equation (28) gives the required CDF, and the desired

expression can be utilized depending on the maximum

velocity dip.

3.6 Measure of error

The error analysis was conducted to comment on the

accuracy of the derived velocity model using the observed

velocity data. Additionally, a comparative analysis with the

other entropy-based velocity distributions was performed.

The evaluation of relative inaccuracy between the pre-

dicted and observed value was computed as,

Absolute error ¼ E ¼
uo � up
�� ��

uo
ð29Þ

where the uo and up is the observed and predicted velocity

values at a particular point in the considered velocity

profile, respectively. Additionally, the mean ðlðEÞ) and

standard deviation ðr Eð ÞÞ of the absolute error are com-

puted in the later section.

3.7 Validation of proposed velocity distribution

The validation of the proposed model was done using the

velocity data having different flow characteristics. The field

observations consist of the following velocity datasets

measured at: (1) Mersch and Torre Accio cross-section of

Alzette River (Mirauda et al. 2018); (2) transect A6

(Amazon River) for three verticals situated at a distance of

0.2B, 0.5B and 0.8B (B = channel width) from the left

bank (Bahmanpouri et al. 2022a); (3) P. Nuovo (Nov. 1996

flood event) and P. Felcino (Nov. 1996 flood event)

gauging station (Tiber River) (Luo and Singh 2011). The

flow characteristics of the selected datasets are listed in

Table 2. For the transect A6 and the gauging sections of

Tiber river, the three different verticals were selected to

demonstrate the potential of the proposed velocity model

for the whole cross-section instead of the y-axis (centre-

line).

Figures 7, 8, 9, 10 and 11 illustrates the predicted

velocity profiles for the selected velocity datasets. The

statistical analysis for the proposed model validation is

reported in Table 4. With the low mean and standard

deviation values, the proposed model depicted a good

accuracy for the centreline verticals as well as the verticals

located near the boundary regions for the different flow

Fig. 6 Renyi entropy parameter (R) values based on the original

(Eq. 24) and modified (Eq. 25) equation
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conditions under consideration, i.e., the new model was

able to predict velocity with decent accuracy throughout

the channel cross-section.

3.8 Comparative analysis

For the comparative study, the proposed model is assessed

against the existing four different entropy-based models

using the different sets of field and experimentally

observed data at the centre-line vertical (middle of the

channel cross-section). The field observations considered

was Run 2 (Iran River) for a clear water flow in a wide

section of the river (Luo 2009), whereas the experimental

observations consist of two datasets: (1) Run 1 velocity

data (clear water flow) of experiments conducted on a

recirculating laboratory flume having dimensions as 30 cm

width, 40 cm depth, and 20 m length (Xingkui and Ning

1989); (2) Run 29 (medium-sized sediment particles hav-

ing diameter 0.21 mm) of experiments conducted on a

laboratory recirculating flume having narrow channel

width of 35 mm and 15 m long (Coleman 1981). More

relevant details regarding the selected datasets are listed in

Table 2. Both the experimental dataset under consideration

exhibits the dip phenomena. Apart from the proposed

model, the other entropy-based distributions considered for

comparison are listed in Table 1.

Fig. 7 Proposed model validation for the velocity observations at the

Mersch cross-section of Alzette River for Q = 44.3 m3/s (Mirauda

et al. 2018)

Fig. 8 Proposed model validation for the velocity observations at the

Torre Accio cross-section of Alzette River for Q = 197.9 m3/s

(Mirauda et al. 2018)

Fig. 9 Proposed model validation using the velocity observations of

the transect A6 (Amazon River) for three verticals situated at a

distance of 0.2B, 0.5B and 0.8B (B = channel width) from the left

bank (Bahmanpouri et al. 2022a)

Fig. 10 Proposed model validation using the velocity observations

taken along three verticals (z = - 20.8 m, 0 m, 16.64 m) at the P.

Nuovo gauging station of Tiber River. Flood event selected—Nov.

1996 (Luo and Singh 2011)
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Figures 12, 13, and 14 report the results of the com-

parative analysis for different velocity datasets. In totality,

the proposed model performed well for both clear

water (Figs. 12 and 13) and sediment-loaded (Fig. 14)

flows. Figure 12 is based on the field data from Run 2 (Iran

River), and it can be clearly seen that the proposed model

matches the observed data with good accuracy for the

entire channel depth. Similar inferences can be drawn from

the other two figures as Figs. 13 and 14 are based on the

experimental data and present better accuracy than other

models. It can be noted that the present model reported

accurate results for the sediment-loaded flow subjected to

higher turbulence (Fig. 14). Additionally, the model pre-

cisely predicted the maximum velocity location below the

water surface. The previous models struggle to match the

observed velocity in the portion near the channel bed,

whereas the proposed model fits the lower region (near the

channel bed) with higher correctness. Moreover, the sta-

tistical analysis (Table 5) of the comparative study results

also supported the above claims regarding the proposed

model and confirmed the usage of the proposed model for

both the experimental and field velocity observations. From

Table 5, it can be inferred that the present model resulted in

lower mean values (of absolute error, E) for all the cases

Fig. 11 Proposed model validation using the velocity observations

taken along three verticals (z = - 14.66 m, 0 m, 7.34 m) at the P.

Felcino gauging station of Tiber River. Flood event selected—Nov.

1996 (Luo and Singh 2011)

Table 4 Statistical analysis for the proposed model validation based

on the error (Eq. 29)

Dataset Vertical location lðEÞ rðEÞ

Mersch cross-section (Fig. 7) 11.5 m from left

bank

0.046 0.036

Torre Accio cross-section

(Fig. 8)

23.8 m from left

bank

0.106 0.146

Transect A6 (Fig. 9) 0.2B from left bank 0.066 0.025

0.5B from left bank 0.050 0.034

0.8B from left bank 0.053 0.039

P. Nuovo, Tiber River

(Fig. 10)

z = - 20.8 m 0.283 0.266

z = 0 m (centre-

line)

0.093 0.130

z = 16.64 m 0.194 0.158

P. Felcino, Tiber River

(Fig. 11)

z = - 14.66 m 0.165 0.093

z = 0 m (centre-

line)

0.298 0.343

z = 7.34 m 0.207 0.119

Fig. 12 Proposed model comparison with existing four entropy-based

velocity distribution equations using the observed field data from Run

2 Iran River (Luo 2009)

Fig. 13 Proposed model comparison with existing four entropy-based

velocity distribution equations using the observed data from Run 1 for

clear water flow (Xingkui and Ning 1989)
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under consideration, whereas the standard deviation was

also lower or comparable with the other entropy-based

models.

4 Conclusions

Several conclusions can be drawn from the preceding

research work. Using Kapur entropy, the 2-D velocity

distribution for the hypothesized CDF is determined in the

present research, and the new model was validated using

field and experimental observations. The proposed model is

dependent on a non-negative entropic index (a). Hence, the
statistical analysis for the different a values was performed,

which resulted in the a = 10 as the best suitable value and

was fixed throughout the present study. A new entropy

parameter (B) is defined for simplifying and eliminating

the non-linear relations of Lagrange multipliers from the

present model. Further, parameter B can be evaluated using

the values of maximum and mean velocity and surmised

constant for a particular channel section, as done in the

earlier studies. Also, the known values of parameter B

facilitate the direct estimation of the mean velocity for a

particular open channel cross-section, thereby simplifying

the discharge calculations. The comparative analysis with

the existing four entropy-based models gave an advantage

to the present model for both field and experimental

observations and supported the application of the present

model to the flows such as clear water or sediment-loaded

flows. The statistical analysis is also done to get the

quantitative notion of the present model’s performance,

and it provided improved accuracy compared to the other

models supported by the low mean and standard deviation

values.
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521:267–281. https://doi.org/10.1016/j.physa.2019.01.081

Guo J (1998) Turbulent velocity profiles in clear water and sediment-

laden flows

Jaynes ET (1957) Information theory and statistical mechanics. Phys

Rev 106:620. https://doi.org/10.1016/b978-008044494-9/50005-

6

Kapur JN (1986) Four families of measures of entropy. Indian J Pure

Appl Math 17:429–449

Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-

level picture thresholding using the entropy of the histogram.

Comput vis Graph Image Process 29:273–285. https://doi.org/10.

1016/0734-189X(85)90125-2

Khozani ZS, Bonakdari H (2018) Formulating the shear stress

distribution in circular open channels based on the Renyi

entropy. Physica A 490:114–126. https://doi.org/10.1016/j.

physa.2017.08.023

Kumbhakar M, Ghoshal K (2016) Two dimensional velocity distri-

bution in open channels using Renyi entropy. Physica A

450:546–559. https://doi.org/10.1016/J.PHYSA.2016.01.046

Kumbhakar M, Ghoshal K (2017) One-dimensional velocity distri-

bution in open channels using Renyi entropy. Stoch Environ Res

Risk Assess 31:949–959. https://doi.org/10.1007/s00477-016-

1221-y

Kundu S (2017) Prediction of velocity-dip-position at the central

section of open channels using entropy theory. J Appl Fluid

Mech 10:221–229. https://doi.org/10.18869/acadpub.jafm.73.

238.26403

Kundu S, Ghoshal K (2012) An analytical model for velocity

distribution and dip-phenomenon in uniform open channel flows.
Int J Fluid Mech Res 39

Luo H (2009) Tsallis entropy based velocity distributions in open

channel flows. Texas A&M University, College Station

Luo H, Singh VP (2011) Entropy theory for two-dimensional velocity

distribution. J Hydrol Eng 16:303–315. https://doi.org/10.1061/

(asce)he.1943-5584.0000319

Manic KS, Priya RK, Rajinikanth V (2016) Image multithresholding

based on Kapur/Tsallis entropy and firefly algorithm. Indian J

Sci Technol. https://doi.org/10.17485/ijst/2016/v9i12/89949

Marini G, de Martino G, Fontana N et al (2011) Entropy approach for

2D velocity distribution in open-channel flow. J Hydraul Res

49:784–790. https://doi.org/10.1080/00221686.2011.635889

Mirauda D, Pannone M, De incenzo A (2018) An entropic model for

the assessment of streamwise velocity dip in wide open channels.

Entropy 20:69.https://doi.org/10.3390/E20010069

Moramarco T, Singh VP (2010) Formulation of the entropy parameter

based on hydraulic and geometric characteristics of river cross

sections. J Hydrol Eng 15:852–858. https://doi.org/10.1061/

(ASCE)HE.1943-5584.0000255

Moramarco T, Barbetta S, Tarpanelli A (2017) From surface flow

velocity measurements to discharge assessment by the entropy

theory. Water (basel). https://doi.org/10.3390/w9020120

Renyi A (1961) On measures of entropy and information. In:

Proceedings of the fourth Berkeley symposium on mathematical

statistics and probability, vol 1, pp 547–556

Rouse H (1959) Advanced mechanics of fluids. Wiley, New York

Sarma KVN, Lakshminarayana P, Rao NSL (1983) Velocity distri-

bution in smooth rectangular open channels. J Hydraul Eng

109:270–289. https://doi.org/10.1061/(asce)0733-

9429(1983)109:2(270)

Shannon CE (1948) A mathematical theory of communication. Bell

Syst Tech J 27:379–423

Singh VP (1997) The use of entropy in hydrology and water

resources. Hydrol Process 11:587–626. https://doi.org/10.1002/

(SICI)1099-1085(199705)11:6%3c587::AID-HYP479%3e3.0.

CO;2-P

Singh VP (2010) Entropy theory for derivation of infiltration

equations. Water Resour Res. https://doi.org/10.1029/

2009WR008193

Singh VP (2011) Hydrologic synthesis using entropy theory: review.

J Hydrol Eng 16:421–433. https://doi.org/10.1061/(asce)he.

1943-5584.0000332

Singh VP (2016) Tsallis entropy theory in water engineering

Singh G (2019) Influence of channel bed slope on entropy parameter

used for discharge estimation. M.Tech Dissertation, M.Tech

Dissertation, Department of Hydrology, IIT Roorkee

Stochastic Environmental Research and Risk Assessment (2023) 37:3585–3598 3597

123

https://doi.org/10.1061/(ASCE)0733-9429(1991)117:10(1389)
https://doi.org/10.1061/(ASCE)0733-9429(1991)117:10(1389)
https://doi.org/10.1007/s12205-013-0173-8
https://doi.org/10.1002/hyp.1476
https://doi.org/10.1002/hyp.1476
https://doi.org/10.1061/(ASCE)0733-9429(1987)113:5(583)
https://doi.org/10.1061/(ASCE)0733-9429(1987)113:5(583)
https://doi.org/10.1061/(ASCE)0733-9429(1986)112:11(1050)
https://doi.org/10.1061/(ASCE)0733-9429(1986)112:11(1050)
https://doi.org/10.1061/(ASCE)0733-9429(1983)109:11(1424)
https://doi.org/10.1061/(ASCE)0733-9429(1983)109:11(1424)
https://doi.org/10.1061/(ASCE)0733-9429(1992)118:7(989)
https://doi.org/10.1002/HYP.5857
https://doi.org/10.1002/HYP.5857
https://doi.org/10.1080/00221688409499383
https://doi.org/10.1080/00221688409499383
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000610
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000610
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000865
https://doi.org/10.3390/RS12203317
https://doi.org/10.1061/(asce)he.1943-5584.0001687
https://doi.org/10.1061/(asce)he.1943-5584.0001687
https://doi.org/10.1016/j.physa.2019.01.081
https://doi.org/10.1016/b978-008044494-9/50005-6
https://doi.org/10.1016/b978-008044494-9/50005-6
https://doi.org/10.1016/0734-189X(85)90125-2
https://doi.org/10.1016/0734-189X(85)90125-2
https://doi.org/10.1016/j.physa.2017.08.023
https://doi.org/10.1016/j.physa.2017.08.023
https://doi.org/10.1016/J.PHYSA.2016.01.046
https://doi.org/10.1007/s00477-016-1221-y
https://doi.org/10.1007/s00477-016-1221-y
https://doi.org/10.18869/acadpub.jafm.73.238.26403
https://doi.org/10.18869/acadpub.jafm.73.238.26403
https://doi.org/10.1061/(asce)he.1943-5584.0000319
https://doi.org/10.1061/(asce)he.1943-5584.0000319
https://doi.org/10.17485/ijst/2016/v9i12/89949
https://doi.org/10.1080/00221686.2011.635889
https://doi.org/10.3390/E20010069
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000255
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000255
https://doi.org/10.3390/w9020120
https://doi.org/10.1061/(asce)0733-9429(1983)109:2(270)
https://doi.org/10.1061/(asce)0733-9429(1983)109:2(270)
https://doi.org/10.1002/(SICI)1099-1085(199705)11:6%3c587::AID-HYP479%3e3.0.CO;2-P
https://doi.org/10.1002/(SICI)1099-1085(199705)11:6%3c587::AID-HYP479%3e3.0.CO;2-P
https://doi.org/10.1002/(SICI)1099-1085(199705)11:6%3c587::AID-HYP479%3e3.0.CO;2-P
https://doi.org/10.1029/2009WR008193
https://doi.org/10.1029/2009WR008193
https://doi.org/10.1061/(asce)he.1943-5584.0000332
https://doi.org/10.1061/(asce)he.1943-5584.0000332


Singh VP, Luo H (2011) Entropy theory for distribution of one-

dimensional velocity in open channels. J Hydrol Eng

16:725–735. https://doi.org/10.1061/(asce)he.1943-5584.

0000363

Singh G, Khosa R (2022a) Effect of channel bed slope on Shannon

entropy-based velocity distribution in open channel flow. In:

EGU general assembly, Vienna, Austria. https://doi.org/10.5194/

egusphere-egu22-139

Singh G, Khosa R (2022b) Discharge estimation in an adverse slope

condition using entropy concept: an experimental analysis. In:

AGU’s frontiers in hydrology meeting 2022. Earth and Space

Science Open Archive, San Juan, Puerto Rico, p 14

Singh G, Khosa R (2022c) Entropy-based and traditional velocity

distribution equations for open channel flows: an experimental

analysis in case of the adverse channel bed slope conditions. In:

AGU Fall Meeting 2022b. Chicago, USA

Singh VP, Rajagopal AK, Singh K (1986) Derivation of some

frequency distributions using the principle of maximum entropy

(POME). Adv Water Resour 9:91–106. https://doi.org/10.1016/

0309-1708(86)90015-1

Stearns FP (1883) On the current-meter, together with a reason why

the maximum velocity of water flowing in open channels is

below the surface. Trans Am Soc Civ Eng 12:301–338. https://

doi.org/10.1061/TACEAT.0000467

Termini D, Moramarco T (2017) Application of entropic approach to

estimate the mean flow velocity and Manning roughness

coefficient in a high-curvature flume. Hydrol Res 48:634–645.

https://doi.org/10.2166/nh.2016.106

Termini D, Moramarco T (2018) Dip phenomenon in high-curved

turbulent flows and application of entropy theory. Water

(switzerland) 10:1–10. https://doi.org/10.3390/w10030306

Termini D, Moramarco T (2020) Entropic model application to

identify cross-sectional flow effect on velocity distribution in a

large amplitude meandering channel. Adv Water Resour

143:103678. https://doi.org/10.1016/J.ADVWATRES.2020.

103678

Tsallis C (1988) Possible generalization of Boltzmann–Gibbs statis-

tics. J Stat Phys 52:479–487. https://doi.org/10.1007/

BF01016429

Vanoni VA (1941) Velocity distribution in open channels. Civ Eng

11:356–357

Wang QA (2003) Extensive generalization of statistical mechanics

based on incomplete information theory. Entropy 5:220–232.

https://doi.org/10.3390/E5020220

Xingkui W, Ning Q (1989) Turbulence characteristics of sediment-

laden flow. J Hydraul Eng 115:781–800. https://doi.org/10.1061/

(ASCE)0733-9429(1989)115:6(781)

Yang S-Q, Tan S-K, Lim S-Y (2004) Velocity distribution and dip-

phenomenon in smooth uniform open channel flows. J Hydraul

Eng 130:1179–1186. https://doi.org/10.1061/(ASCE)0733-

9429(2004)130:12(1179)

Zhao D, Liu L, Yu F et al (2021) Chaotic random spare ant colony

optimization for multi-threshold image segmentation of 2D

Kapur entropy. Knowl Based Syst 216:106510. https://doi.org/

10.1016/j.knosys.2020.106510

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

3598 Stochastic Environmental Research and Risk Assessment (2023) 37:3585–3598

123

https://doi.org/10.1061/(asce)he.1943-5584.0000363
https://doi.org/10.1061/(asce)he.1943-5584.0000363
https://doi.org/10.5194/egusphere-egu22-139
https://doi.org/10.5194/egusphere-egu22-139
https://doi.org/10.1016/0309-1708(86)90015-1
https://doi.org/10.1016/0309-1708(86)90015-1
https://doi.org/10.1061/TACEAT.0000467
https://doi.org/10.1061/TACEAT.0000467
https://doi.org/10.2166/nh.2016.106
https://doi.org/10.3390/w10030306
https://doi.org/10.1016/J.ADVWATRES.2020.103678
https://doi.org/10.1016/J.ADVWATRES.2020.103678
https://doi.org/10.1007/BF01016429
https://doi.org/10.1007/BF01016429
https://doi.org/10.3390/E5020220
https://doi.org/10.1061/(ASCE)0733-9429(1989)115:6(781)
https://doi.org/10.1061/(ASCE)0733-9429(1989)115:6(781)
https://doi.org/10.1061/(ASCE)0733-9429(2004)130:12(1179)
https://doi.org/10.1061/(ASCE)0733-9429(2004)130:12(1179)
https://doi.org/10.1016/j.knosys.2020.106510
https://doi.org/10.1016/j.knosys.2020.106510

	Application of the Kapur entropy for two-dimensional velocity distribution
	Abstract
	Introduction
	Theoretical framework
	Kapur (4th order) entropy
	Specification of constraints
	Entropy maximization
	Probability distribution and Lagrange multipliers
	Influence of parameter (\varvec{\alpha }) on PDF and velocity profile

	2-D velocity distribution
	Spatial variation and cumulative density function (CDF) of velocity
	Derivation of velocity distribution equations
	Entropy parameter (B)
	Mean and Maximum velocity ratio, \phi \left\lpar B\right)
	Velocity distribution
	Measure of error
	Validation of proposed velocity distribution
	Comparative analysis

	Conclusions
	Author contributions
	Data availability
	References




