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Abstract
The southwestern foothills of the Himalayan Mountain range have been experiencing a surge of catastrophic landslides in

the last two decades, as a tragic result of the adverse effects of climate change. This research is about the landslide risk

assessment (LRA) which has not been explored yet in the landslide-prone district Muzaffarabad, Pakistan. Landslide

susceptibility (spatial probability) was analyzed using random forest model while landslide hazard (temporal probability)

was analyzed using Poisson probability model. A random forest-based landslide susceptibility map depicts an accuracy of

0.90. A landslide hazard map was generated by multiplying the temporal probability with the spatial probability and

classified as well. Semi-quantitative danger pixels and a fuzzy set theory approach for LRA have been adopted to estimate

future landslide risks in the region. The pixel-based LRA approach indicates that 14, 18 and 20 km2 area of settlement

while, the fuzzy set theory-based approach depicts that 15, 19 and 21 km2 area of the settlement are under very high

landslide risk for 1-, 3-, and 5- year return period respectively. Both approaches produced risk maps that designated various

risk zones with almost the same area coverage and results. The LRA maps were classified into five classes including very

high (1.99%, 2.33%, 2.80%), high (2.16%, 2.53%, 3.04%), moderate (8.02%, 9.79%, 11.22%), low (17.76%, 22.94%,

23.20%), and very low (70.08%, 62.40%, 59.74%) risk zones for 1, 3 and 5 years return period respectively. This research

will assist planners and scientists in developing high-precision management strategies for landslide-affected natural

resources, especially in the context of the increasing impact of geomorphic hazards on climate change.

Keywords Climate change � Landslide risk � Fuzzy set theory � Random forest � Danger pixel � Himalayan Foothills-

Pakistan

1 Introduction

Landslides are a significant threat to human settlements and

infrastructure worldwide, and their impact is expected to

increase due to the adverse effects of climate change on

geomorphic processes (Gao et al. 2022). Landslides are

complex phenomena that are difficult to predict and man-

age, but recent advances in geospatial technologies and

modeling approaches have provided new tools for landslide

risk assessment (LRA). Implementing adequate

management strategies, such as risk assessment and land-

slide susceptibility mapping, can help reduce the damages

caused by landslides. The LRA techniques may be used at

many phases of the decision-making process, from regional

development planning to local site appraisal. According to

earlier studies (e.g., Abdulwahid and Pradhan 2017;

Kappes et al. 2012; Zezere et al. 2008), landslide vulner-

ability is largely influenced by several factors, including

the run-out distance, magnitude and speed of sliding, type

and proximity of at-risk resources, and the nature of

buildings and roads. LRA still faces difficulties with

quantitative vulnerability assessments (Chen et al. 2011;

Peduto et al. 2017). However, a large- or local-scale

physical vulnerability assessment can be carried out (Li

et al. 2010; Quan Luna et al. 2011).

LRA has been conducted using various approaches

including quantitative, qualitative and semi-quantitative
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(Li and Wang 2020; Guo et al. 2020; Shano et al. 2022;

Gao et al. 2022; Fu et al. 2020; Chang et al. 2021).

Corominas et al. (2014) proposed numerous ways for

constructing a landslide risk map, including heuristic,

empirical, and rational methods, magnitude-frequency

relations, and indirect approaches. The magnitude-fre-

quency technique, which is the most prevalent technique,

combines landslide spatial probability with temporal

landslide-triggering events like earthquakes or rainfall

(Abdulwahid and Pradhan 2017). The resulting landslide

hazard model is then coupled with the demographic

parameters to create the probable risk of various resources,

including forests, structures, and buildings (Mallick et al.

2021). However, in most situations, data on previous

landslides is sparse, which makes it difficult to accurately

estimate temporal landslide probability and, as a result,

hampers future quantitative LRA. As a result, LRA is

exceedingly difficult, if not impossible, in areas where

historic knowledge of previous landslides is lacking or

insufficient (Van Westen et al 2006). Particularly in

developing countries like Pakistan, this issue is frequent,

prompting many landslide experts to depend increasingly

on spatial probability models to conduct qualitative or

semiquantitative LRA. Two unique semi-quantitative LRA

methodologies have been suggested here, one established

on danger pixels and the other on the concept of fuzzy

linguistic set theory (Shano et al. 2022; Mallick et al. 2021;

Kanungo et al. 2008). Both methodologies express various

aspects of spatial landslide risk evaluation. The fuzzy lin-

guistic approach and the danger pixel approach are useful

for LRA in large areas where the mapping scale is small,

and access to historical landslide records is limited

(Kanungo et al. 2008; Shano et al. 2022). The methodology

used demonstrates the categorical classification of elements

at risk, which is especially useful when historical landslide

data is lacking.

Recently, several statistical and machine learning

methods have been employed to develop landslide sus-

ceptibility maps around the globe (e.g., Youssef and

Pourghasemi (2021); Pham et al. (2021); Sun et al. (2021);

Khaliq et al. (2022); Riaz et al. (2022a, b); Khalil et al.

(2022); Islam et al. (2022)). These studies have primarily

focused on the spatial component of landslides which can

be helpful in decision-making for land-use planning.

However, main limitation is that these methods may not

take into account the temporal variability of landslide

occurrences, it does not provide a comprehensive assess-

ment of the risk posed by landslides. Therefore, there is a

need for further research in the development of semi-

quantitative risk assessment methods for landslides. A few

research on spatial probability (i.e., susceptibility) has been

conducted in northern Pakistan using various statistical,

machine learning and deep learning techniques. For

example, Khalil et al. (2022) performed a comparative

analysis of landslide susceptibility mapping using five

different techniques (i.e., multicriteria decision-making and

machine learning) in the district Muzaffarabad. However,

without considering the temporal variability of landslide

occurrences, their study only provides a partial under-

standing of the landslide hazard and does not fully address

the needs of decision-makers and stakeholders in the

region. While the study by Aslam et al. (2021) used

advanced machine learning and deep learning techniques

for landslide susceptibility assessment. The study primarily

focused on spatial probability and feature extraction using

deep learning but did not estimate the temporal probability

of landslide occurrence. Aslam et al. (2022a, b) conducted

comprehensive studies on landslide susceptibility mapping

using various conventional and unconventional machine

learning techniques, as well as deep learning techniques.

They employed a broad range of landslide conditioning

factors and feature selection techniques to assess landslide

susceptibility and evaluated the most superior landslide

susceptibility model using multiple convolutional neural

networks frameworks and residual networks (ResNet).

While their studies provide important insights into land-

slide susceptibility mapping and modeling, a gap still exists

in terms of considering the temporal variability of landslide

occurrences and the development of quantitative risk

assessment. Therefore, future research should focus on

incorporating temporal variability and risk assessment into

the landslide susceptibility mapping framework to provide

a more comprehensive understanding of landslide risk.

Sarfraz et al. (2022) conducted an important study on

landslide susceptibility mapping along three main road

corridors of Muzaffarabad in northern Pakistan. They

employed statistical and machine learning techniques to

identify the main contributing factors for landslide occur-

rences along the study road corridors. While the study

provided valuable insights into the spatial distribution of

landslide susceptibility, it did not consider the temporal

variability of landslide occurrences. Thus, future research

could focus on integrating temporal probability estimates

into landslide risk assessment frameworks to provide a

more comprehensive understanding of landslide risk along

these road corridors.

One key limitation of the existing studies on landslide

risk assessment in northern Pakistan is the lack of con-

sideration for temporal probabilities and LRA, which are

crucial for minimizing landslide-related deaths and eco-

nomic losses in the region. While various knowledge-dri-

ven, data-driven, machine-learning, and deep-learning

techniques have been used to evaluate the spatial compo-

nent of landslide susceptibility, no studies have focused on

the temporal component of landslide hazard mapping. The

current study seeks to fill this research gap by investigating
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and integrating the landslide hazard and factors at risk in

the area, focusing specifically on the calculation of tem-

poral probability using rainfall thresholds, a novel

approach that has not yet been considered in Pakistan. The

current research investigates a large area (about 1300 km2)

including population, agricultural land, road network and

infrastructure, and other land use classes, all of which are at

risk. Even though some theories and methods are used all

over the world (Van Westen et al. 2006; Jiménez-Per-

álvarez et al. 2017; Van Westen and Greiving 2017), they

have not still been implemented in the southwestern foot-

hills of the Himalayan Mountain range Pakistan.

In the current research, we have analyzed the landslide

susceptibility mapping (spatial component) by applying a

machine learning-based random forest model, while land-

slide hazard (temporal probability) was obtained by the

estimation of empirical rainfall thresholds. Resource

damage potential has been determined to be the vulnera-

bility of the resources at risk. The semi-quantitative

approach used in this study may make it easier to assess

risk over a broad region in less time with fewer resources

and budgets, providing critical information for transporta-

tion infrastructure construction, ecological restoration, and

mitigation measures in Muzaffarabad. Furthermore, the

risk assessment can help estimate the level of risk to the

current infrastructure and residents in the study region,

facilitating preventative actions to protect lives and assets.

Overall, this research has the potential to make a significant

impact on the region’s preparedness for landslides and

ultimately contribute to saving lives and reducing eco-

nomic losses.

2 Study area

The Muzaffarabad district (Fig. 1), characterized by

mountain plateaus, slopes, and inter-mountainous valleys,

is mainly underlain by sedimentary, metasedimentary,

metavolcanic, and minor granitic rocks, with the majority

of the area being exposed as the Miocene Murree Forma-

tion consisting of sandstone, siltstone, and shales (Riaz

et al. 2018). The Muzaffarabad region is no stranger to the

devastating effects of landslides, with steep slopes, cut

slopes, and road embankments putting lives at risk and

wreaking havoc on vital infrastructure such as highways

and communication systems (Fig. 2). These incidents have

become increasingly frequent since the 2005 earthquake in

Kashmir, particularly during the monsoon season (Kamp

et al. 2008; Owen et al. 2008; Khattak et al. 2010). Despite

being marked by a substantial amount of geodynamic

activity, including intense monsoon rains, river undercut-

ting, and earthquakes, the region’s rugged geography

continues to put local people in grave danger (Ahmed et al.

2021; Sarfraz et al. 2022). From the massive landslide in

Danna village (Fig. 2b) to the disastrous slope failure in the

Murree Formation, the impact of landslides on the people

of Muzaffarabad cannot be understated (Basharat et al.

2021). Several deadly landslides have occurred in Muzaf-

farabad, Pakistan in recent years. In February 2013, a

landslide caused 17 deaths and road closures. In March

2014, another landslide killed two people. In February

2016, massive landslides destroyed 113 houses and in

March of that same year, a rock fall killed six people. In

July 2018, one person died due to a landslide along the

Muzaffarabad-Srinagar road. Most recently, in July 2022, a

landslide triggered by rainfall destroyed a house and killed

a child while injuring the rest of the family in the village of

Sarli Sacha. Therefore, the current research aims to analyze

the LRA of the Muzaffarabad district, highlighting the

pressing need for proactive measures to prevent further loss

of life and infrastructure damage.

Available source material (e.g., archives, articles, pre-

vious landslide inventory maps, satellite data) and field

surveys were carried out to collect and create landslide

inventory maps for the research region for the last 22 years

(2000–2022). Field surveys were conducted to collect data

on the distribution of landslides throughout the years

2019–2022. These surveys helped with the generation of

training and validating datasets, the identification of fuzzy

membership values, and the verification of landslide

inventory maps. Utilizing field and remote sensing data, a

total of 961 landslides with varied sizes (63 to 703,005 m2)

were mapped (Riaz et al. 2022b). Aside from the landslide

inventory dataset, the ALOS-PALSAR digital elevation

model (DEM) with a resolution of 12.5 m 9 12.5 m was

employed. A database was built with seventeen thematic

layers related to landslides, including topographic, geo-

logic, environmental and anthropogenic factors. One layer

includes the landcover map, which was prepared from

Landsat imagery using supervised and field-verified clas-

sification. Settlements/Urban land, grassland/agricultural

land, forest, water bodies, barren land, snow cover and road

networks are the main resource classes of the area.

3 Methodology

The methodology for semi-quantitative landslide risk

analysis at the community level involves five major cate-

gories of activities, as outlined below and shown in Fig. 3.

Database development: In this activity, data is gathered

from various sources such as government organizations,

data advisory services, statistics, satellite and field-based

data, and open-source information sites to carry out LRA.

Susceptibility assessment: The development of landslide

probability models of the area is required for the LRA. We
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utilized five different machine learning models to create

susceptibility maps, including Random Forest, Extreme

Gradient Boost, Naı̈ve Bayes, K-nearest neighbors, and

Logistic Regression. A detailed overview of these suscep-

tibility mapping methodologies and their comparative

analysis is provided in Riaz et al. (2022a, b). The best

model, Random Forest, was used as input for the LRA.

Hazard assessment: Using the susceptibility maps and

temporal and spatial probability, a landslide hazard map

was created for semi-quantitative risk assessments.

Resource elements vulnerability: On the GIS platform,

each data type (resource map) was allocated a weight,

which was then overlaid by the raster computation to

generate the vulnerability rating. Risk assessment: Finally,

landslide risk maps were created by integrating hazard and

vulnerability. Overall, the semi-quantitative LRA

methodology involves combining spatial and temporal

probabilities to produce a grid-unit-based hazard proba-

bility, creating hazard maps with different return periods,

integrating hazard and vulnerability maps to calculate risk

value, and ultimately producing risk maps for visualization.

3.1 Landslide hazard mapping

LRA may be accomplished at the community level using

the deterministic model (Qiao et al. 2019; Gökceoglu and

Aksoy 1996). The deterministic technique could not be

used in the study area because rock and soil strength

characteristics were inaccessible. We utilized the following

equation to address issues about where and how probable

landslides may occur in a given period (Guzzetti et al.

2005) utilizing two probabilities (spatial and temporal).

Hazard Hð Þ ¼ Ps� Pt ð1Þ

where spatial probability (landslide susceptibility) is

denoted by PS while temporal probability (landslide haz-

ard) is denoted by Pt.

Topographic, morphometric, geological, and anthro-

pogenic parameters were considered landslide-predispos-

ing factors in this study. These causative parameters are

lithology, slope, aspect, faults, land use, road, drainage,

normalized difference vegetation index (NDVI), curvature,

topographic wetness index (TWI), elevation, stream power

index (SPI), Terrain Ruggedness Index (TRI), peak ground

acceleration (PGA), rainfall and solar radiations. For tem-

poral probability five antecedent periods (3, 5, 10, 15, and

30 days) and the daily rainfall of the reported landslide

were used to compute the relative rainfall thresholds. The

analysis was also useful to identify the maximum rainfall

with no landslide (Tien Bui et al. 2013). To determine the

landslide recurring time, historical landslide episodes were

investigated and evaluated. Empirical rainfall thresholds

Fig. 1 a Geographical location map of the study area; b) landslide densities per administrative unit
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(ED and ID) were developed using rainfall data from a

weather station and historical landslide events. After

determining the temporal likelihood, the rate of excess day-

to-day precipitation during the ensuing 1, 3, and 5 years

was calculated using landslide records from 2006 to 2020.

The comparative rate of landslides, when the threshold was

surpassed was estimated using an empirical Poisson dis-

tribution (a continuous-time model) (Jaiswal et al. 2010;

Tien Bui et al. 2013). The findings of the threshold analysis

are fed into a Poisson probability model to predict landslide

temporal probability. Landslide hazard maps are obtained

by integrating spatial and temporal probabilities. These

thematic layers were processed in ArcGIS and desired

computations were made using the Map algebra tool.

Finally, validation of resultant landslide hazard maps is

done using a previously unused landslide inventory (land-

slide incidents that happened in 2021).

3.2 Resource elements vulnerability

The present study employed resource vulnerability at risk

and landslide hazard, to analyse and map the landslide risk.

Due to the large area, assessing vulnerability in terms of

individual items at risk and assessing precise landslide

consequences is not possible in this study. As a result,

rather than using assessments of elements at risk, the

resources (land use, roads etc.) were employed. Using

ENVI 5.3 software, the resource map is generated by

considering several resource elements. To evaluate the

accuracy of the land cover classifications, a total of 120

points were randomly selected on the classed land cover

map, with at least 20 points for each class. Field surveys

were conducted using GPS to collect the ground truth

locations, which were then compared and validated with

Fig. 2 Examples of high-risk landslides from Google Earth images

that have occurred in Muzaffarabad. a Lohar Gali landslide affecting

about 150 houses, road, agricultural land and infrastructure; b Danna-

Sahotar landslide occurred in the south of the district Muzaffarabad

triggered in 2016, affected about 113 houses, cultivated land, road and

infrastructure; c Vulnerable Langerpura landslide along the Jhelum

river posing a risk to the associated population; d Nauseri landslide

along with other landslides occurred in northeast of the district

Muzaffarabad, a great threat to the reservoir of Neelum Jhelum

Hydropower Project (NJHPP)
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the random points. The present study was performed on a

medium scale relying on the vulnerability (i.e., resource

damage potential); hence the run-out distance of landslides

is not considered, as with a thorough or site-specific

examination of landslides (Kanungo et al. 2008).

3.3 Landslide risk assessment method

In this work, the relationship between (a) landslide hazard

potential (LHP) and (b) resource damage potential (RDP)

is used to determine the risk of landslides. To compute and

analyze landslide risk in the area, two different approaches

for LRA were developed and implemented (i.e., the danger

pixels approach and fuzzy set theory). To assess the risk of

landslides in the region, these layers are combined using

Eq. 2:

LR ¼ LHP� RDP ð2Þ

where LR is landslide risk, LHP is landslide hazard

potential and RDP is resource damage potential.

3.3.1 Danger pixel

To compute spatiotemporal LRA maps with limited data-

sets, the danger pixel and land use information (resource

map) has been applied in a semi-quantitative manner.

Danger pixels (very high and high hazard pixels) have been

merged to create a danger pixel map while the remaining

pixels in the moderate zone, low zone and very low zone

were clipped out. The final danger pixel-based risk map is

an integration of all the pixels in the landslide hazard map

with very high and high attributes. It’s a binary map, with 1

denoting a danger pixel and 0 denoting a clipped pixel.

Finally, by multiplying the pixel values in both maps, the

resource map (land use and road network) and the risk

pixel map were merged to create the LRA map of the

research region. The geographic distribution of many

resource classes that emerge to be in danger from land-

slides is shown on the landslide risk map.

3.3.2 Concept of fuzzy set theory

Anbalagan and Singh (1996) developed a risk ranking

matrices technique for LRA, which might be regarded as

an extension of the proposed approach. The LHP and RDP

categories were computed by fuzzy membership functions

based on their respective significance to risk by combining

risk matrix and risk scoring techniques. The membership

values of resources in the fuzzy set theory are computed in

the (0, 1) range depending on the degree of confidence

about the event. The fuzzy membership values to various

categories of these maps (such as landslide hazard zones

Fig. 3 Procedure for the

application of pixel-based and

fuzzy set theory-based semi-

quantitative risk assessment
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and resource components) were produced based on a lin-

guistic scale constructed from expert knowledge. As a

result, distinct categories of elements used as input for

LRA might have different membership values assigned to

them. In this work, an accurate landslide susceptibility map

of the area was employed as LHP to assess landslide

potential, which was created using the machine learning-

based RF method. In addition, the area’s road network map

and maps of the land use and land cover were considered

resource maps utilized to enumerate the RDP. To build an

LRA map displaying various risk classes (very low, low,

moderate, high and very high), these two layers of data,

which reflect fuzzy membership values, were multiplied

together in a raster GIS environment.

4 Results

The study generated spatio-temporal landslide hazard

zonation maps (Fig. 4) by integrating spatial probability

(RF model; Fig. 5) and temporal probability derived from

rainfall threshold analysis. A resource map comprised of

several resource elements such as settlement/urban land,

grass/agricultural land, forest, barren land, water bodies,

snow land and road network (Fig. 6). The land cover map

has an accuracy of about 86%.

4.1 Spatiotemporal LRA using the concept
of danger pixel

The pixel-based technique identified the total pixels across

various resource classes that are impacted by the

landslides. These two maps were superimposed to deter-

mine the hazard or danger pixels (Fig. 7). At various return

periods, the resource map (Fig. 8) was integrated with the

danger pixels. Table 1 lists the total pixels and the land-

slide-affected pixels for each resource type, along with the

percentage of pixels involved for each resource type out of

the total number of affected pixels. It shows risk coverage

as a percentage of the total impacted area in the research

region.

The percentage of affected pixels under forest at risk

was 49%, 45% and 43% at 1-, 3-, and 5-year return periods

respectively (Table 1). Instead, the percentages of affected

pixels under settlements at risk were 21%, 22% and 22%

for 1,3, and 5-year return periods respectively. Percentages

of main roads affected pixels are 1.8%, 2% and 1.8%

whereas affected pixels for link roads are 4%, 6% and 6%

for 1,3 and 5 years return period (Table 1). Overall total

pixels of landslide resource categories are 1,552,278.

Among these 74,940 (5%), 93,682 (6%) and 102,776 (7%)

pixels of resource categories are affected by landslides for

1, 3 and 5 years return periods respectively, indicating that

damaged pixels are increasing with time (Table 1).

4.2 Utilizing fuzzy set theory for spatiotemporal
LRA

Table 2 provides linguistic criteria for hazard rating as well

as fuzzy membership functions for different landslide

hazard classes. The maximum membership value of 1 was

given to a very high hazard zone because this area will

likely experience the most landslides, whilst the lowest

membership value of 0.1 was given to a very low hazard

Fig. 4 Landslide hazard map the scenario a 1 year; b 3 years; c 5 years
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zone because this area will likely experience the fewest

landslides (Table 2). Similarly, a hazard proportional

membership value of 0.80 was assigned to high, 0.55 was

assigned to moderate, and 0.30 was assigned to a low-risk

class (Table 2). Fuzzy membership values assigned to

several resource categories, primarily land use classes, are

closely tied to the socio-economic interests of the local

community (Table 3). The settlement resource category

was given a maximum fuzzy membership value of 1.0

since any likely landslide activity will directly affect the

residents and their assets, such as homes and in-house

properties. Considering this, the inhabited area (commu-

nities and property, for example) has been given the

highest LHP. Landslide damage is thought to be limited in

areas such as barren land and water bodies. The member-

ship values for the other resource categories were likewise

allocated according to their relevance to the associated

population. Table 4 shows the developed linguistic rules

for risk assessment as well as the associated fuzzy mem-

bership values for the various resource categories. The

landslide risk in the region was determined by converting

the landslide risk into a matrix using this fuzzy linguistic

method (Table 5). Using ArcGIS, the LHP and RDP raster

data sets were multiplied to create an LRA map (Fig. 9).

Fig. 5 Landslide susceptibility

map computed by the

application of machine learning-

based Random Forest algorithm

having prediction accuracy of

90%
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4.3 LRA mapping

The resource map depicts the area’s road network as well

as all the current land use and land cover categories. Set-

tlements, expressways, national highways, main roads, link

roads, grassland, forest, water bodies, barren land, and

snow land are the ten categories represented. Fuzzy

membership values have been used to quantify LHP and

RDP as raster data layers. Table 4 demonstrates how an

LRA matrix may be used to describe and estimate landslide

risk for landuse resources and hazard classes. According to

the LRA matrix, each pixel’s LRA value falls within the

ranges of 0.01 and 1.00. In resource classes e.g., barren

land, water bodies, and snow land, a score of 0.01

Fig. 6 Thematic maps: a resource map; b road network of the area

Fig. 7 Landslide danger and non-danger pixels based on hazard: a 1; b 3; c 5 years return period
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designates extremely low landslide potential, whereas a

value of 1.00 designates very high landslide risk in set-

tlement areas and expressways. The method described in

Table 5 was used to divide the landslide risk values from

0.01 to 1.00 into five risk zones, which were then used to

construct the LRA map (Fig. 9) of the area. To estimate the

geographic distribution of various hazard zones in various

resource categories, the LRA map was overlaid on the

resource map (Table 6). This table shows that 10,158 pixels

(0.7% of total area); 12,689 pixels (0.82%) and 13,698

(0.88%) pixels are lie in the very high-risk zone in 1,3 and

5 years return periods. This may be because settlements

were given very high fuzzy membership values. Further,

14,400 pixels (0.93% of total area); 15,593 pixels (1.0%)

and 18,621 pixels (1.20%) lie in very high-risk zone, for 1,

3 and 5 years return period for forest respectively. Land-

slides provide a very significant risk to habitation in and

around Muzaffarabad city as well as along major traffic

corridors in the Neelum and Jhelum valley, according to a

deeper examination of the LRA map (Fig. 9).

LRA research conducted in this work may be used to

analyze the risks associated with landslides or any other

Fig. 8 Danger pixel-based landslide risk maps: a 1; b 3; c 5 years return period

Table 1 Total and impacted pixels across many resource categories

Resource

class

Total

pixels

Affected pixels 1-year scenario Affected pixels 3-year scenario Affected pixels 5-year scenario

Affected

pixels

% of affected pixels in

the resource class out of

the total affected pixel

Affected

pixels

% of affected pixels in

the resource class out of

the total affected pixel

Affected

pixels

% of affected pixels in

the resource class out of

the total affected pixel

Settlements 205,288 16,159 21.56 20,689 22.08 22,989 22.37

Expressway 1420 538 0.72 628 0.67 751 0.73

National

highway

1248 306 0.41 458 0.49 698 0.68

Main road 7275 1312 1.75 1801 1.92 1834 1.78

Link road 48,451 2950 3.94 5884 6.28 6456 6.28

Grass land 378,039 3465 4.62 4896 5.23 6958 6.77

Forest 677,585 36,486 48.69 42,486 45.35 44,265 43.07

Water

bodies

17,576 546 0.73 688 0.73 963 0.94

Barren land 198,513 9489 12.66 11,256 12.02 12,652 12.31

Snow land 16,883 3689 4.92 4896 5.23 5210 5.07

Total 1,552,278 74,940

(4.83%)

100% 93,682

(6.04%)

100% 102,776

(6.62%)

100%
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catastrophe in a given location. Table 6 and Figs. 9, 10, and

11 show that the risk was divided into five categories; very

high risk (2% for 1- and 3- years, 3% for 5-years), high risk

(2%, for 1-year, 3% for 3- and 5-years), moderate (8% for

1-year, 10% for 3-years, 11% for 5- years), low (18% for

1-year, 23% for 3- and 5-years), and very low risk (70% for

1-years, 62% for 3-years, 60% for 5-years). High and

extremely high-risk zones include the northern, central, and

northeastern sectors of the district, as well as parts of the

south.

4.4 Comparison of LRA maps

The risk matrix table was created by analyzing the land-

slide potential values with the fuzzy membership values of

land use classes, and the landslide risk map was then

fashioned using fuzzy linguistic analysis. Heuristic

weighting was used for both the resource categories and the

landslide danger zones. The two methodologies were used

to create landslide risk maps, which were compared

(Table 7; Fig. 12). The danger pixels extraction concept

only considered the landslide-affected pixels for different

land-use classes under the very high and high landslide

hazard zone classes, hence the risk map created using the

fuzzy set linguistic technique was only equated for those

zones. In Table 7, the comparative findings of the research

area’s LRA are shown. It’s worth noting that the outcomes

of the applied approaches are almost identical. According

to a risk perspective, the most significant resource classes

are forests, settlements, link roads and main roads. The

danger pixel extraction approach shows 49%, 45% and

43% affected pixels of forest, 21.56%, 22.08% 22.37%

affected pixels for settlements, 3.94%, 6.28% and 6.38%

affected pixels for link road and 1.75%, 1.92% and 1.78%

Table 2 Linguistic rules for hazard scoring of various landslide hazard classes

Landslide

hazard class

Linguistic rule for hazard scoring Fuzzy membership value for

landslide potential

Very high Landslides frequently occurred; On-going severe landslides were widespread. Landslide

almost certain to occur

1.0

High Landslide activities are evident at many locations. Landslides repeatedly occur in severe

conditions

0.80

Moderate In the past landslides have occurred locally. Adverse environmental conditions are

responsible for the possible occurrence of landslides

0.55

Low Landslides are unlikely to occur. Slopes are generally stable 0.30

Very low Very rare or no occurrence of landslides. Inherently stable slopes naturally 0.10

Table 3 Linguistic rules for risk scoring of different resource and road classes for damage potential

Resource

classes

Linguistic rules for risk scoring Fuzzy membership value

for damage potential

Settlements Impact on the people as well as assets such as buildings and property. Deaths, injuries, and

property loss are all examples of damages

1.0

Road

Expressway Damage caused by a lack of connection in the region, might impede rescue and rehabilitation

efforts during the post-disaster recovery period

1.0

National

highway

Effect on critical infrastructure and services (i.e., road network) 0.8

Main road Disturbance in communication between other districts and administrative offices 0.6

Link road Road damages along hilly terrain due to slope instabilities 0.35

Grass land/

agriculture

Direct influence on the economy (revenue) and survival food items 0.35

Forest Although there is no direct influence on individual economies, the nation’s forest supply is being

depleted

0.15

Water bodies Little damage 0.1

Barren land Little damage 0.05

Snow land Little damage 0.05
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affected pixels for main roads for 1, 3 and 5 years

respectively. Also, the Fuzzy set linguistic method depicts

50.35%, 48% and 46.64% of affected pixels for the forest,

25.27%, 28.33% and 25.97% affected pixels for settle-

ments, 3.13%, 4.82% and 4.66% affected pixels for the link

road and 1.71%, 1.65% and 2.57% affected pixels for main

roads for 1, 3 and 5 years return period respectively. For-

ests and settlements, which are located in a zone of extreme

risk, are the main resource elements of concern. Further-

more, a notable large percentage of the area 8.02%, 9.79%

and 11.22% of the total area lies in the moderate risk zone.

However, a large portion of the area 87.84%, 85.34% and

82.94% of the total area collectively lies in a very low and

low-risk zone for 1, 3 and 5 years return period. Out of the

total area 4%, 5% and 6% area of resource categories lies

in the very high- and high-risk zone for 1, 3 and 5 years

return periods, respectively.

4.5 Expected impact on the population
in the Muzaffarabad district

The 13,297 km2 Pakistan Administrated Kashmir (PAK)

region is split into 10 districts and 1,771 villages. About

12% of the population resides in urban regions, while 88%

lives in rural areas. According to estimates from the 2017

census, the PAK would have a total population of 4.1

million by 2018. A significant portion of the population

relies on the agriculture and forestry sectors for their

livelihood, with farm income making up 30–40% and the

remaining 60–70% coming from sources other than farms.

Given the abundance of natural beauty, the area is currently

receiving more attention and has a great deal of potential to

become a tourism hotspot.

A total of two tehsils makes up Muzaffarabad. a) Tehsil

Pattika Naseerabad, which has 12 Union Councils, one

Municipal Committee (Pattika) and one Town Committee

(Khori); b) Tehsil Muzaffarabad, which has a total of 29

Union Councils and includes the Municipal Corporation of

Muzaffarabad and the Town Committee Ghari Dupatta.

Muzaffarabad district has about 415 villages in total. In the

Table 4 LRA matrix for different combinations of RDP and LHP

Resource 

Damage 

Potential 

(RDP)

Landslide Hazard Potential (LHP)

Very High 
(1.0)

High 
(0.8)

Moderate 
(0.55)

Low 
(0.3)

Very Low 
(0.1)

Settlements

(1.0)

1.0 0.8 0.55 0.3 0.1

Expressway

(1.0)

1.0 0.8 0.55 0.3 0.1

National Highway

(0.8)

0.8 0.64 0.44 0.24 0.08

Main Road

(0.6)

0.6 0.48 0.33 0.18 0.06

Link Road

(0.3)

0.35 0.28 0.19 0.11 0.04

Grass Land

(0.35)

0.35 0.28 0.19 0.11 0.04

Forest

(0.15)

0.15 0.12 0.08 0.05 0.02

Water Bodies

(0.1)

0.1 0.08 0.06 0.03 0.01

Barren Land

(0.05)

0.05 0.04 0.03 0.02 0.01

Snow Land

(0.05)

0.05 0.04 0.03 0.02 0.01

Dark green—very low risk, light green—low risk, yellow—moderate risk, light brown—high risk, red—very high risk

Table 5 Landslide risk values are segmented into distinct landslide

risk zones

Landslide risk values Landslide risk zones

\ 0.1 Very low

\ 0.2 Low

\ 0.4 Moderate

\ 0.6 High

[ 0.6 Very high
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district, there are about 6 people per home. LRA map

(Fig. 9) depicts that Muzaffarabad municipal corporation

(most populated i.e., 149,005 persons) comprises 8.48 km2

area (31%) in very low-risk zone, 7.05% area (26%) in

low-risk zone, 6.84 km2 area (25%) in moderate risk, 3.72

km2 area (14%) in high risk while 0.981 km2 area (4%) in a

very high-risk zone. While town committee Garhi (having

a population of 7931 persons) comprises 2.18 km2 (38%)

area in a very low-risk zone, 2.16 km2 (37%) area in low

risk, 01 km2 area (17%) in moderate risk,0.3 km2 area (5%)

in high risk and 0.14 km2 area (2%) in a very high-risk

zone. Municipal committee Pattika (having a population of

14,098 persons) comprises 31%, 28%, 21% 12% and 8%

areas in very low, low, moderate, high and very high-risk

zones. While Town committee Ghori (population of 5278

persons) comprises 29% area in a very low-risk zone, 27%

area in low-risk zone, 22% area in moderate risk zone, 13%

area in high and 9% area in a very high-risk zone. Most of

the people live in Muzaffarabad, which is mostly com-

prised of valley bottoms, river terraces, and flat terrain. The

ecosystems of the mountain are severely under threat

because of the high population density (Fig. 13).

5 Discussion

The study evaluated the spatiotemporal landslide risk in the

district of Muzaffarabad, Pakistan, by integrating a random

forest model and a semi-quantitative technique to estimate

landslide hazard and risk for different return periods.. The

study highlights the importance of considering both natural

and anthropogenic predisposing factors in assessing

landslide risk in hilly regions, especially as settlement

areas at risk are expected to increase with population

growth and land cover changes. This study provides

important insights into the complex interplay between

geomorphology, natural hazards, and climate change, and

underscores the need for long-term landslide management

plans to reduce economic damage, preserve natural

resources, and protect human lives.

Random forest model depicts higher prediction accura-

cies which are comparable with other studies (e.g., Pham

et al. 2021; Park and Kim 2019). To lessen the effects of

landslides in hilly places, it is crucial to evaluate both the

natural and anthropogenic predisposing variables (Tariq

et al. 2021a, b; Islam et al. 2022). Various research on LRA

has been conducted in the world (e.g., Shano et al. 2022;

Mallick et al. 2021; Banshtu et al. 2020; Fu et al. 2020;

Althuwaynee and Pradhan 2017; Pereira et al. 2020). For

the assessment of landslide risk, socio-economic data have

been used by many researchers (Remondo et al. 2008;

Leonardi et al. 2020; Mineo 2020; Winter and Wong

2020), but in areas with a dearth of data, such as Pakistan,

socio-economic and damage data are unavailable and

extremely challenging to gather. Therefore, the present

work used the theory of danger pixels and fuzzy sets to

describe risk assessment. Althuwaynee and Pradhan (2017)

used the semi-quantitative approach for the assessment of

landslide risk in Kuala Lumpur. The notion of danger

pixels and the fuzzy set was used by Kanungo et al. (2008)

to evaluate the landslide risk assessment. Furthermore,

very limited research on landslide risk assessment at a

temporal scale has been carried out (Dikshit et al. 2020;

Mallick et al. 2021).

Fig. 9 Fuzzy linguistic approach-based landslide risk map of district Muzaffarabad: a 1; b 3; c 5 years return period
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Table 7 Comparison of results from Fuzzy set linguistic approach and Danger pixel approach

Resource class Danger pixel

approach 1 year

Fuzzy set

linguistic

approach 1 year

Danger pixel

approach 3 years

Fuzzy set

linguistic

approach 3 years

Danger pixel

approach 5 years

Fuzzy set linguistic

approach 5 years

Affected

pixel

(%) Affected

pixel

(%) Affected

pixel

(%) Affected

pixel

(%) Affected

pixel

(%) Affected

pixel

(%)

Settlements 16,159 21 16,267 25 20,689 22 21,387 28 22,989 22 23,561 26

Expressway 538 0.8 739 1 628 0.7 798 1 751 1 953 1

National

highway

306 0.4 320 0.5 458 0.4 347 0.4 698 0.7 418 0.4

Main road 1312 1.8 1099 1.8 1801 2 1249 2 1834 1.8 2332 2.6

Link road 2950 4 2015 3 5884 6 3642 5 6456 6 4232 4.7

Grass land 3465 5 2895 5 4896 5 3341 4 6958 6.8 3921 4

Forest 36,486 49 32,405 50 42,486 45 36,244 48 44,265 43 42,317 46.7

Water bodies 546 0.8 312 0.4 688 1 404 1 963 1 590 0.7

Barren land 9489 12 5785 9 11,256 12 5528 7 12,652 12 9661 10.7

Snow land 3689 5 2525 4 4896 5 2564 3 5210 5 2738 3

Total 74,940 100 64,362 100 93,682 100 75,504 100 102,776 100 90,723 100
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The LRA maps produced using both techniques indi-

cated distinct risk zones with virtually identical area

exposure for high and extremely high landslide zones.

Forest land is the most impacted resource, according to the

final risk map at various return periods followed by urban

land/settlements. Landslides mostly happen in hilly regions

since various steep slope areas lie in sparse to modest

amounts of vegetation. Due to the mapping scale’s limi-

tations, the pixel-based study did not include isolated small

resource components, such as individual homes and small

plots of agricultural land, that are found inside sparse and

intermediate forest land. Nevertheless, landslide risk will

also exist for this isolated resource inside a somewhat

sparse forest area. Over time, the number of settlements at

risk has grown, raising concerns for the security of human

life. Additionally, it is anticipated that more settlement

areas will be at risk for landslides because of the continued

growth and extension of population areas with noticeable

Fig. 12 Analysis of the differences between the fuzzy set linguistic approach and the danger pixel approach’s findings: resource classes at risk for

a 1; b 3; c 5 years return period; road classes at risk for d 1; e 3; f 5 years return period
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variations in land cover. The settlement class, as indicated

in Table 1, shows the concentration of inhabited areas;

nevertheless, remote dwellings are also found in risk zones.

These communities are small and weren’t included in the

pixel-based study. In the current study region, congested

settlements are present in Muzaffarabad city and along the

river Neelum and Jhelum. Affected pixels are also

increasing due to road construction along steep slopes and

unplanned population expansion. For national highways

and water bodies, as time passed (1–5-year return inter-

vals), the area at risk also increased. According to Kanungo

et al. (2008) high or extremely high landslide hazard zones

can be used to categorize danger pixels for different land-

use classes. The current research, therefore, examined

landslide-impacted pixels for several land use classes in

high and very high-risk zones. It indicates the overall risk

hotspots in the area. Consequently, a different strategy

(fuzzy membership) was also used in the current investi-

gation. To determine how to reduce the danger from

landslides, proper systematic slope stability assessments

are required for any future building of homes and other

infrastructure that is located in high- or extremely high-risk

zones. The experimental procedure and study design pre-

sented in this manuscript were developed to answer the

Fig. 13 Population dot density

map of 415 villages of district

Muzaffarabad
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research questions related to semi-quantitative landslide

risk assessment using danger pixel and fuzzy linguistic

method in a data-scarce environment of District Muzaf-

farabad. The proposed method combines expert knowledge

and remote sensing data to identify landslide risk zones and

assess the degree of risk in the study area. The results

showed that the proposed method was effective in identi-

fying landslide risk zones and the degree of risk, which

were consistent with the existing landslide inventory map.

Therefore, the evidence presented in this manuscript sup-

ports the conclusions drawn from the experimental proce-

dure and study design. The results demonstrated that the

proposed methodology is effective in identifying areas with

high, moderate, and low levels of landslide risk, which can

aid in the development of appropriate risk management

strategies. The proposed method can provide decision-

makers with a better understanding of the landslide risk and

can be applied in other data-scarce regions with similar

conditions. The fuzzy set linguistic technique was revealed

to be useful for future land use planning and to develop

potential corrective actions to lessen the problem of land-

slides and the risk. The future harm to natural and man-

made resources, depending on the severity of the landslide,

may be predicted with detail by predicting the long-term

risk of landslides. Economic damage, the devastation of

natural resources, and loss of human lives might all be

reduced if authorities take decisive action while taking into

account long-term risk assessment. As a result, it may be

feasible for the landslide-affected areas to experience sus-

tainable growth. This study offers a wealth of data that are

essential for long-term landslide management plan

proposals.

6 Conclusion

Despite the lack of data on historical landslide inventory

and building evaluation, the current study attempts to

create a semi-quantitative LRA for district Muzaffarabad.

The semi-quantitative LRA methods used in this work

could forecast potential losses of resource elements in this

data-scarce environment. Using the machine learning RF

approach, a spatial probability (susceptibility map) was

first created. The exceedance likelihood of short mean

recurrence intervals and time were then both tested using

Poisson probability. The vulnerability rating for each land-

use component in the area was simplified using fuzzy

membership values. Two essential thematic maps were

employed for the risk assessment in the current study: a)

the landslide hazard map and b) the land use (resource)

map. The vulnerability of different land use classes in the

region was assessed using the danger pixel approach and

fuzzy set theory. The risk was divided into five categories

on the LRA map: very high risk, high risk, moderate, low,

and very low risk. Results of the Fuzzy set theory depict

that area of low and very low-risk zone resource categories

is decreasing while the area of very high- and high-risk

zone for resource categories is increasing from 1 to 5 years

return period. Although this number is relatively little, it is

nonetheless significant since it relates to the security of

human life. To plan for future land use and to determine

potential remedies to lessen the risk and manage the

landslide problem the hazard pixel extraction technique

and fuzzy set linguistic approach are useful. As a result,

such maps may be of great use to engineers and planners

working on several engineering projects of national sig-

nificance, such as choosing a highway’s route, general

planning, expanding the area where people may live, and

putting hydropower projects into action, etc. This research

contributes to the broader understanding of the geomorphic

impact of rapid climate change on natural hazards,

specifically landslides, and highlights the importance of

adopting advanced methodologies to manage the risks

associated with these hazards.
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