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Abstract
Kutupalong Rohingya camp is one of the largest humanitarian shelters for conflict-fled people. The camp area is sus-

ceptible to landslide hazards because of being situated in dynamic tectonic settings and meteorological conditions. Hence,

the study aims to assess the earthquake and rainfall-induced landslide hazards in the camp for the worst-case scenario. The

landslide triggering parameters (topographic, soil physical property, and contributing factors) are designed in the study to

identify the hazard-prone areas through the factor of safety computation. The topographic parameters are prepared by

combining field investigation and remote sensing-based information. The soil physical properties are modeled in two ways

to account for their uncertainties: normal probabilistic distribution and interpolation-based spatial distribution. The con-

tributing factors (i.e., earthquake and rainfall) have been assessed using the probabilistic approach. The Peak Ground

Acceleration (PGA) exceedance of 50, 75, 100, 200, and 475 years return periods are applied in the factor of safety

calculation for earthquake-induced landslides. The rainfall intensities of 50 and 75 years return periods are combined with

the PGA exceedance of the respective years to assess the earthquake and rainfall-triggered landslide-prone areas. The

factor of safety has been measured following two methods: Monte-Carlo simulation and direct estimation method. Multiple

scenarios (rainfall with the duration of 1, 2, and 3 days) are also considered to estimate the landslide-prone areas in these

models. The study findings are finally validated against field investigation-based landslide inventory with more than 85%

accuracy at a 90% confidence interval.
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1 Introduction

Landslide is a common hazard in mountainous areas hav-

ing severe impacts. Owing to a lack of standard accom-

modation facilities, people often need to live under or on

the slope of the hills, which bears fatal consequences. Both

rainfall (intense and prolonged) and earthquakes can trig-

ger landslide events in those areas (Terzaghi and Voight

1979). Southeast mountainous region of Bangladesh

experiences heavy rainfall during the monsoon, and due to

the country’s tectonic settings, it is prone to earthquake

hazards as well (Kamal 2013). These two conditions make

the region more susceptible to landslides. Over the last two

decades, more than 400 people have died, and 56,000

people have been affected by landslides in this region

(Chisty 2014). Unfortunately, this region provides shelter

to Myanmar’s conflict-fled population of Rohingya. The

Kutupalong Rohingya camp, providing shelter to these

people since 1991 (informally), is situated in this landslide-

prone region. The camp of a total 13km2 area, provides

shelter to almost 913,660 people (30 November 2021;

UNHCR 2021). Though situated in an almost mountainous

region, the camp’s significant proportion of hills has been

cut into plain areas to fulfill the settlement demand of the

enormous influx of Rohingyas. While setting up their res-

idence, these people contribute to landslide hazards. The

camp has some previous cases of striking landslides with

casualties and damages. For four consecutive years (i.e.,
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2018, 2019, 2020, and 2021), there has been news of

landslide occurrence and even casualties in the camp

(ISCG 2018; Reliefweb 2019; Aziz 2021; Giiespie 2021).

Upon sudden arrival in 2017, the Rohingyas indiscrimi-

nately cut the slopes and trees to establish their makeshift

houses at the camp, triggering the landslide event. When

the first monsoon hit in 2018 after their arrival, neither the

Rohingyas nor the management was prepared for this

extreme event (Reliefweb 2018). In the later years, the

camp repeatedly underwent and is still undergoing this

disastrous hazard.

The camp lies in a region where tectonic activities are

prominent due to the presence of the Indo-Burman region

(Wang et al. 2014). This area lies within the seismic Zone-

III according to the Bangladesh National Building Code

(BNBC 2020). Several noteworthy earthquakes have

occurred within the 300 km radius of the camp, and their

shaking has also been experienced in the campsite (Wang

et al. 2014; Wang and Kerry 2013). In monsoon, the camp

experiences prolonged intensified rainfall just like the rest

of the country, mainly in June–July month. The closest

meteorological station (Teknaf) in this area has the highest

rainfall intensity record of 481 mm/day in the last 10 years

(BMD 2021). With rainfall incidents, the pore water

pressure within the soil increases and shear strength

decreases. Slope failure occurs, resulting in landslides

which are locally termed ‘‘Handya’’. During these rainfall-

influenced times, there remains the possibility of earth-

quake occurrence. Owing to the chances of being exposed

to earthquakes and rainfall simultaneously or sequentially,

the camp may face the worst-case scenarios of landslides.

These events should be assessed urgently since the camp

population is already fighting with identity, nationality,

shelter, food, standard health, nutrition, education, and

sanitary crises. For the management to be better prepared

and equipped, landslide-prone areas of the camp should be

identified. Hence, landslide assessment has been carried

out for the camp so that the findings of the study may

contribute to the response, rehabilitation, and mitigation

activities encouraging safer settlement of this large com-

munity (Fig. 1).

The earliest attempt to evaluate the stability of any slope

against failure caused by earthquake is the pseudo-static

factor of safety analysis. This method considers earthquake

loading as a static horizontal force in the static limit

equilibrium method. This method is first documented by

Terzaghi (1950) for earthen dams. Terzaghi and Voight

(1979) explained the impact of pore water pressure on

rocks and their resultant landslides. Later, Seed (1979)

updated Terzaghi’s (1950) basic equation and accounted

for the uncertainties. Marcuson (1981) examined the sta-

bility of dams and slopes for dynamic loads. Intensity–

duration–frequency (IDF) relation became a popular

approach (2000–2021) to assess landslides induced by

rainfall (Aristizábal et al. 2020; Borga et al. 2002; Hossain

and Toll 2020). Du and Wang (2014) introduced the

Monte-Carlo simulation technique for seismic displace-

ment analysis. Haneberg (2004) adopted an uncertainty

model for input parameters to compute the factor of safety.

Jibson (2011) considered gravity and seismic loads for

static limit equilibrium analysis to assess landslides.

The pseudo-static analysis considers an earthquake as a

permanent unidirectional force causing slope instability.

Earthquake coefficients are incorporated to compensate for

this unidirectional conservative instability approach due to

the brief shorter effect of PGA on sliding mass (Hynes

Griffin and Franklin 1984; Marcuson 1981). The selection

of seismic coefficients is quite a challenging task. How-

ever, according to Kramer (1996), there is flexibility in

selecting the value of seismic coefficients. The number of

assessment studies on both earthquake and rainfall-induced

landslides can be scarcely found. Nguyen and Kim (2020)

assessed landslide hazards on mount Umeyon in South

Korea using the Monte-Carlo simulation technique, where

the parameters were considered normally distributed. They

incorporated both earthquake and rainfall as triggering

factors and modeled the landslide-prone areas. However,

the effects of rainfall duration remained mostly under-at-

tended in their work.

Several studies have been conducted to assess landslide

hazards in the camp and host community area. Ahmed

(2015) applied user-defined weighting and data-driven

statistical techniques in Cox’s Bazar Municipality, known

as the host community to model landslide susceptibility.

Haque et al. (2018) identified landslide-prone areas within

the camp through high-resolution DEM and SAR offset

tracking techniques. Tehrani and Hüsken (2019) used 12

controlling factor and frequency ratio maps to produce a

susceptibility map of the refugee camp. Elsewhere, Ahmed

Fig. 1 Kutupalong Rohingya Camp, situated at the Cox’s Bazar

District
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et al. (2020) combined rainfall thresholds, landslide sus-

ceptibility, and inventory maps to produce a localized

Early Warning System (EWS) for the host community and

the camp itself. In most cases, the studies mainly focused

on rainfall as the triggering event. The simultaneous or

sequential occurrence of rainfall and earthquake has not

been adequately considered in them. Thus, the extreme

case scenario has not been addressed yet. Besides, the

uncertainties associated with the soil physical parameters

should be dealt with caution as it is practically difficult to

design these parameters only from field observation.

Therefore, this study considers both earthquake and rainfall

as contributing factors, taking into account the rainfall

duration. It designs the physical property parameters with

Monte-Carlo simulation and IDW interpolation and finds

the landslide-prone areas through Monte-Carlo simulation

and direct calculation which also includes comparing their

results. Monte Carlo simulation has been chosen for the

study to address the uncertainty issue regarding the phys-

ical property parameters. The simulation considers random

values from any probabilistic distribution rather than

grabbing one specific value. Using this simulation, the

study has dealt with the uncertainty of soil physical prop-

erty parameters.

2 Materials and method

This study is designed considering three types of parame-

ters mainly: topographic parameters, soil physical property

parameters, and contributing factors. These parameters

were applied to the final static limit equilibrium analysis to

find the factor of safety (Fig. 2).

2.1 Topographic parameters

The slope of the study area is considered one of the most

crucial parameters for landslide hazards. It is an indicator of

surface characteristics (Seda 2020). Slopes can be collected

utilizing the Digital Elevation Model (DEM). This study has

used 0.5 9 0.5 m resolution DEM to calculate the slope of

the camp area. The DEM is obtained from Inter- Agency

Coordination Group (IACG), IOM. The DEM was prepared

using a UAV in 2019. The DEM is validated against the

Survey of Bangladesh (SoB) data before its use. The calcu-

lated Root Mean Square Error was 1.57. Slope values were

obtained for the study area usingArcMap spatial analyst tool.

The slope value ranged from 0� to 86�. Around 65% of the

area has a slope value lower than 20� (Fig. 3a).
The curvature parameter depicts the shape of the sur-

face. It is computed through the second derivative of the

surface. The curvature value can be understood from the

drainage pattern, soil erosion pattern, water distribution on

land, convergence or divergence, and acceleration or de-

acceleration of the flow (ESRI 2021). The curvature of the

study area was obtained from the DEM of 2019. Steep

mountainous areas tend to have a - 5 to 5 value for cur-

vature. However, the hilly area ranges from - 0.5 to 0.5.

Curvature value ranges from - 5 to 7 for the study area

(Fig. 3b) among which 70% of the area has curvature

values ranging from - 0.5 to 0.5. The curvature value is

affected due to the significant anthropogenic influences on

the camp area.

Soil depth is another important parameter for assessing

landslide hazards. The soil depth of the study area was

obtained by combining field observation and the soil depth

model of Saulnier et al. (1997), shown in Eq. 1. This model

allows spatial variability with soil depth and considers the

maximum-minimum soil depth and elevation value. The

DEM has fed the elevation data for the study area. Maxi-

mum and minimum soil depths were obtained from the

field investigation. For the study area, soil depth value

ranges from 0 to 5 m (Fig. 3c).

Soil depth;Hpixel i ¼ Dmax �
Zpixel i � Zmin
Zmax � Zmin

Dmax � Dminð Þ

ð1Þ

Here, Soil depth;Hpixel i(m) is the depth of soil for ith

pixel; Zpixel i mð Þ; Zmin mð Þ and Zmax (m) are the ith pixel,

minimum and maximum elevation values of DEM,

respectively. Dmax mð Þ and Dmin (m) are the maximum and

minimum soil depths obtained from field observation.

2.2 Soil physical property parameters

Soil’s physical properties are equally crucial while ana-

lyzing landslide hazards. The geological and geotechnical

features of the study area define the hazard pattern. Soil

physical property parameters do not hold a single value

throughout the study area. Two different approaches are

applied to compensate for the spatial variability of these

parameters.

The first one considers them normally distributed with

their mean and standard deviation. Monte-Carlo simulation

has been used in the study to support the probabilistic

approach. This specific method was used because it models

the output of different combinations more efficiently when

the predictions are quite challenging due to random vari-

able hindrance. During the computation, a random value of

the soil physical property parameters was taken from their

respective normal distribution for each MC run

(N = 1000). Finally, the average value was obtained. The

study has run the simulations 1000 times as after 1000 runs,

the difference in standard deviation tends to be 0 for all the

0.1, 0.5, 1, and 5 standard deviation value scenarios

(Fig. 4).
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Another approach is the interpolation one. Physical

property parameters are obtained from field observation

and lab tests. The lab tests have followed the American

Society of Testing Materials (ASTM) specified procedures.

The entire study area was mapped utilizing the samples

collected from field surveys at specific points. For map-

ping, the IDW interpolation mechanism was adopted.

Soil physical property parameters obtained from these

two approaches are later applied separately in the final

factor of safety calculation, and their results are compared.

Unit weight, Friction angle, and Cohesion have been

directly assessed from lab tests. Hydraulic Conductivity

has been calculated from the Grain Size Distribution

(GSD) data. Unit weight, the component of soil, is the ratio

of total weight to its total volume. The unit weight is

obtained for soil samples through the ratio of total soil

weight to its total volume collected in a brass ring. Soil

samples have been collected from 36 points throughout the

study area, and their bulk density and unit weight have

been measured. The average value and the standard devi-

ation of the entire study area have been calculated from

Fig. 2 Methodological framework of the study

Fig. 3 Topographic parameters used in the study. a the map of slope in degree unit. b the curvature. c the soil thickness in meter unit
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these 36 locations’ data for Monte- Carlo simulation model

(Table 1). IDW interpolation has been run on the study area

for the direct estimation model based on these 36 lab-tested

samples (Fig. 5a).

The angle of friction provides an idea of the shear

resistance of the soil sample. Preliminary Grain Size

Distribution (GSD), particle interlocking, and angularity

reshape friction angle specifying the inclination of the

failure envelope in a Mohr’s Circle. Coarse-grained

angular sands have a greater angle of friction than finer-

grained rounded sands (Factor Geotechnical 2021). Soil

samples have been collected at 36 points from field

investigation, and their angle of friction is estimated. From

these points, mean and standard deviations are obtained for

the Monte-Carlo simulation (Table 1). A spatial distribu-

tion model has been prepared using IDW interpolation for

the direct estimation model (Fig. 5b). Cohesion is another

shear strength parameter that binds soil particles together.

Finer grain soils tend to have higher cohesion values. The

same approaches were undertaken to design the cohesion

parameter as unit weight and angle of friction (Fig. 5c).

Hydraulic conductivity is essential for assessing the

hydraulic characteristics of any geological unit. It is mainly

used to measure flow velocity. The study assessed

hydraulic conductivity to determine the flow velocity, later

used in the factor of safety calculation equation. Hydraulic

conductivity in the study was estimated from Grain Size

Distribution data. Grain Size distribution was assessed in

the lab tests following ASTM standards. Later, using the

effective size (d10), hydraulic conductivity was estimated

with the empirical equation from Wang et al. (2017):

K ¼ CH
g

v
d210 ð2Þ

Here, g denotes the gravitational acceleration (m/s2), CH

represents a unitless coefficient whose value is around

6.54 9 10–4 (Harleman et al. 1963), and v is the kinetic

viscosity for water (0.89 9 10–6 m2/s at 25 �C).
From field investigation, it is apparent that the study

area has brown to yellowish moderately hard to loose

sandstones with insignificant amounts of clay and shale.

The amount of clay and shale found in the study area is not

Fig. 4 Estimation of minimum number of Monte-Carlo simulation (standard deviation differences for different number of simulations)

Table 1 Soil physical property parameter values used in Monte-Carlo simulation

Parameter name Mean value Standard deviation Source

Bulk density (kg/m3) 17.14 1.45 Field data and laboratory test (ASTM)

Cohesion (KN/m2) 6.37 3.81 Field data and laboratory test (ASTM)

Friction angle (�) 35.69 1.67 Field data and laboratory test (ASTM)

Hydraulic conductivity (mm/h) 0.211 0.14 Field data and laboratory test; modeled from GSD
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enough to claim the presence of Girujan clay. Moreover,

the study area lies north of the Teknaf peninsula on a

bathtub-like syncline (McClymont et al. 2017). The dip

angles of the beds are also relatively small, closer to 0�–
10�. Therefore, the entire study area is considered to have

Dupi Tila formation. The values (mean and Standard

deviation) of all the soil physical properties parameters are

considered constant for the entire study area of the Monte-

Carlo simulation model.

2.3 Contributing factors

2.3.1 Rainfall intensity

The annual probability of exceedance of rainfall intensity

(mm/day) is calculated from 2000 to 2019 daily rainfall

data. They are collected from Bangladesh Meteorological

Department (BMD) for the Teknaf station (BMD 2021).

The maximum intensity of rainfall per day for each year is

considered for the computation (considering the worst-case

scenario). The maximum rainfall intensity for these

20 years varies from the lowest 135 mm/day (in 2002) to

the highest 481 mm/day (in 2010). The average amount of

time it takes for any severe event of a certain size or

magnitude to be equaled or exceeded at least once is known

as the return period or recurrence interval. It is a common

practice to assess the exceedance probability of rainfall

using a plotting position formula (an empirical one). Our

study has used Weibull’s Plotting Position formula (Chow

1964). This formula is widely used as it is better at

achieving unbiased exceedance probabilities (Cunnane

1978). This plot is obtained arranging the rainfall data in

descending order attributing their respective rank as

T ¼ N þ 1

R
ð3Þ

where T is the return period, N represents the total number

of years of record and R denotes the rank of rainfall

intensities organized in descending order (Fig. 6).

Using the plot, rainfall intensity for specific return

periods like 50 and 75 years were assessed and considered

later for final computation (Table 2).

Fig. 5 The soil physical property parameters (interpolated maps) used in direct estimation method. a The bulk density in kg/m3 unit, b the angle

of friction in degree unit, c cohesion in KN/m2 unit and d hydraulic conductivity in mm/h unit

Table 2 Rainfall intensity and PGA values used in the study for

different return periods

Return period

(Years)

Rainfall intensity

(mm/day)

PGA

(g) exceedance

50 534 0.039

75 575 0.066

100 – 0.085

200 – 0.140

475 – 0.230

Fig. 6 Weibull’s Plot for assessing rainfall intensity for 50 and

75 years return period
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2.3.2 Peak ground acceleration (PGA) values
for earthquake

At bedrock conditions, the hazard values in peak ground

acceleration (PGA) were computed for the 50, 75, 100,

200, and 475 years return period for the study area. A

probabilistic approach has been taken to assess the seismic

hazard. Possible source models, Possible GMPE combi-

nations were used with the logic tree combination

approach.

This study utilized an updated combined earthquake

source model (background seismicity, linear, and areal

source models) and two sets of ground motion prediction

equations through the standard logic tree structure to

minimize the epistemic uncertainty in hazard calculation.

InBackground seismicity, adjacent areaswithin 300 kmof

the study area were divided into 0.1 9 0.1 degree grid points.

The smoothed seismicity rate, Gutenberg–Richter b value,

and maximum magnitude were calculated. The b value

computed for the background seismicity model equals 0.85.

This is the regional b value of declustered catalog.

Twenty linear sources (both known slip and unknown

slip types) were considered for the linear source model.

The known slip type linear sources are Dauki, Dapsi,

Dhubri, Oldham, Kopili, Kabaw, Churachandpur Mao, and

Laymyo. The unknown slip type linear sources are Saint-

martin, Dakshin Nila, Maheshkhali, Jaldi, Patiya, Sitakund,

Lalmai, Habiganj, Rashidpur, Sylhet, and Fenchuganj. For

the unknown slip type linear sources, the possibility of two

types of slip mechanisms (reverse and strike slip) was

considered, giving them equal weights. Their recurrence

parameters were assessed using both the characteristic and

Gutenberg–Richter models. Maximum magnitude was

estimated using the empirical scaling relationships of

magnitude and rupture characteristics of Wells and Cop-

persmith (1994) and Blaser et al. (2010). They were given

equal weight in logic tree approach.

Ten areal source zones were delineated for this study.

They were based on the changes of seismicity in case of

magnitude and focal depth distributed in the study area,

consideration of events in the comprehensive declustered

catalog around geological structures, and published litera-

ture dealing with a concept similar to this study. The

sources are the Himalayan zone, Dauki-Shillong plateau,

Naga interface and intraslab sections, Chittagong-Tripura

fold belt, Ramree section and its extension, partial Sagaing

section, and stable continental crust. Their seismicity

parameters (seismicity rate, Gutenberg–Richter b value,

and maximum magnitude) were also assessed.

Finally, seismic hazard was assessed applying two

suitable GMPE sets (shallow crustal zone GMPEs and

subduction zone GMPEs) with justifiable weightings, using

the logic tree approach for all three types of sources as well

as combining them. The PGA values for 50, 75, 100, 200,

and 475 years return periods are later used in the final

computation.

2.4 Hazard calculation

Final computation has been carried out by preparing all the

topographic parameters, soil physical properties, and con-

tributing factors (earthquake and rainfall). Two types of

computation have been completed. 1. Monte Carlo simu-

lation and 2. Direct computation. These approaches are

considered useful to address the uncertainties regarding the

spatial distribution of soil physical properties parameters.

Both the calculations are run on the updated pseudo-static

factor of safety estimation equation of Terzaghi (1950).

FSps¼
cþ½ cH�cWhÞ cos2að �tan;�kcH sina �cosa � tan;

cH sinacosaþkcH cos2a

ð4Þ

k ¼ 0:5
PGA

g
ð5Þ

Here, c denotes the unit weight of soil (kN/m3), H

denotes the depth of soil (m), cw denotes the unit weight of

water (kN/m3), h denotes the saturated depth (m), u
denotes the angle of friction (o), a denotes the slope angle,

c denotes the cohesion (kN/m2), k denotes earthquake

coefficients, PGA (m/s2) denotes the peak ground accel-

eration of an earthquake, and g denotes the acceleration

due to gravity (m/s2).

The pseudo-static factor of safety is influenced mainly

by the earthquake coefficients (combination of a constant

value and PGA value). Earthquake coefficients can vary

from 0.1 to 0.5. Several authors have proposed different k

values for different PGAs (e.g., Hynes Griffin and Franklin

1984; Seed 1979; Zhang 2015). This study considered k

values (0.1–0.5) at different PGAs and compared their

outputs. Lower and greater values of k show fewer devia-

tions for both the lower PGA values; higher values of k

show more significant variations of the factor of safety at

higher PGAs. The factor of safety tends to decrease sig-

nificantly at higher PGA values. As the study aims to assess

the landslide hazard in the worst-case scenario, 0.5 has

been considered for final computation.

Saturated depth was used to incorporate the influence of

rainfall, which mainly depends on rainfall intensity, cur-

vature value, and rainfall duration. Iida (1984) has pro-

posed a steady-state hydrological model for saturated depth

estimation.

h ¼ RI

n
t þ e

2

� �
Vst

2
h i

ð6Þ
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Vs ¼
ks
n
sin a cos a ð7Þ

where RI is the intensity of precipitation (rainfall), e is the
curvature for specific terrain cell (m-1), t is the rainfall

duration in days, Vs is the bedrock parallel flow’s hori-

zontal velocity component (m/day), and n is the effective

porosity.

Monte Carlo simulation mainly works on repeated random

sampling algorithms for mathematical computation. Monte-

Carlo simulation is beneficial for those data generation meth-

odswhich have several constraints. Soil physical properties are

modeled with Monte-Carlo simulation. They are considered

normally distributed. Therefore, 1000 simulations were run

during the final computation where Eq. 3 picked a value from

the normal distribution of the soil physical property parameters

and calculated the respective safety factor. The final factor of

safety was obtained from these 1000 simulations. Since the

parameters are designed in probabilistic distribution, the factor

of safety is obtained through a probabilistic approach to reduce

the uncertainty of spatial variability.

In the direct estimation, the same equation was applied.

Spatially variable soil physical parameters obtained from the

IDWinterpolationswere used for this computation. The results

were directly obtained without multiple times simulations.

Finally, the pixel valueswith the factor of safety value less than

one were taken as landslide-prone from the computation.

3 Result

After final computation, landslide-prone areas of the Kutu-

palong Rohingya Camp were identified following the Monte-

Carlo simulation and direct estimationmethods. The study has

considered different PGA values and rainfall intensity com-

binations for different return periods (50 and 75 years). In

addition, it attempted to assess the effect of specific rainfalls at

a prolonged intensity of 1, 2 and 3 dayson landslide hazards in

the local area. Reviewing the 20 years of data on rainfall

intensity for Teknaf station, it is evident that similar intensity

of rainfall (± 5 mm) can sustain for 2 or 3 days (Fig. 7).

Therefore, the study has considered the same rainfall intensity

for 1, 2 and 3 days for the respective return periods (50 and

75 years). The study uses only20 years of rainfall data record.

It considers rainfall intensity up to 75 years return period for

the factor of safety computation. It would not be wise to

project rainfall intensity for more than 75 years return period

based on only 20 years of data (the influence of climate

change may also be present). Hence, the combined impact of

rainfall and earthquake has been considered for 50 and

75 years to compute the factor of safety.

However, earthquake PGAs for more than 75 years

return period are significant. Therefore, landslide-prone

areas (factor of safety) for only earthquake induced events

are assessed for 50, 75, 100, 200, and 475 years.

The increase in landslide-prone areas under higher return

periods is found for both cases (earthquake-rainfall-induced

and only earthquake-induced landslide). Areas with higher

slope values are found to be vulnerable, even for the lower

return period combinations as well. Areas with lower soil

depth have more landslide-prone areas. Camp 20 and Camp

20 extension have the higher amount of slide-prone areas

followed by camp 17 and 18 (Figs. 8, 9).

Duration of rainfall has the most important impact in

defining landslide-prone areas. More areas can be affected by

greater rainfall duration in lower return periods compared to

lower duration in higher return periods. However, PGA

exceedance in longer return periods has specific significance.

Therefore, the landslide-prone areas are assessed in longer

return periods as well, and these return periods have the more

vulnerable areas compared to the lower ones.Vulnerable areas

increase in Camp 20, 20 extension and 17 with increased

rainfall duration and return periods. Camp 8E, 8Wand 18 also

become equally vulnerablewith the increase of return periods.

In the case of only earthquake-triggered landslides,

changes in the amount of landslide-prone areas were also

found. The study identified the highest amount of land-

slide-prone areas for the return period of 475 years.

Comparing the earthquake-rainfall induced and only

earthquake induced events, it is evident that rainfall plays a

major role in decreasing factor of safety significantly.

Both the methods (Monte-Carlo simulation and direct esti-

mation) show almost similar results for the return period com-

binations, with only 1% greater landslide-prone areas under the

Monte-Carlo simulation method in most of the cases (Table 3).

The models are validated against the landslide inventory

of 120 records prepared from field observation. The receiver

operating characteristic (ROC) curve is prepared to validate

the accuracy, where the area under the Curve (AUC) deter-

mines the accuracy. The accuracy was tested for 90%

Fig. 7 Frequency of events for 20 years (2000–2019) where similar

rainfall intensity (± mm/day) sustained for 2 and 3 consecutive days

in the monsoon months (June–August)
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confidence intervals at different combinations. Each time the

model showed more than 84% accuracy (Table 4).

4 Conclusion and recommendation

The main purpose of this study is to assess the landslide

scenario, paying particular interest to identify the com-

bined or sequential impact of earthquake and rainfall on

landslide-prone areas. Therefore, the landslide-prone area

of the Kutupalong Rohingya camp was identified as the site

of the study. Three types of parameters (topographic

parameters, soil physical property parameters, and con-

tributing factors) have been combined to estimate the factor

of safety in two different methods (Monte-Carlo simulation

and direct estimation). To compensate for the uncertainties,

soil physical property parameters were designed employing

two approaches: normal distribution (mean, standard

deviation) and interpolation (IDW) for the Monte-Carlo

simulation and direct estimation, respectively. Both esti-

mations identified almost the same camp areas susceptible

to failure, where the Monte-Carlo simulation has found 1%

more vulnerable areas than the direct estimation method.

The contributing factors, earthquake PGAs for 50, 75,

100, 200, and 475 years return periods and rainfall inten-

sity for 50 and 75 years were considered to estimate the

factor of safety. Moreover, the effects of the duration of

specific intensity rainfall have also been modeled. The

study finds more areas vulnerable to slide with an increased

value of PGAs and rainfall intensities, corresponding to an

increased return period. Even for the same PGAs and

rainfall intensity, areas with a factor of safety of less than 1

Fig. 8 Landslide-prone areas (factor of safety\ 1) modelled for 1, 2,

and 3 days of rainfall duration in Monte-Carlo simulation estimation

method. a for 50 years return period, b for 75 years return period, and

in direct estimation method for, c for 50 years return period, d for

75 years return period

Stochastic Environmental Research and Risk Assessment (2023) 37:2777–2789 2785

123



increased with the increase in rainfall duration. However,

there lies some uncertainty regarding the rainfall intensity

value at higher return periods, as rainfall parameters can be

attributed to climate change issues. Therefore, the study

has assessed the hazard scenario at 50 and 75 years return

period scenario for earthquake-rainfall-induced scenario.

Due to the significance of higher return periods in case of

earthquake PGA exceedance, up to 475 years return period,

which is equivalent to the PGA of 10% probability of

exceedance in 50 years (Design-Based Earthquake, DBE),

the factor of safety has been calculated for earthquake-

triggered events only.

Camp no. 17, 20, and 20-extension were found to have a

significant amount of vulnerable areas at all the hazard

scenario combinations owing to their curvature pattern

(more convex or concave planes compared to other camps).

Areas with higher slope values were found to be to more

prone to landslide than the lower slopes, where the slopes

have planar surfaces.

This can be mentioned that the study area has undergone

limited geological investigation till now as the camp has

Fig. 9 Landslide-prone areas

(factor of safety\ 1) modelled

for only earthquake-triggered

landslide events for different

return periods: a In Monte-

Carlo simulation, b in direct

estimation method

Table 3 Percentages of vulnerable areas estimated with specific PGA and rainfall intensity for different return period scenarios and duration of

that specific rainfall combination

Return period (years) Monte-Carlo simulation Direct estimation

Earthquake-rainfall-induced

landslide-prone areas

Earthquake-induced

landslide-prone areas (%)

Earthquake-rainfall-induced

landslide-prone areas

Earthquake-induced

landslide-prone areas (%)

1 Day 2 Day 3 Day 1 Day 2 Day 3 Day

50 12 14 15 9 11 14 14 8

75 12 15 17 11 11 14 15 10

100 – – – 14 – – – 13

200 – – – 17 – – – 16

475 – – – 19 – – – 18
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only been set recently. A more detailed geological inves-

tigation may feed the parameters more accurately. In fact,

there is a scope to examine the risk of hazards in a more

updated manner employing the parameters. Another

important fact is the camp area’s dynamic nature. The

Rohingyas are still cutting the slopes as per their conve-

nience; more and more development activities have con-

tinuously been carried out, reshaping the camp area’s

structure. This anthropogenic intervention is contributing

to the landslide. Therefore, the most updated current

topographic scenario can increase the accuracy of the

landslide hazard assessment.

The study has executed a validation test using the

landslide inventory of previously occurred ones, showing

that the ROC curves possess AUC values ranging from 85

to 93% for all the assessed scenarios at different confidence

levels. The study’s findings can be adopted for risk-sensi-

tive land-use planning of the camp area. The area’s sus-

ceptibility to slides should be addressed, and proper

mitigation measures must be adopted to improve the con-

dition of the vast Rohingya community.

Appendix 1

The weight of the block QRST:

w ¼ cbH ð8Þ

where, c ¼ unit weight of soil, H = Thickness of soil.

Height of water table above failure surface = h

Weight of water ¼ ww ¼ cwbh ð9Þ

[cw is the density of water].

Normal component of water weight, Pw ¼ cwbhcosa

Pore pressure onQR; u ¼ Pw

QR
¼ cwbhcosa

b
cosa

¼ cwhcos
2a

ð10Þ

Earthquake loading is expressed as kw, where seismic

coefficient, k is multiplied by soil weight w which is

working on the horizontal direction.

Forces perpendicular to slip plane:

N ¼ Wcosa�kWsina

N ¼ cbHcosa� kcbHsina From 8ð Þ½ �

Forces parallel to the slip plane:

T ¼ Wsinaþ kWcosa

T ¼ cbHsinaþ kcbHcosa From 8ð Þ½ �

Shear stress; s ¼ T

QR
¼ cbHsinþ kcbHcosa

b
cosa

¼ cHsinacosaþ kcHcos2a ð11Þ

Normal stress;rn ¼
N

QR
¼ cbHcosa� kcbHsina

b
cosa

¼ cHcos2a� kcHsinacosa ð12Þ

Factor of Safety;FSps ¼
Resisting Force

Driving force
¼ cþ rn � uð Þtan;

s

¼ cþ cHcos2a� kcHsinacosa� cwhcos
2að Þtan;

cHsinacosaþ kcHcos2a

¼ cþ cH � cwhð Þcos 2atan; � kcHsinacosatan;
cHsinacosaþ kcHcos2a
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Blaser L, Krüger F, Ohrnberger M, Scherbaum F (2010) Scaling

relations of earthquake source parameter estimates with special

focus on subduction environment. Bull Seismol Soc Am

100:2914–2926. https://doi.org/10.1785/0120100111

BMD (2021) Bangladesh Meteorological Department. http://live4.

bmd.gov.bd/. Accessed 25 Dec 2021

BNBC (2020) Bangladesh National Building Code (BNBC) 2020.

House Build Res Inst

Borga M, Dalla Fontana G, Cazorzi F (2002) Analysis of topographic

and climatic control on rainfall-triggered shallow landsliding

using a quasi-dynamic wetness index. J Hydrol 268:56–71.

https://doi.org/10.1016/S0022-1694(02)00118-X

Chisty KU (2014) Landslide in Chittagong City: a perspective on hill

cutting. J Bangladesh Inst Plan 7:1–17

Chow VT (1964) Handbook of applied hydrology. McGraw-Hill

Book Company, New York

Cunnane C (1978) Unbiased plotting positions—a review. J Hydrol

37:205–222. https://doi.org/10.1016/0022-1694(78)90017-3

Du W, Wang G (2014) Fully probabilistic seismic displacement

analysis of spatially distributed slopes using spatially correlated

vector intensity measures. Earthq Eng Struct Dyn 43:661–679.

https://doi.org/10.1002/EQE.2365

ESRI (2021) Curvature function— ArcGIS for Desktop. https://

desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-

images/curvature-function.htm. Accessed 25 Dec 2021

Factor Geotechnical (2021) What does friction angle of soil mean?

https://factorgeo.com/what-does-friction-angle-of-soil-mean/.

Accessed 25 Dec 2021

Giiespie M (2021) Kutupalong Chronicles: floods and landslides. In:

Chronicles from margins. https://cov19chronicles.com/kutupa

long-chronicles-floods-and-landslides-kill-6-rohingya-refugees-

and-leave-5-million-homeless-in-coxs-bazaar-bangladesh/.

Accessed 25 Dec 2021

Haneberg WC (2004) A rational probabilistic method for spatially

distributed landslide hazard assessment. Environ Eng Geosci

X:27–43

Haque DME, Kamal DASMM, Rahman A, Bhuiyan MHF (2018)

Landslide risk information for KTP Rohingya Refugee camp in

Bangladesh. Am Geophys Union, Fall Meet 2018, Abstr

#NH52B-10 2018:NH52B-10

Harleman DRF, Mehlhorn PF, RumerJr RR (1963) Dispersion-

permeability correlation in porous media. J Hydraul Div

89:67–85. https://doi.org/10.1061/JYCEAJ.0000863

Hossain ATMS, Toll DG (2020) Rainfall induced landslide hazards of

Bangladesh: challenges, issues and sustainable development. Int

J Sci Eng Res 11:225–230

Hynes Griffin ME, Franklin AG (1984) Rationalizing the seismic

coefficient method. Final Report, Miscellaneous Paper No. GL-

84-3, U.S. Army Engineer Waterways Experiment Station,

Vicksburg, Mississippi

Iida T (1984) A hydrological method of estimation of the topographic

effect on the saturated throughflow. Jpn Geomorph Union Trans

5:1–12

ISCG (2018) Risk on flood and landslide for Kutupalong RC|Human-

itarianResponse. In: Humanit. Serv. OCHA. https://www.huma

nitarianresponse.info/ru/operations/bangladesh/infographic/risk-

flood-and-landslide-kutupalong-rc. Accessed 25 Dec 2021

Jibson RW (2011) Methods for assessing the stability of slopes during

earthquakes—a retrospective. Eng Geol 122:43–50. https://doi.

org/10.1016/j.enggeo.2010.09.017

Kamal ASMM (2013) Earthquake risk and reduction approaches in

Bangladesh. In: Shaw R et al (ed) Disaster risk reduction

approaches in Bangladesh. Japan, pp 103–130

Kramer SL (1996) Geotechnical earthquake engineering, 1st edn.

Prentice Hall, Hoboken

Marcuson W (1981) Session 7: moderator’s report. In: International

conference on recent advances in geotechnical earthquake

engineering and soil dynamics

McClymont A, Bauman P, Miazga C et al (2017) Emergency

response groundwater exploration at Rohingya refugee camps in

Bangladesh. Can J Explor Geophys 43:12–18

Nguyen VBQ, Kim YT (2020) Rainfall-earthquake-induced landslide

hazard prediction by Monte Carlo simulation: a case study of

MT. Umyeon in Korea. KSCE J Civ Eng 24:73–86. https://doi.

org/10.1007/s12205-020-0963-8

Reliefweb (2018) Rohingya influx overview: key changes during

2018 monsoon season—Bangladesh|ReliefWeb. Cox’s Bazar

Reliefweb (2019) Bangladesh: rohingya face monsoon floods, land-

slides—Bangladesh|ReliefWeb. In: OCHA Serv. https://relief

web.int/report/bangladesh/bangladesh-rohingya-face-monsoon-

floods-landslides. Accessed 25 Dec 2021

Saulnier GM, Beven K, Obled C (1997) Including spatially variable

effective soil depths in TOPMODEL. J Hydrol 202:158–172.

https://doi.org/10.1016/S0022-1694(97)00059-0
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