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Abstract
In the literature classical properties concerning the class of covariance functions are well illustrated. A recent analysis has

provided the conditions under which the difference between two covariance functions is still a covariance function. In this

paper the properties of these new classes of models have been explored; in particular, the present analysis has been given

for isotropic covariance functions, because of their importance in many applied areas; moreover, isotropic covariance

functions can be considered the starting point to construct anisotropic models. It has been pointed out that these new

families of models are more flexible than the traditional ones because the same models, according to the values of their

parameters, are able to select covariance functions which are always positive in their domain, as well as covariance

functions which could be negative in a subset of their field of definition. Moreover, within the same class of models, it is

possible to select covariance models which present a parabolic behaviour near the origin from covariance models which

present a linear behaviour in proximity of the origin. Apart from the theoretical importance related to the new aspects

presented throughout the paper, it is relevant to underline the practical aspects, since these new classes of isotropic

covariance models are characterized by an extremely simple formalism and can be easily adapted to several case studies,

hence they result very useful for many practitioners.

Keywords Covariance functions � Isotropic models � Spectral density function

1 Introduction

Covariance functions play a key role in statistical literature

as they provide a relevant information about the correlation

structure of underlying processes; in particular, in time

series analysis, in spatial data and, more generally, in

spatio-temporal data analysis, determine performance of

prediction.

Bochner’s Theorem provides an exhaustive description

for the set of covariance functions which are continuous in

their domain; the same result underlines that a covariance

assumes values in the set of the complex field, although the

subset of the real covariance functions is required in most

of the case studies (De Iaco et al. 2002a; Cressie and

Huang 1999; De Iaco et al. 2002b; Gneiting 2002; Diggle

and Ribeiro 2007; Cox and Isham 1988; Kolovos et al.

2004; Ma 2002; De Iaco et al. 2000).

It is relevant to point out that admissible covariance

models for all dimensions, such as the exponential and

gaussian, which are among the most common parametric

models belonging to the Whittle-Matern class (Matern

1980), have some limitations, because they are always

positive and strictly decreasing (Stein 1999), as a conse-

quence a negative correlation cannot be modelled from this

special set of covariances.

A special family of infinitely differentiable Bessel-

Lommel covariance functions that always exhibit a nega-

tive hole effect and are valid in Rn; where n[ 2; was

derived by Hristopulos (2015), although the exact func-

tional form of these covariance functions is not exactly the

same for different dimensions.

In the literature properties of covariance functions have

been described by several authors (Cressie and Wikle

2011; Hristopulos 2020; Adler 1981; Yaglom 1987;

Christakos 1984); in particular, starting from the classical

covariance models (exponential, gaussian, rational), which

are all positive functions and applying the well known
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properties of covariance functions, the resulting models

preserve the same features, i.e. they are all positive, hence

they cannot model a negative correlation. It’s also widely

known that, in general, the difference between covariances

could not be a covariance. At this purpose, just very few

authors have faced the question concerning the difference

(or linear combinations with negative coefficients) between

covariances, in addition, this kind of analysis has been

performed only on the real domain.

The difference between two real valued covariances for

spatial data was analyzed by Vecchia (1988), however the

method proposed by this author is not very flexible to be

applied and is valid only in two dimensions. Besides this

last contribution, a linear combination, whose weights

could be negative, of two real valued continuous covari-

ances was also performed by Ma (2005). Moreover, a

special class of covariance functions (the generalized sum

of product models), characterized by negative weights, has

been analyzed by Gregori et al. (2008); these last authors

underlined the importance of covariance models allowing

negative values for problems of biological, medical and

physical nature.

Recently, the requirements under which the difference

between parametric covariance functions in the set of the

complex field is still a covariance function have been

analyzed (Posa 2021): these results can be considered a

further property for the family of covariance functions.

Moreover, the resulting class of covariances are charac-

terized by interesting properties: they could be positive in

the set of definition, or could assume negative values in a

subset of the field of definition, suitably modifying the

parameters on which they depend. In addition, the families

of covariance functions obtained through the above dif-

ference, can present different behaviours near the origin;

details on these models will be also discussed. Indeed,

many applications concerning phenomena related to tur-

bulence in space-time, biology and hydrology, require

covariance functions with negative values, as described by

some authors (Levinson et al. 1984; Yakhot et al. 1989;

Shkarofsky 1968; Pomeroy et al. 2003; Xu et al. 2003b, a).

There are two main aims in this paper: a theoretical one,

related to the importance of a new property involving the

difference between two isotropic correlation structures; a

practical one, which regards the construction of new flex-

ible families of isotropic covariances, able to be adapted to

several case studies. Indeed, these new classes present

peculiar features with respect to traditional classes, such as

the Whittle-Matern class and the several families con-

structed by applying the classical properties: infact, these

last classes are characterized by several restrictions, as will

be underlined throughout the manuscript.

Some interesting examples regarding the difference

between isotropic and continuous covariance functions

proposed in this paper, as a consequence of the general

results previously established, are advantageous to be

adapted and used in many applications. Indeed, a detailed

analysis on the various classes of models has been provided

and specified in R;R2 and R3, which represent the usual

Euclidean spaces encountered in several case studies.

It is important to underline that the present analysis has

been devoted to isotropic covariances because they can be

considered the starting blocks for building anisotropic and

non stationary models; moreover, these families of

covariances play an important role in the statistical theory

of turbulence (Batchelor 1982) and they are often

encountered in many others applied areas, such as

description of ocean wave behaviour (Longuet-Higgins

1957) and road roughness modelling (Kamash and Robson

1978). In Sect. 2, some characteristics of continuous

covariance functions are described, whereas in Sect. 3 a

brief overview concerning traditional classes of covariance

models has been given: this summary has been suitably

proposed in order to underline the advantages and the

drawbacks of these peculiar families. In Sect. 4 conditions

for which the difference between covariances results in a

covariance have been given. Some well known models,

often utilized in the applications, have been considered; in

particular, some examples for the difference of two iso-

tropic covariance functions are explored in R;R2 and R3. A

peculiar parametric analysis on these families has been

given and the same analysis underlines that the results can

be utilized in a flexible and easy way by many practition-

ers. At last, as far as we know, classes of covariance

functions, able to describe various and different scenarios

as the ones presented in this paper, seem not to exist.

2 Continuous covariance functions

In order to provide a complete description on the subject, a

synthetic overview on the family of continuous covariance

functions is presented hereafter. Any complex and con-

tinuous covariance function can be introduced through

Bochner’s theorem (Bochner 1959).

Theorem 1 Bochner’s theorem. A continuous function

C : Rm ! C, where C is the set of the complex numbers

and Rm is the Euclidean m-dimensional space, is a

covariance function if and only if it is the Fourier trans-

form of a finite and non decreasing measure F, i.e.,

CðsÞ ¼
Z
Rm

expðixTsÞdFðxÞ; ð1Þ

where i is the imaginary unit.
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A special characterization of (1) outcomes from the

absolute continuity of the function F, i.e.,

CðsÞ ¼
Z
Rm

expðixTsÞf ðxÞdx; ð2Þ

where the spectral density f ðxÞ� 0;x 2 Rm and

f 2 L1ðRmÞ.
If C 2 L1ðRmÞ, then the spectral density (s.d.) function

is continuous, moreover:

f ðxÞ ¼ 1

ð2pÞm
Z
Rm

expð�ixTsÞCðsÞds: ð3Þ

Let us state the main properties regarding the set of

covariance functions.

1. Cð0Þ� 0.

2. CðsÞ ¼ Cð�sÞ; 8s 2 Rm, where the bar denotes

complex conjugate.

3. jCðsÞj �Cð0Þ; 8s 2 Rm:

4. Let C1; . . .;Cn be covariance functions on Rm, thenYn
i¼1

CiðsÞ is a covariance on Rm.

5. Let C1; . . .;Cn be covariance functions on Rm with

ai � 0; i ¼ 1; . . .; n, then
Xn
i¼1

aiCiðsÞ is a covariance on

Rm.

6. If Ck; k 2 N, are covariances in Rm, then CðsÞ ¼
lim
k!1

CkðsÞ is a covariance function in Rm, provided that

the limit exists.

7. If C is a covariance on Rm, there is no guarantee that C

be a covariance on Rn, with n[m: Indeed, it is well

known that the triangle model and the cosine model are

covariance functions just in R, however these last

models are not covariance functions in Rn, with n� 2:

8. If a covariance is isotropic, then it is a real valued

function; as a consequence, in this special case, there

exist several results which utilize Bessel and com-

pletely monotone functions (Polya 1949; Schoenberg

1938; Matern 1980; Yaglom 1987). Moreover, accord-

ing to properties 1. and 3., a real covariance function is

bounded and can be positive, negative or nought.

3 Traditional classes of isotropic covariance
models

In the following section, a brief overview for isotropic

covariance models has been proposed: in particular, some

properties and limitations have been outlined.

Among the wide families of isotropic covariance func-

tions utilized in several applications, it is worth to recall the

Whittle-Matern class (Stein 1999): any covariance function

belonging to this class is valid in any dimension of the

Euclidean space; the exponential and gaussian models are

special members of this class. In addition, several exten-

sions of currently available covariance models which refer

to Whittle-Matern class have been recently proposed (Laga

and Kleiber 2017; Alegria et al. 2021; Ma and Bhadra

2022).

Apart from the merits of the Whittle-Matern class, a

significant drawback is that this class is not able to model

negative correlations, because all the members of this

family are positive and decreasing functions. These last

limitations characterize families of covariances constructed

by applying the classical properties, such as sums and

products, as will be described hereafter.

3.1 Isotropic covariance models

In the literature many stationary covariance models have

been built utilizing Bochner’s representation (Christakos

2000; Gneiting 2002; Cressie and Huang 1999).

A stationary covariance C is defined isotropic if

CðsÞ ¼ CðsÞ, where s ¼ jjsjj: Although the concept of

isotropy represents a strong assumption, the isotropic

covariance models can be considered the starting blocks for

building anisotropic and non stationary models. Yaglom

(1957) exhibited the spectral representation of continuous

isotropic stationary covariance functions on Rm (m� 2). In

particular, ifZ 1

0

sm�1jCðsÞjds\1; m 2 N;m� 2;

then there exists a s.d. f; in this case:

CðsÞ ¼ 2ðpÞm=2

Cðm=2Þ

Z 1

0

KmðwsÞwm�1f ðwÞdw; s[ 0;

ð4Þ

where s ¼ ksk;

KmðwÞ ¼ 2ðm�2Þ=2Cðm=2Þ
Jðm�2Þ=2ðwÞ
wðm�2Þ=2 ;

and J is a Bessel function of order ðm� 2Þ=2. Moreover,

the s.d. function f is given by the expression:

f ðwÞ ¼ 1

2m�1ðpÞm=2Cðm=2Þ

Z 1

0

KmðwsÞsm�1CðsÞds: ð5Þ

In the most important particular cases where m ¼ 2 or

m ¼ 3, equations (4) and (5) take the form:

• m ¼ 2 :
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CðsÞ ¼2p
Z 1

0

J0ðwsÞwf ðwÞdw;

f ðwÞ ¼ 1

2p

Z 1

0

J0ðwsÞsCðsÞds;
ð6Þ

• m ¼ 3 :

CðsÞ ¼4p
Z 1

0

sinðwsÞ
ws

w2f ðwÞdw;

f ðwÞ ¼ 1

2p2

Z 1

0

sinðwsÞ
ws

s2CðsÞds:
ð7Þ

It is relevant and useful to recall the relationship between

the s.d. f1ðw1Þ in R with the s.d. f(w) in R2 and in R3,

respectively:

f ðwÞ ¼�1

p

Z 1

w

df1ðw1Þ
dw1

1

ðw2
1 � w2Þ1=2

dw1;

f ðwÞ ¼ �1

2pw
df1ðwÞ
dw

:

ð8Þ

To verify if a function C is an m-dimensional isotropic

covariance function, one only needs to calculate through

(5) the corresponding s.d. f and examine if

f ðxÞ� 0;x 2 R. Another method, which is equivalent to

the first, consists in finding the Fourier transform f1ðw1Þ of
the function C in R, then calculating the corresponding

multidimensional s.d. f(w) from f1ðw1Þ and finally checking
if the function f(w) is non negative. This last method is

especially convenient when m ¼ 2 or m ¼ 3.

Let us denote by Um the set of all m-dimensional iso-

tropic covariance functions and also denote by U1 the set

of all covariance functions C which belong to Um for any

integer m. Then, U1 � U2 � � � � � Um � � � � � U1, where

U1 is the set of all real positive definite covariance func-

tions. Note also that the general form of a function C

belonging to U1 is provided hereafter:

CðsÞ ¼
Z 1

0

e�s2t2dFðtÞ; ð9Þ

where F is a bounded non decreasing function.

Lower bounds on isotropic correlation functions qðsÞ ¼
CðsÞ=Cð0Þ are well known in the literature (Yaglom 1987).

Indeed, a function q is an isotropic correlation function on

Rm if and only if it is of the following form:

qðsÞ ¼
Z 1

0

KmðswÞdFðwÞ;
Z 1

0

dFðwÞ ¼ 1;

where F is non decreasing.

Thus, for all s,

qðsÞ� inf
w� 0

KmðwÞ;

in particular:

m ¼2; qðsÞ� inf
w� 0

J0ðwÞ � �0:403;

m ¼3; qðsÞ� inf
w� 0

sinðwÞ
w

� �0:218;

since K1 ¼ expð�w2Þ; qðsÞ[ inf K1ðwÞ; hence

qðsÞ[ 0; for m ¼ 1:

According to this last result, as supported by (9), any

isotropic covariance function which belongs to U1 cannot

ever be negative.

3.2 The Whittle–Matern class

Gneiting and Guttorp (2006) have provided an interesting

historical review on this family of covariance functions; the

same authors documented its relationship to the Hankel

transform.

The Whittle-Matern class of continuous and isotropic

covariance functions encloses several models and it is often

utilized because of its adaptability: for example, it has been

widely used in modeling several case studies, such as sea

beam data, wind speed, field temperature and soil data, due

to its great flexibility to model behaviors of correlation

structures in proximity of the origin. This class contains

just positive covariances, hence these models cannot be

used in applications where negative covariances are

required, such as turbulences and environmental processes.

In particular, this class of models includes a parameter

which controls the degree of differentiability for the ran-

dom function and encloses the gaussian and exponential

models as special cases.

The Whittle- Matern class of covariances is provided by

the following expression:

CðkskÞ ¼ A
�
kksk

�m
KmðkkskÞ; ð10Þ

where Km is the modified Bessel function of second kind,

ksk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

s2i

s
; k[ 0 is a scale parameter and m is a

parameter which controls the smoothness of the random

function.

The s.d. is given by the Fourier transform of C:

f ðxÞ ¼ A
2ðm�1Þ

ðpÞm=2
Cðmþ m=2Þk2m

ðx2 þ k2Þmþm=2
:

The Whittle-Matern class becomes especially simple when

m ¼ nþ 1=2; n 2 N. In this case the covariance function is

the product of an exponential with a polynomial of order n

(Hristopulos 2020). Starting from the result that a function

C is a completely monotonic function if and only if CðkskÞ
is positive definite on Rm for all m, Berg et al. (2008)

performed an interesting analysis on Dagum family of

isotropic correlation functions.
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3.3 Sums, products and limits of covariance
functions

In many geostatistical case studies, nested correlation

models are often utilized: the same nested models are

obtained through linear combinations, with positive

weights, of standard covariances, such as gaussian, expo-

nential and rational. As a consequence, the resulting model

is characterized by the same main features of one of the

basic models, as can be easily illustrated hereafter.

Corollary 1 Let Cj; j ¼ 1; . . .; n be continuous and non

negative isotropic covariance functions defined in

Rm;m� 3; suppose that each Ci; i ¼ 1; . . .; n is differen-

tiable and a decreasing function in �0; a½; a[ 0 and there

exists i 2 N; such that lim
x!0þ

C0
iðxÞ\0; let:

CSðxÞ ¼
Xn
j¼1

kjCjðxÞ;

CPðxÞ ¼
Yn
j¼1

CjðxÞ; kj [ 0; j ¼ 1; . . .; n;

ð11Þ

then:

CSðxÞ� 0; 8x 2 R; and lim
x!0þ

C0
SðxÞ\0;

CPðxÞ� 0; 8x 2 R and lim
x!0þ

C0
PðxÞ\0:

Proof It follows by applying the standard rules on

derivatives. h

Corollary 2 Let Ck; k 2 N; be continuous and positive

isotropic covariance functions defined in Rm;m� 3, then

CðxÞ ¼ lim
k!1

CkðxÞ ð12Þ

is a positive and isotropic covariance function in Rm,

provided that the limit exists.

Proof It follows from the sign permanence theorem.

Taking into account the previous results, the following

concerns can be derived.

• According to Corollary 1, in a linear combination of

ðn� 1Þ gaussian covariance models with just one

exponential model with positive coefficients or their

product, the behaviour near the origin depends only on

the exponential model, hence the same behaviour near

the origin cannot ever be parabolic, i.e. it does not

depend from the ðn� 1Þ gaussian models. On the other

hand, in order to obtain a parabolic behaviour near the

origin utilizing the standard properties of the set of the

covariance functions, it is necessary that all models

present the same parabolic behaviour near the origin.

• Utilizing the classical properties of covariance func-

tions described in Sect. 2 and Corollaries 1 and 2, it can

be deduced that it is not possible to construct flexible

models able to disclose different behaviours in prox-

imity of the origin or covariance models which can be

positive or negative according to peculiar values of

their parameters.

On the other hand, it is relevant to point out that it is

possible to construct three-parameter isotropic covari-

ance functions which take negative values for a specific

range of values of one parameter (rigidity coefficient),

as it has been shown for the so-called Spartan

covariance functions (Hristopulos and Elogne 2007).

In addition, the Spartan covariance functions for values

of the rigidity parameter greater than 2 are expressed as

the difference between two functions (Hristopulos

2015).

• As already pointed out, although the Whittle-Matern

class of covariance functions includes a parameter

which controls the degree of differentiability of the

random function, the same class contains exclusively

non negative covariance functions; hence, the Whittle-

Matern class of covariance functions cannot be used to

model negative correlations.

• It has been underlined that utilizing equations (11) and

(12) or the well known properties described and

considering standard covariance models (exponential,

gaussian, rational) it is not possible to generate

covariances which can assume negative values.

Yaglom (1987) presented oscillatory covariance

functions utilizing some Bessel functions. Linear com-

binations of covariance functions with some negative

coefficients can be found in Gregori et al. (2008) and in

Ma (2005).

• In order to model covariance structures which present

negative values or damped oscillations, hole effects

models, such as the cosine covariance and covariance

functions resulting from the product of standard posi-

tive models with a cosine function, are very often

utilized. These correlation models are able to describe

empirical processes which change their signs several

times, such as the fading of radio signals received by

radar. It is well known that the cosine covariance model

is valid only in R, moreover it is not strictly positive

definite (De Iaco and Posa 2018), hence it presents very

often severe limitations for modelling purposes. Some-

times, the cosine model is often combined with the

exponential model, as specifed hereafter:

CðsÞ ¼ exp

�
� jsj

a1

�
cos

�
s

a2

�
; s 2 R:

This model can be extended to an isotropic model in

Rm, under a condition on the parameters: in particular,
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the previous model is a covariance in R2 if and only if

a2 � a1 and a covariance in R3 if and only if a2 � a1
ffiffiffi
3

p

(Yaglom 1987).

• Among the hole effect covariance models, it is

suitable to recall the cardinal sine model, which is

valid in R3, i.e.,

CðsÞ ¼
�
a

s

�
sin

�
s

a

�
:

However, all these classes of covariance functions are

not able to describe different structures modifying the

values of their parameters: this problem will be faced

and overcome in the next section.

h

4 Special classes of continuous covariance
functions

The general issue regarding the difference between

covariances has been recently analyzed (Posa 2021);

indeed, it can be considered a further property for the

whole class of covariance functions. This result, a natural

consequence of Bochner’s Theorem, is valid in the com-

plex field, i.e., for any covariance function as in (1).

In the present section some interesting results outcoming

from the difference between covariance functions will be

given: in particular, the resulting covariance models pre-

sent some relevant and interesting properties which are

often required in the applications. At this purpose, the

whole analysis will be performed in R;R2 and R3; the

families of covariance functions outcoming from the above

difference show a variety of behaviours such that they can

be easily utilized in several case studies. Indeed, the class

of models proposed hereafter, according to the values of

the parametrs on which the same class depends, could be

positive or negative in a subset of their domain; moreover,

the models could portray a linear or parabolic behaviour

near the origin. Covariance functions featured by negative

values in a subset of their field of definition have been used

in many applications as previously pointed out.

The dependence of a covariance function from a set of

parameters will be suitably underlined.

Theorem 2 (Posa 2021). Let Ck : R
m ! C; k ¼ 1; 2 be

covariance functions and consider

Cðx;KÞ ¼AC1ðx; aÞ � BC2ðx; bÞ;
x ¼ðx1; . . .; xmÞ 2 Rm;

ð13Þ

where a and b are vectors of parameters, A[ 0;B[ 0 and

K ¼ ðA;B; a; bÞ:

Suppose that the covariance functions Ck; k ¼ 1; 2, can

be expressed as in (2), i.e.,

C1ðx; aÞ ¼
Z
Rm

expðixTxÞf1ðx; aÞdx;

C2ðx; bÞ ¼
Z
Rm

expðixTxÞf2ðx; bÞdx;

with fiðx; �Þ � 0; 8x 2 Rm and

Z
Rm

fiðx; �Þdx\1; i ¼ 1; 2;

then

Cðx;KÞ ¼
Z
Rm

expðixTxÞðAf1ðx; aÞ � Bf2ðx; bÞÞdx

ð14Þ

is a covariance function if and only if 8x 2 Rm;

Af1ðx; aÞ � Bf2ðx; bÞ� 0;Z
Rm
ðAf1ðx; aÞ � Bf2ðx; bÞÞdx\þ1:

ð15Þ

Note that ðAf1 � Bf2Þ is integrable, since f1 and f2 are

integrable.

In the next subsections, some interesting outcomes of

Theorem 2, are given for the subset of the real covariances:

it will be shown how the difference between two covari-

ance functions, suitably chosen among the most utilized

models, i.e. gaussian, exponential and rational model, can

generate families of correlation structures which are

extremely advantageous to model a wide range of case

studies.

In the following, some examples for the difference

between isotropic covariance functions are given for the

Euclidean spaces R;R2 and R3; respectively. In particular,

equations (6), (7) and (8) can be utilized to obtain the s.d.

functions in R2 and R3, knowing the corresponding one

dimensional s.d. function.

4.1 Special classes of covariance functions in R

In the present Section flexible families of covariance

models will be constructed in R. These classes can be

extremely useful in one dimensional applications, such as

time series analysis.

Corollary 3 Given the following exponential covariance

functions:

C1ðx; aÞ ¼exp
�
� ajxj

�
;

C2ðx; bÞ ¼ exp
�
� bjxj

�
; x 2 R; a[ 0; b[ 0

then, the function defined hereafter
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123



Cðx;A;B; a; bÞ ¼A exp
�
� ajxj

�
� B exp

�
� bjxj

�
;

A[ 0;B[ 0;

ð16Þ

is a covariance function if and only if:

1\
b
a
� A

B
; or 1\

a
b
\

A

B
: ð17Þ

If 1\
b
a
\

A

B
or 1\

a
b
\

A

B
, then the covariance function (16)

always presents a linear behaviour near the the origin. If

1\
b
a
¼ A

B
, the covariance function (16) presents a para-

bolic behavior near the origin; moreover, if 1\
a
b
\

A

B
, the

covariance function (16) is always negative in a subset of

its field of definition. At last, if 1\
b
a
� A

B
, the covariance

function (16) cannot ever be negative.

Proof Note that (16) is a covariance if and only if the

corresponding Fourier transform,

f ðx;A;B; a; bÞ ¼ A

p
a

ðx2 þ a2Þ �
B

p
b

ðx2 þ b2Þ
; x 2 R;

is a s.d. function, i.e.,

A

p
a

ðx2 þ a2Þ �
B

p
b

ðx2 þ b2Þ
� 0; 8x 2 R; ð18Þ

and f is integrable; this last condition is satisfied because C1

and C2 are integrable; in particular, (18) is satisfied if:

ðx2 þ b2Þ
ðx2 þ a2Þ �

B

A

b
a
� 0; 8x 2 R:

The following cases can be analyzed with respect to the

values of the parameters a and b:

1. a[ b; the minimum value of the function: fðx; a; bÞ ¼

ðx2 þ b2Þ
ðx2 þ a2Þ is obtained for x	 ¼ 0; hence fð0; a; bÞ ¼

b2

a2
; then, (18) is a s.d. function if: 1\

a
b
\

A

B
:

In this case, the covariance (16) assumes negative

values if:

ða� bÞjxj[ ln

�
A

B

�
:

Moreover, the covariance function (16) always

presents a linear behaviour near the origin because:

lim
x!0þ

C0ðxÞ ¼ � aAþ bB\0;

lim
x!0�

C0ðxÞ ¼aA� bB[ 0:

2. a\b; in this case, fðx; a; bÞ ¼ ðx2 þ b2Þ
ðx2 þ a2Þ[ 1; 8x 2

R; then (18) is a s.d. function if:

1\
b
a
� A

B
: ð19Þ

Even in this case the covariance function (16) always

presents a linear behaviour near the origin because:

lim
x!0þ

C0ðxÞ ¼ � aAþ bB\0;

lim
x!0�

C0ðxÞ ¼aA� bB[ 0:

The covariance (16) should assume negative values if:

ðb� aÞjxj\ln

�
B

A

�
; however, because of (19),

B

A
\

a
b
\1; then, if a\b; the covariance function (16)

cannot ever be negative.

3. a\b;
B

A
¼ a

b
\1; i:e: aA ¼ bB:

In this peculiar case the covariance function (16)

always presents a parabolic behaviour near the origin

because: C0ð0Þ ¼ 0, moreover, the covariance function

cannot ever be negative.

Hence, he class of models defined in (16) is powerful

enough to be adapted to several situations with respect to

the classes of covariance functions as those described in the

previous section. h

Corollary 4 Given the following gaussian covariance

functions,

C1ðx; aÞ ¼ exp
�
� ax2

�
;

C2ðx; bÞ ¼ exp
�
� bx2

�
; x 2 R a[ 0; b[ 0;

then the function defined hereafter

Cðx;A;B; a; bÞ ¼ A exp
�
� ax2

�
� B exp

�
� bx2

�
;

x 2 R;A[ 0;B[ 0;
ð20Þ

is a covariance function, if and only if:

1\
a
b
\

�
A

B

�2

: ð21Þ

Moreover, the family of covariance functions (20) always

presents a parabolic behaviour near the origin and the same

family always assumes negative values in a subset of its

domain.

Proof Note that (20) is a covariance if and only if its

Fourier transform

f ðx;A;B; a; bÞ ¼Af1ðx; aÞ � Bf2ðx; bÞ; x 2 R;

where f1 and f2 are, respectively:
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f1ðx; aÞ ¼
1

2p

Z
R

exp
�
� ixx

�
exp

�
� ax2

�
dx

¼ 1

2
ffiffiffiffiffiffi
pa

p exp

�
�
�
x2

4a

��
;x 2 R;

and

f2ðx; bÞ ¼
1

2p

Z
R

exp
�
� ixx

�
exp

�
� bx2

�
dx

¼ 1

2
ffiffiffiffiffiffi
pb

p exp

�
�
�
x2

4b

��
;x 2 R;

is a s.d. function, i.e. it is integrable and

Af1ðx; aÞ � Bf2ðx;bÞ� 0; 8x 2 R:

Note that f is integrable, because f1 and f2 are integrable,

moreover this last inequality is satisfied if:

x2

4

�
1

b
� 1

a

�
[ ln

�
B

A

ffiffiffi
a
b

r �
; ð22Þ

then (22) is satisfied if a[ b and

B

A

ffiffiffi
a
b

r
\1 () a

b
\

�
A

B

�2

:

In this case the family of covariance functions (20)

always presents a parabolic behaviour near the origin;

moreover, the same family is always negative for all the

values x 2 R such that: ða� bÞx2 [ ln

�
A

B

�
: h

Corollary 5 Given the following covariance functions,

C1ðx; aÞ ¼
1

ðx2 þ a2Þ ; C2ðx; bÞ ¼
1

ðx2 þ b2Þ
;

x 2 R; a[ 0; b[ 0;

the function

Cðx; a; b;A;BÞ ¼ A

ðx2 þ a2Þ �
B

ðx2 þ b2Þ
;

A[ 0;B[ 0;

ð23Þ

is a covariance function if and only if:

b[ a and
B

A
\

b
a
: ð24Þ

The parametric family (23) presents a parabolic behaviour

in proximity of the origin; moreover, it is always positive

if:
B

A
\1\

b
a
and assumes negative values if: 1\

B

A
\

b
a
:

Proof Note that (23) is a covariance if and only if its

Fourier transform:

f ðx;A;B; a; bÞ ¼ A

2a
exp

�
� ajxj

�
� B

2b
exp

�
� bjxj

�
;

x 2 R;

ð25Þ

is a s.d. function, i.e., it is integrable and

A

2a
exp

�
� ajxj

�
� B

2b
exp

�
� bjxj

�
� 0; x 2 R:

The s.d. is a difference of integrable functions, hence it is

integrable; in particular, the previous inequality is satisfied

if: b[ a; and
B

A
\

b
a
: h

The parametric family (23) always presents a parabolic

behaviour near the origin because C0ð0Þ ¼ 0 and it assumes

just positive values if:

x2ðA� BÞ[Ba2 � Ab2; 8x 2 R:

This last inequality is always satisfied if
B

A
\1\

b
a
. At last,

the parametric family (23) can assume negative values if:

x2ðB� AÞ[Ab2 � Ba2; x 2 R:

This last inequality is always verified if: 1\
B

A
\

b
a
:

All the results of this section are summarized in Table 1.

Corollary 6 Let CðxÞ ¼ A � expð�jxjÞ þ B � expð�x2Þ;
A[ 0;B[ 0; be a covariance function in R. Then C

presents a linear behaviour near the origin and an inflec-

tion point in x0 2�0;1½, i.e. C00ðx0Þ ¼ 0; if A� 2B\0.

Proof Suppose that A� 2B\0; note that:

lim
x!0þ

C0ðxÞ ¼ lim
x!0þ

½�A expð�xÞ � 2Bx expð�x2Þ� ¼ �A\0;

moreover, C00ðxÞ ¼ A � expð�xÞ þ 2B � expð�x2Þð2x2 � 1Þ;
then

lim
x!0þ

C00ðxÞ ¼ A� 2B\0; C00ð1Þ ¼ ðAþ 2BÞ
e

[ 0:

However, C00 is a continuous function for x 2�0;1½, then
there exists x0 2�0; 1½ such that C00ðx0Þ ¼ 0. h

The importance of Corollary 6 is related to the fact that

a linear combination of a gaussian model with an expo-

nential model can generate a model with a change of

concavity, which could be useful in some applications. The

behaviour underlined by Corollary 6 (Fig. 1) is atypical,

because for covariance functions, characterized by a linear

behaviour in proximity of the origin, the concavity is very

often upwards near the origin, whereas for the covariance

function of Corollary 6 the concavity is downwards near

the origin, i.e. the same behaviour typical of the covariance
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functions with a parabolic behaviour in proximity of the

origin.

4.2 Special classes of isotropic covariance
functions in R2

In this section, the difference between isotropic covariance

functions has been considered in the Euclidean spaces R2.

In particular, the same models of the previous section will

be considered.

Given the one dimensional covariance functions C1ðxÞ
and C2ðxÞ and the corresponding s.d. functions f1ðxÞ and

f2ðxÞ, using equation (8), the s.d. functions f1ðxÞ and f2ðxÞ
in R2 can be obtained and they will be utilized in the

following results.

Corollary 7 Given the following exponential covariance

functions:

C1ðx; aÞ ¼exp
�
� ajxj

�
;C2ðx; bÞ ¼ exp

�
� bjxj

�
;

x ¼ðx1; x2Þ; jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
X2
i¼1

x2i

vuut ; a[ 0; b[ 0

then, the function defined hereafter

Cðx;A;B; a; bÞ ¼ A exp
�
� ajxj

�
� B exp

�
� bjxj

�
;

A[ 0;B[ 0;
ð26Þ

is a covariance function if and only if:

1\
b
a
� A

B
or 1\

a
b
\

ffiffiffi
A

B

r
: ð27Þ

If: 1\
b
a
\

A

B
or 1\

a
b
\

ffiffiffi
A

B

r
the covariance func-

tion (26) presents a linear behaviour near the origin; the

same covariance function presents a parabolic behaviour

near the orign if: 1\
b
a
¼ A

B
: Moreover, if

1\
b
a
� A

B
; the covariance function (26) cannot ever

be negative; otherwise, if: 1\
a
b
\

ffiffiffi
A

B

r
, the covariance

function (26) assumes negative values in a subset of its

domain.

Proof Note that (26) is a covariance if and only if its

Fourier transform:

Table 1 Summary of the results

in Sect. 4.1, where the

Euclidean space is R

Cðx;A;B; a;bÞ ¼ Ae�ajxj � Be�bjxj Ae�ax2 � Be�bx2 A

ðx2 þ a2Þ �
B

ðx2 þ b2Þ

C is a covariance
1\

b
a
� A

B
, or 1\

a
b
\

�
A

B

�2

b[ a and
B

A
\

b
a

function ()
1\

a
b
\

A

B

Linear behaviour
1\

b
a
\

A

B
; or

near the origin
1\

a
b
\

A

B

Parabolic behaviour
1\

b
a
¼ A

B
; 1\

a
b
\

�
A

B

�2

b[ a and
B

A
\

b
a

near the origin

CðxÞ[ 0;8x 2 R
1\

b
a
� A

B

B

A
\1\

b
a

CðxÞ\0 in a
1\

a
b
\

A

B 1\
a
b
\

�
A

B

�2

1\
B

A
\

b
a

subset of R

Fig. 1 Linear behaviour near the origin for the sum of an exponential

with a gaussian model. The concavity near the origin is upwards if

A� 2B[ 0, downwards if A� 2B� 0
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f ðx;A;B; a; bÞ ¼ Aa

2pðx2 þ a2Þ3=2
� Bb

2pðx2 þ b2Þ3=2
;

where a[ 0; b[ 0; x ¼ ðx1;x2Þ and x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
i¼1

x2
i

vuut ;

is a s.d. function, i. e.,

Aa

2pðx2 þ a2Þ3=2
� Bb

2pðx2 þ b2Þ3=2
� 0; 8x 2 R; ð28Þ

in particular, (28) is satisfied if:

�
x2 þ b2

x2 þ a2

�3=2

� B

A

b
a
� 0; 8x 2 R:

If a\b, then (28) is verified if: 1\
b
a
� A

B
; if:

1\
b
a
\

A

B
; the covariance function (26) always presents a

linear behaviour near the origin because:

lim
x!0þ

C0ðxÞ ¼ � aAþ bB\0;

lim
x!0�

C0ðxÞ ¼aA� bB[ 0:

Otherwise, if: 1\
b
a
¼ A

B
, the covariance function pre-

sents a parabolic behaviour near the origin because:

lim
x!0þ

C0ðxÞ ¼ lim
x!0�

C0ðxÞ ¼ 0:

The covariance (26) should be negative if: ðb�

aÞjxj\ln

�
B

A

�
; however,

B

A
\

a
b
\1; then if a\b; the

covariance function (26) cannot ever be negative.

On the other side, if a[ b, then (28) is verified if:

1\
a
b
\

ffiffiffi
A

B

r
:

In this case, it is easy to check that the covariance

function (26) is negative for all the values x 2 R which

satisfy: ða� bÞjxj[ ln

�
A

B

�
:

Moreover, in this case the covariance function (26)

always presents a linear behaviour near the origin because:

lim
x!0þ

C0ðxÞ ¼�aAþbB\0; lim
x!0�

C0ðxÞ ¼ aA�bB[0:

h

Corollary 8 Given the following gaussian covariance

functions:

C1ðx; aÞ ¼exp
�
� ax2

�
;C2ðx; bÞ ¼ exp

�
� bx2

�
;

x ¼ðx1; x2Þ; jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
X2
i¼1

x2i

vuut ; a[ 0; b[ 0;

then, the function defined hereafter

Cðx;A;B; a; bÞ ¼ A exp
�
� ax2

�
� B exp

�
� bx2

�
;

A[ 0;B[ 0;
ð29Þ

is a covariance function if and only if:

1\
a
b
\

A

B
: ð30Þ

The covariance function (29) always presents a parabolic

behaviour near the origin; moreover, the same covariance

function is always negative in a subset of its domain.

Proof Note that (29) is a covariance function if and only if

its Fourier transform:

Af1ðx; aÞ � Bf2ðx; bÞ ¼

¼ A

4pa
exp

�
�
�
x2

4a

��
� B

4pb
exp

�
�
�
x2

4b

��
; x 2 R;

where:

f1ðx; aÞ ¼
1

4pa
exp

�
�
�
x2

4a

��
;

f2ðx; bÞ ¼
1

4pb
exp

�
�
�
x2

4b

��
;

ð31Þ

a[ 0; b[ 0; x ¼ ðx1;x2Þ and x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
i¼1

x2
i

vuut ; is a s.

d. function, i.e., it is integrable and:

A

4pa
exp

�
�
�
x2

4a

��
� B

4pb
exp

�
�
�
x2

4b

��
� 0; x 2 R:

The s. d. is integrable, because it is a difference of inte-

grable functions; moreover, the last inequality is verified if:

x2

4

�
1

b
� 1

a

�
[ ln

�
B

A

a
b

�
; ð32Þ

then, (32) is always satisfied if a[ b and
B

A

a
b
\1; i.e.,

1\
a
b
\

A

B
:

The covariance function (29) always presents a para-

bolic behaviour near the origin because C0ð0Þ ¼ 0 and it is

always negative, in a subset of its domain, because there

always exist x[ 0 such that the following inequality

ða� bÞx2 [ ln

�
A

B

�
;
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is satisfied. h

Corollary 9 Given the following covariance functions,

C1ðx; aÞ ¼
1

ðx2 þ a2Þ3=2
;C2ðx; bÞ ¼

1

ðx2 þ b2Þ3=2
;

x ¼ðx1; x2Þ; jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
X2
i¼1

x2i

vuut ; a[ 0; b[ 0

the function

Cðx;A;B; a; bÞ ¼ A

ðx2 þ a2Þ3=2
� B

ðx2 þ b2Þ3=2
;

A[ 0;B[ 0;

ð33Þ

is a covariance if and only if:

b[ a and
B

A
\

b
a
: ð34Þ

The parametric family (23) presents a parabolic behaviour

near the origin; moreover, it assumes just positive values if:

B

A
\1\

b
a
and negative values if: 1\

B

A
\

b
a
:

Proof Starting from equation (6), the s.d. function f1 for

the covariance C1 is the following:

f1ðxÞ ¼
1

2p

Z 1

0

J0ðxxÞxC1ðxÞdx

¼ 1

2p

Z 1

0

J0ðxxÞx
1

ðx2 þ a2Þ3=2
dx ¼

¼ 1

2pa
expð�ajxjÞ; x ¼ ðx1;x2Þ x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
i¼1

x2
i

vuut :

Similarly, f2ðxÞ ¼
1

2pb
expð�bjxjÞ:

Note that (33) is a covariance if and only if its Fourier

transform:

f ðx;A;B; a; bÞ ¼ A

2pa
exp

�
� ajxj

�
� B

2pb
exp

�
� bjxj

�
;

x 2 R;

ð35Þ

is a s.d. function, i.e., it is integrable and
A

a
exp

�
� ajxj

�
� B

b
exp

�
� bjxj

�
� 0; x 2 R:

The s.d. (35) is integrable since it is a difference of

functions which are integrable; in particular, the previous

inequality is verified if: b[ a; and
B

A
\

b
a
:

The parametric family (33) always presents a parabolic

behaviour near the origin because C0ð0Þ ¼ 0 and is always

positive if:
ðx2 þ b2Þ3=2

ðx2 þ a2Þ3=2
[

B

A
; 8x 2 R:

This last inequality is always satisfied if
B

A
\1\

b
a
. At

last, the parametric family (33) presents negative value if:

ðx2 þ b2Þ
ðx2 þ a2Þ\

�
B

A

�2=3

; which is always verified if:

1\
B

A
\

b
a
:

All the results of this section are summarized in

Table 2. h

4.3 Special classes of isotropic covariance
functions in R3

In this section, the difference between isotropic covari-

ances has been considered in the Euclidean spaces R3. In

particular, the same models of the previous section will be

considered.

Given the one dimensional covariance functions C1ðxÞ
and C2ðxÞ and the corresponding s.d. f1ðxÞ and f2ðxÞ,
recalling equation (8), the s.d. f1ðxÞ and f2ðxÞ in R3 can be

obtained and they will be utilized in the following results.

Corollary 10 Given the following exponential covariance

functions:

C1ðx; aÞ ¼exp
�
� ajxj

�
; x ¼ ðx1; x2; x3Þ;

jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
X3
i¼1

x2i

vuut ; a[ 0;

and

C2ðx; bÞ ¼ exp
�
� bjxj

�
; x ¼ ðx1; x2; x3Þ;

jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
X3
i¼1

x2i

vuut ; b[ 0;

then, the function defined hereafter

Cðx;A;B; a; bÞ ¼ A exp
�
� ajxj

�
� B exp

�
� bjxj

�
;

A[ 0;B[ 0;
ð36Þ

is a covariance function if and only if

1\
b
a
� A

B
or 1\

a
b
\

�
A

B

�1=3

: ð37Þ
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If: 1\
b
a
\

A

B
or 1\

a
b
\

�
A

B

�1=3

the covariance

function (36) presents a linear behaviour near the origin;

the same covariance function presents a parabolic beha-

viour near the orign if: 1\
b
a
¼ A

B
: Moreover, if

1\
b
a
� A

B
; the covariance function (36) cannot ever

be negative; otherwise, if: 1\
a
b
\

�
A

B

�1=3

, the

covariance function (36) is always negative in a subset of

its domain.

Proof Note that (36) is a covariance if and only if its

Fourier transform:

f ðx;A;B; a; bÞ ¼ Af1ðx; aÞ � Bf2ðx; bÞ;

where

f1ðx; aÞ ¼
a

p2ðx2 þ a2Þ2
; f2ðx; bÞ ¼

b

p2ðx2 þ b2Þ2
;

x ¼ ðx1;x2;x3Þ;x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3
i¼1

x2
i

vuut ; is a s.d. function, i.e., it

is integrable and

Aa

p2ðx2 þ a2Þ2
� Bb

p2ðx2 þ b2Þ2
� 0; 8x 2 R; ð38Þ

in particular, f is integrable, because f1 and f2 are inte-

grable; moreover (38) is satisfied if:

�
x2 þ b2

x2 þ a2

�2

� B

A

b
a
� 0; 8x 2 R:

If a\b, (38) is verified if: 1\
b
a
� A

B
; if a[ b, (38) is

verified if: 1\
a
b
\

�
A

B

�1=3

: h

In particular, if 1\
b
a
\

A

B
the covariance function

(36) always presents a linear behaviour near the origin

because:

lim
x!0þ

C0ðxÞ ¼ �aAþ bB\0; lim
x!0�

C0ðxÞ ¼ aA� bB[ 0:

Otherwise, if 1\
b
a
¼ A

B
, the covariance function

presents a parabolic behaviour near the origin because:

lim
x!0þ

C0ðxÞ ¼ lim
x!0�

C0ðxÞ ¼ 0:

The covariance function (36) should assume negative

values if: ðb� aÞjxj\ln

�
B

A

�
; however,

B

A
\

a
b
\1; then if

a\b; the covariance function (36) cannot ever be negative.

If a[ b, then (38) is verified if: 1\
a
b
\

�
A

B

�1=3

: In

this case, it is easy to verify that the covariance function

(36) is negative for all the values x 2 R such that:

ða� bÞjxj[ ln

�
A

B

�
:

Moreover, the covariance function (36) always presents

a linear behaviour near the origin because:

lim
x!0þ

C0ðxÞ ¼ �aAþ bB\0; lim
x!0�

C0ðxÞ ¼ aA� bB[ 0:

Table 2 Summary of the results

in Sect. 4.2, where the

Euclidean space is R2

Cðx;A;B; a;bÞ ¼ Ae�ajxj � Be�bjxj Ae�ax2 � Be�bx2 A

ðx2 þ a2Þ3=2
� B

ðx2 þ b2Þ3=2

C is a covariance
1\

b
a
� A

B
, or 1\

a
b
\

A

B
b[ a and

B

A
\
b
a

function ()
1\

a
b
\

ffiffiffi
A

B

r

Linear behaviour
1\

b
a
\

A

B
; or

near the origin
1\

a
b
\

ffiffiffi
A

B

r

Parabolic behaviour
1\

b
a
¼ A

B
; 1\

a
b
\

A

B
b[ a and

B

A
\
b
a

near the origin

CðxÞ[ 0;8x 2 R
1\

b
a
� A

B

B

A
\1\

b
a

CðxÞ\0 in a
1\

a
b
\

ffiffiffi
A

B

r
1\

a
b
\

A

B
1\

B

A
\

b
a

subset of R
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Corollary 11 Given the following gaussian covariance

functions:

C1ðx; aÞ ¼exp
�
� ax2

�
;C2ðx; bÞ ¼ exp

�
� bx2

�
;

x ¼ðx1; x2; x3Þ; jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
X3
i¼1

x2i

vuut ; a[ 0; b[ 0;

the function defined hereafter

Cðx;A;B; a; bÞ ¼ A exp
�
� ax2

�
� B exp

�
� bx2

�
; A[ 0;B[ 0;

ð39Þ

is a covariance function if and only if:

1\
a
b
\

�
A

B

�2=3

: ð40Þ

The covariance function (39) always presents a parabolic

behaviour near the origin; moreover, the same covariance

function is always negative in a subset of its domain.

Proof Note that (39) is a covariance if and only if its

Fourier transform:

f ðx;A;B; a; bÞ ¼ Af1ðx; aÞ � Bf2ðx; bÞ;

where

f1ðx; aÞ ¼
1

8ðpaÞ3=2
exp

�
�
�
x2

4a

��
;

f2ðx; bÞ ¼
1

8ðpbÞ3=2
exp

�
�
�
x2

4b

��
;

ð41Þ

x ¼ ðx1;x2;x3Þ;x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3
i¼1

x2
i

vuut ; is a s.d. function, i.e., it

is integrable and

Af1ðx; aÞ � Bf2ðxbÞ ¼

¼ A

8ðpaÞ3=2
exp

�
�
�
x2

4a

��
� B

8ðpbÞ3=2
exp

�
�
�
x2

4b

��
� 0;

8x 2 R;

In particular, f is integrable, because f1 and f2 are inte-

grable; moreover, the last inequality is verified if:

1\
a
b
\

�
A

B

�2=3

: ð42Þ

The covariance (39) always presents a parabolic behaviour

near the origin because C0ð0Þ ¼ 0 and it is always negative

because the following inequality: ða� bÞx2 [ ln

�
A

B

�
; is

always satisfied in a subset of its domain. h

Corollary 12 Given the following covariance functions,

C1ðx; aÞ ¼
1

ðx2 þ a2Þ2
; x ¼ ðx1; x2; x3Þ;

jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
X3
i¼1

x2i

vuut ; a[ 0;

C2ðx; bÞ ¼
1

ðx2 þ b2Þ2
; x ¼ ðx1; x2; x3Þ;

jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
X3
i¼1

x2i

vuut ; b[ 0;

the function

Cðx;A;B; a; bÞ ¼ A

ðx2 þ a2Þ2
� B

ðx2 þ b2Þ2
;

A[ 0;B[ 0;

ð43Þ

is a covariance function if and only if:

b[ a and
B

A
\

b
a
: ð44Þ

The parametric family (43) presents a parabolic behaviour

near the origin; moreover, it is always positive if:
B

A
\1\

b
a

and can assume negative values if: 1\
B

A
\

b
a
:

Proof Starting from equation (7), the s.d. function f1; for

the covariance C1 is the following:

f1ðxÞ ¼
1

2p

Z 1

0

sinðxxÞ
xx

x2C1ðxÞdx

¼ 1

2p

Z 1

0

sinðxxÞ
xx

x2
1

ðx2 þ a2Þ2
dx ¼

¼ 1

8pa
expð�ajxjÞ; x ¼ ðx1;x2;x3Þ

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3
i¼1

x2
i

vuut :

Similarly, f2ðxÞ ¼
1

8pb
expð�bjxjÞ:

Note that (43) is a covariance if and only if its Fourier

transform:

f ðx;A;B; a; bÞ ¼ A

8pa
exp

�
� ajxj

�
� B

8pb
exp

�
� bjxj

�
;

x 2 R;

ð45Þ

is a s.d. function, i.e., it is integrable and
A

a
exp

�
� ajxj

�
�

B

b
exp

�
� bjxj

�
� 0; x 2 R: The s.d. (45) is integrable

since it is the difference of integrable functions; in
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particular, the previous inequality is verified if: b[ a; and
B

A
\

b
a
: h

The parametric family (43) always presents a parabolic

behaviour near the origin because C0ð0Þ ¼ 0 and it is

always positive if:
ðx2 þ b2Þ2

ðx2 þ a2Þ2
[

B

A
; 8x 2 R:

This last inequality is always satisfied if
B

A
\1\

b
a
. At

last, the parametric family (43) can assume negative values

if:
ðx2 þ b2Þ
ðx2 þ a2Þ\

�
B

A

�1=2

: This last inequality is always

satisfied if: 1\
B

A
\

�
b
a

�4

:

All the results of this section are summarized in Table 3.

5 Interpretation and representation
of the results

In this section the previous results will be properly ana-

lyzed and a useful representation will be given. According

to the results of the Corollaries proved in the previous

subsections, as a first, significant and relevant general

result it comes out that all the main characteristics exhib-

ited by the families of covariance models are the same

regardless of the dimension of the Euclidean space. For

example, this is perfectly justified looking at inequalities

(17), (27) and (37), regarding the difference between two

exponential models: the order relations among the ratio of

the parameters is preserved in R, in R2 and in R3 except for

the exponential factor related to the dimension of the

Euclidean space. For this reason, the results presented

hereafter have been given by arbitrarily choosing the three

Euclidean spaces, R;R2 and R3, respectively.

5.1 Difference of exponential models

On the basis of Corollary 3, the family of covariance

functions (16) in R is extremely flexible to describe several

behaviours of correlation structures: infact, this class,

according to the values of the parameters, can assume a

linear behaviour in proximity of the origin if
B

A
\

b
a
\1 or

B

A
\

a
b
\1, as well as a parabolic behaviour in proximity of

the origin if
B

A
¼ a

b
\1; moreover, the same class is always

positive if
B

A
� a

b
\1; on the other side, it assumes nega-

tive values if
B

A
\

b
a
\1: In this last case the point of

intersection x0 with the x axis is given hereafter:

x0 ¼
1

a� b
log

A

B
: ð46Þ

Moreover, the same family presents a minimum value xm
for x[ 0 given by the following expression:

Table 3 Summary of the results

in Sect. 4.3, where the

Euclidean space is R3

Cðx;A;B; a;bÞ ¼ Ae�ajxj � Be�bjxj Ae�ax2 � Be�bx2 A

ðx2 þ a2Þ2
� B

ðx2 þ b2Þ2

C is a covariance
1\

b
a
� A

B
, or 1\

a
b
\
�
A

B

�2=3
b[ a and

B

A
\

b
a

function ()
1\

a
b
\

�
A

B

�1=3

Linear behaviour
1\

b
a
\

A

B
; or

near the origin
1\

a
b
\

�
A

B

�1=3

Parabolic behaviour
1\

b
a
¼ A

B
; 1\

a
b
\
�
A

B

�2=3
b[ a and

B

A
\

b
a

near the origin

CðxÞ[ 0;8x 2 R
1\

b
a
� A

B

B

A
\1\

b
a

CðxÞ\0 in a
1\

a
b
\

�
A

B

�1=3

1\
a
b
\
�
A

B

�2=3
1\

B

A
\

b
a

subset of R
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xm ¼ 1

a� b
log

aA
bB

: ð47Þ

If the family of covariances is always positive, i.e.

B

A
� a

b
\1, there exists an inflection point xF ¼

1

b� a
ln
b2B
a2A

if
b2B
a2A

[ 1; hence, from the sign of the

second derivative, if 1\

ffiffiffi
A

B

r
\

b
a
\

A

B
the concavity is

downwards for 0\x\xF , otherwise if 1\
b
a
\

ffiffiffi
A

B

r
the

concavity is always upwards, as a consequence, in this last

case the inflection point does not exist.

In particular, if
B

A
¼ a

b
\1, the family of covariances

presents a parabolic behaviour in proximity of the origin; in

this case the inflection point xF ¼ 1

b� a
ln
b
a
; as a conse-

quence, the practical range (Journel and Huijbregts 1981;

Chilès and Delfiner 1999) decreases as a ! b. The prac-

tical range is usually defined in terms of the variogram

function. For second order stationary random fields, in

terms of the covariance function, equivalently the practical

range xR is the value such that CðxRÞ ¼ 0:05Cð0Þ.
In Fig. 2a) it is shown the behaviour concerning the

difference between two exponential covariances in R when

B

A
\

b
a
\1 by fixing Cð0Þ ¼ 1 with A ¼ 2;B ¼ 1; a ¼ 2, by

varying the values of the parameter b, such that 1\
a
b
\2.

According to (47), xm ¼ 1

a� b
ln
2a
b

and CðxmÞ ¼
1
k � 1

ð2kÞ
1

k�1

,

with k ¼ a
b
. Hence, as k ! 2, the value of CðxmÞ becomes

more and more negative. Similarly, the intersection point

x0 ¼
ln 2

a� b
with the x axis (x[ 0) becomes always greater

as b ! a:
In Fig. 2b) it is shown the behaviour concerning the

difference between two exponential covariances in R when

B

A
\

b
a
\1 by fixing the values of the parameters a and b,

such that
a
b
¼ 2, with a ¼ 2; b ¼ 1, by fixing Cð0Þ ¼ 1 and

by varying A and B such that A� B ¼ 1. According to

(47), xm ¼ ln
2A

B
, with CðxmÞ ¼

�B2

4A
: Hence, as B increa-

ses the value of CðxmÞ becomes more and more negative.

Similarly, the intersection point x0 ¼ ln
A

B
with the x axis

(x[ 0) becomes always greater as B decreases.

In Fig. 3a) it is shown the behaviour concerning the

difference between two exponential covariances in R when
B

A
¼ a

b
\1, by fixing A� B ¼ 1. As pointed out, this class

of covariances, according to the previous values of

parameters, presents a parabolic behaviour in proximity of

the origin and it is always positive. As the ratio
b
a
increases,

the practical range increases.

In Fig. 3b) it is shown the behaviour concerning the

difference between two exponential covariances in R when

1\
b
a
\

A

B
by fixing Cð0Þ ¼ 1 with A ¼ 2;B ¼ 1, by

varying the values of the parameters a and b, such that

1\
b
a
\2. As pointed out, in this case the family of

covariances is always positive. It is easy to show that as
b
a

becomes closer to 2 the practical range increases.

Note that the two solid lines in Fig. 3b) satisfy the

condition 1\
b
a
\

ffiffiffi
A

B

r
, hence the concavity is always

(b)(a)

Fig. 2 Difference between

exponential covariances when
B

A
\

b
a
\1: (a) by fixing

Cð0Þ ¼ 1;A ¼ 2;B ¼ 1; a ¼ 2,

for different values of b; (b) by
fixing Cð0Þ ¼ 1; a ¼ 2; b ¼ 1;
for different values of A and B,
such that A� B ¼ 1
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upwards, as a consequence, in this case the inflection point

does not exist; on the other hand, the dash and dash-dot

lines satisfy the condition

ffiffiffi
A

B

r
\

b
a
\

A

B
, hence the con-

cavity is downwards for 0\x\xF: these four lines present

a linear behaviour near the origin. From the same fig-

ure note that the dot line corresponds to the limit case

aA ¼ bB and the covariance presents a parabolic behaviour

near the origin.

5.2 Difference of Gaussian models in R2

On the basis of Corollary 8, the family of covariance

functions (29) in R2 is extremely flexible to describe some

peculiar behaviours of correlation structures: infact, this

class, according to the values of the parameters, i.e.

1\
a
b
\

A

B
, always assumes a parabolic behaviour in

proximity of the origin, moreover, the same class is always

negative in a subset of its domain. There always exists a

point of intersection x0 [ 0 with the x axis, given hereafter:

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a� b
log

A

B

s
: ð48Þ

Moreover, the same family presents a minimum value xm
for x[ 0 given by the following expression:

xm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a� b
log

aA
bB

s
: ð49Þ

Figure 4a shows the behaviour of the difference between

two gaussian covariances in R2 by fixing a ¼ 7; b ¼ 6 and

Cð0Þ ¼ 1 with
7

6
\

A

B
, by varying the values of the

parameters A and B, such that A� B ¼ 1. According to

(49), the minimum value xm of C is obtained for

xm ¼
ffiffiffiffiffiffiffiffiffiffi
ln
7A

6B

r
, with CðxmÞ ¼

�B

7

�
6Bþ 6

7B

�6

. Hence, as B

increases the value of CðxmÞ becomes more and more

negative. Similarly, the intersection point x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln
Bþ 1

B

r

with the x axis (x[ 0) becomes always greater as

B decreases.

5.3 Difference of rational models in R3

On the basis of Corollary 12, the family of covariance

functions (43) in R3 is extremely flexible to describe some

peculiar behaviours of correlation structures: infact, this

class, according to the values of the parameters, i.e. b[ a

and
B

A
\

b
a
, always assumes a parabolic behaviour in

proximity of the origin, moreover, it is always positive if

B

A
\1\

b
a
and assumes negative values if 1\

B

A
\

b
a
:

If the family of covariances is always positive, i.e.

B

A
\1\

b
a
, for a certain value of x, the following inequality:

A1

ðx2 þ a21Þ
2
� B1

ðx2 þ b21Þ
2
[

A2

ðx2 þ a22Þ
2
� B2

ðx2 þ b22Þ
2
;

is always verified if: A1 [A2; B1\B2; a21\a22;

b21 [ b22; or equivalently if:
A1

a21
[

A2

a22
;

B1

b21
\

B2

b22
:

In Fig. 4b) it is shown the behaviour concerning the

difference between two rational covariances in R3 when

B

A
\1\

b
a
by fixing Cð0Þ ¼ 1, i.e.

A

a4
� B

b4
¼ 1.

From the same Fig. 4b) it results that the practical range

increases by enhancing the value of
A

a2
together to reducing

the value of
B

b2
:

(a) (b)

Fig. 3 Difference between two

exponential covariances: (a)

when
B

A
¼ a

b
\1, by fixing

A� B ¼ 1; (b) when 1\
b
a
\

A

B
by fixing

Cð0Þ ¼ 1;A ¼ 2;B ¼ 1
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5.4 Some relevant remarks

Taking into account all the previous results, the following

relevant aspects can be derived.

• One of the most relevant consequences outcoming from

the results regarding the difference between parametric

covariances, consists in the extremely wide class of

scenarios which these peculiar classes of covariances

are able to describe. These aspects have been properly

detailed considering the differences between exponen-

tial, gaussian and rational covariance functions, respec-

tively. This kind of analysis has been carried out in

R;R2 and R3, which represent the usual domains

encountered in the applications.

• In particular, the difference between two exponential

covariances generates parametric families which are

capable to describe several behaviours: models which

are always positive, as well as models which are

characterized by negative values, in addition to models

which present a linear or a parabolic behaviour in

proximity of the origin. Moreover, according to the

values of parameters on which this family depends,

there could be an inflection point, such that the

concavity is downwards in proximity of the origin: this

last behaviour is atypical for covariance functions

characterized by a linear behaviour near the origin. The

unique models which cannot be described by this

parametric class regard the covariance functions char-

acterized by a parabolic behaviour near the origin and at

the same time assume negative values.

• According to this last aspect, the models constructed

through the difference between gaussian covariances

present a parabolic behaviour near the origin and at the

same time assume negative values, hence are able to

overcome the above limitation. Moreover, the models

outcoming from the difference between rational

covariances always present a parabolic behaviour near

the origin and at the same time, according to the values

of parameters on which they depend, are always

positive in the whole domain or can assume negative

values in a subset of their field of definition.

• As already pointed out, the traditional classes of

covariances, such as the Whittle-Matern class and the

several families constructed by applying the classical

properties, are characterized by several restrictions

which can be overcome by the new classes of covari-

ances constructed through the difference between some

simple covariance functions. These last parametric

families are characterized by very simple expressions

and can be adapted to most of the case studies: indeed,

they are also extremely simple to handle from a

computational point of view.

• A further relevant aspect regards the main characteris-

tics exhibited by the families of covariance models:

these features are the same regardless of the dimension

of the Euclidean space. For example, if a class of

covariances outcoming from the difference between

two exponential models presents a linear behaviour near

the origin in R for certain values of the parameters, the

same linear behaviour is preserved by the same class in

R2 and in R3 because the order relations among the

ratios of the parameters is retained, except for the

exponential factor related to the dimension of the

Euclidean space.

• Under the assumption of second order stationarity, all

the previous results can be given in terms of the

variogram function.

• The special classes of covariance functions exhibited in

this paper can enrich the classes of spatio-temporal

models usually utilized in the applications. Indeed,

most of these families of spatio-temporal covariance

models are positive (De Iaco et al. 2002a; Cressie and

(a) (b)

Fig. 4 (a) Difference between

two gaussian covariances by

fixing a ¼ 7;b ¼ 6 with
7

6
\

A

B
,

by varying the values of the

parameters A and B, such that

A� B ¼ 1; (b) difference
between two rational

covariances when
B

A
\1\

b
a
by

fixing Cð0Þ ¼ 1
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Huang 1999; De Iaco et al. 2002b; Gneiting 2002),

hence they cannot model negative correlation struc-

tures. Moreover, the same classes are not so flexible to

describe different behaviours by properly modifying the

values of their parameters.

However, it is relevant to underline that space-time

covariances have been constructed in two space

dimensions plus time based on the three-dimensional

Spartan covariance family and a composite space-time

metric (Varouchakis and Hristopulos 2019). These four-

parameter covariance models are flexible, allow for

negative values, and they have been shown to perform

quite competitively in a hydrological application.

• Regarding parameters estimation and modeling prob-

lems, as a starting point, it is necessary to compute the

sample covariance function bC for different lags

hi; i ¼ 1; . . .; nl, where nl is the number of lags. Hence,

a suitable class of covariance functions Cð�;HÞ, which
depends on a vector of parameters H, must be fitted to

the empirical covariance bC , as usually done. In

particular, the vector of parameters H can be estimated

through the non-linear weighted least squares technique

(Cressie and Wikle 2011), by minimizing the following

function:

WðHÞ ¼
Xnl
i¼1

	 bCðhiÞ � Cðhi;HÞ

2
wi;

where wi represents the weight of the i-th lag. These

weights are reasonably assumed to be equal to the

number of pairs related to the same lag. Note also that

the choice of an appropriate model can be supported by

analyzing the main properties (such as behaviour near

the origin) of the sample covariance (De Iaco and Posa

2013; De Iaco et al. 2021) and some statistical tests can

be used for this purpose (Cappello et al. 2018, 2020). It

is relevant to point out that that all the classes of

covariance models previously introduced are strictly

positive definite, because they all have been constructed

through a spectral density function (De Iaco and Posa

2018; De Iaco et al. 2011): this last property is partic-

ularly useful for interpolation problems because it

guarantees the invertibility of the kriging matrix.

6 Conclusions

In this paper, after summarizing some characteristics of

continuous covariance functions, starting from a recent

result concerning the difference between isotropic covari-

ance functions, special classes of isotropic covariance

models have been obtained: these new families of

covariances present flexible and interesting features with

respect to most of the classical families of isotropic

covariance models. Indeed, as it has been underlined

throughout the paper, the Whittle-Matern family and the

whole classes of models obtained by applying the usual

properties of the covariance functions, are not able to

describe peculiar correlation structures, such as covariance

models which present negative values, or more generally,

different behaviours which can be described by modifying

the parameters of a parametric family. Our analysis has

been devoted to isotropic covariances, because they can be

considered the starting blocks for building anisotropic and

non stationary models; moreover, these families of

covariances play an important role in many applied areas.

From a practical point of view, these new classes of iso-

tropic covariance models are characterized by an extremely

simple formalism and can be easily adapted to several case

studies.
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Gregori P, Porcu E, Mateu J, Sasvári Z (2008) On potentially negative

space time covariances obtained as sum of products of marginal

ones. Ann Inst Stat Math 60:865–882

Hristopulos DT (2015) Covariance functions motivated by spatial

random field models with local interactions. Stoch Environ Res

Risk Assess 29:739–754

Hristopulos DT (2020) Random fields for spatial data modeling. A

primer for scientists and engineers. Springer. Series in Advances

in Geographic Information Science

Hristopulos DT, Elogne SN (2007) Analytic properties and covari-

ance functions for a new class of generalized Gibbs random

fields. IEEE Trans Inf Theory 53(12):4667–4679

Journel AG, Huijbregts CJ (1981) Mining geostatistics. Academic

Press, London

Kamash KAM, Robson JD (1978) The applications of isotropy in road

surface modelling. J Sound Vib 57(1):89–100

Kolovos A, Christakos G, Hristopulos D, Serre M (2004) Methods for

generating non-separable spatiotemporal covariance models with

potential environmental applications. Adv Water Resour

27(8):815–830

Laga I, Kleiber W (2017) The modified Matern process. Stat

6(1):241–247

Levinson SJ, Beall JM, Powers EJ, Bengtson RD (1984) Space-time

statistics of the turbulence in a tokamak edge plasma. Nucl

Fusion 24:527–540

Longuet-Higgins MS (1957) Statistical properties of an isotropic

random surface. Philos Trans R Soc A250:157–174

Ma C (2002) Spatio-temporal covariance functions generated by

mixtures. Math Geol 34(8):965–975

Ma C (2005) Linear combinations of space-time covariance functions

and variograms. IEEE Trans Signal Process 53(3):857–864

Ma P, Bhadra A (2022) Beyond Matern: on a class of inter-

pretable confluent hypergeometric covariance functions. JASA

34(8):1–14

Matern B (1980) Spatial Variation. Lecture Notes in Statistics (2nd

ed). Springer Verlag, New York. 151 p. Vol 36. 1st ed 1960

published in Meddelanden fran Statens Skogsforskningsinstitute

Swed 49(5)

Polya G (1949) Remarks on characteristic functions. In: Proceedings

of the 4th Berkeley symposium on mathematical statistics and

probability. Univ. California Press, Berkeley, pp 115–123

Pomeroy JW, Toth B, Granger RJ, Hedstrom NR, Essery RLH (2003)

Variation in surface energetics during snowmelt in a subarctic

mountain catchment. J Hydrometeorol 4:702–719

Posa D (2021) Models for the difference of continuous covariance

functions. Stoch Environ Res Risk Assess 35:1369–1386

Schoenberg IJ (1938) Metric spaces and completely monotone

functions. Anal Math 39(4):811–841

Shkarofsky IP (1968) Generalized turbulence space-correlation and

wave-number spectrum-function pairs. Can J Phys

46:2133–2153

Stein ML (1999) Interpolation of spatial data. Springer Series in

Statistics, New York, p 247

Varouchakis E, Hristopulos D (2019) Comparison of spatiotemporal

variogram functions based on a sparse dataset of groundwater

level variations. Spatial Stat 34:100245

Vecchia AV (1988) Estimation and model identification for contin-

uous spatial processes. J R Stat Soc Ser B Stat Methodol

50(2):297–312

Xu ZW, Wu J, Wu ZS (2003a) Statistical temporal behaviour of pulse

wave propagation through continuous random media. Waves

Random Media 13:59–73

Xu ZW, Wu J, Huo WP, Wu ZS (2003b) Temporal skewness of

electromagnetic pulsed waves propagating through random

media with embedded irregularity slab. Chin Phys Lett

20:370–373

Yaglom AM (1957) Some classes of random fields in n-dimensional

space, related to stationary random processes. Probab Theory

Appl 2(3):292–337

Yaglom AM (1987) Correlation theory of stationary and related

random functions volume I: basic results. Springer, New York,

p 526

Yakhot V, Orszag SA, She ZS (1989) Space-time correlations in

turbulence—kinematical versus dynamical effects. Phys Fluids

1:184–186

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Stochastic Environmental Research and Risk Assessment (2023) 37:1615–1633 1633

123


	Special classes of isotropic covariance functions
	Abstract
	Introduction
	Continuous covariance functions
	Traditional classes of isotropic covariance models
	Isotropic covariance models
	The Whittle--Matern class
	Sums, products and limits of covariance functions

	Special classes of continuous covariance functions
	Special classes of covariance functions in {\mathbb {R}}
	Special classes of isotropic covariance functions in {\mathbb {R}}^2
	Special classes of isotropic covariance functions in {\mathbb {R}}^3

	Interpretation and representation of the results
	Difference of exponential models
	Difference of Gaussian models in {\mathbb {R}}^2
	Difference of rational models in {\mathbb {R}}^3
	Some relevant remarks

	Conclusions
	Funding
	References




