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Abstract
Understanding the response of a catchment is a crucial problem in hydrology, with a variety of practical and theoretical

implications. Dissecting the role of sub-basins is helpful both for advancing current knowledge of physical processes and

for improving the implementation of simulation or forecast models. In this context, recent advancements in sensitivity

analysis tools could be worthwhile for bringing out hidden dynamics otherwise not easy to distinguish in complex data

driven investigations. In the present work seven feature importance measures are described and tested in a specific and

simplified proof of concept case study. In practice, simulated runoff time series are generated for a watershed and its inner

15 sub-basins. A machine learning tool is calibrated using the sub-basins time series for forecasting the watershed runoff.

Importance measures are applied on such synthetic hydrological scenario with the aim to investigate the role of each sub-

basin in shaping the overall catchment response. This proof of concept offers a simplified representation of the complex

dynamics of catchment response. The interesting result is that the discharge at the catchment outlet depends mainly on 3

sub-basins that are consistently identified by alternative sensitivity measures. The proposed approach can be extended to

real applications, providing useful insights on the role of each sub-basin also analyzing more complex scenarios.

Keywords Feature importance measures � Global sensitivity measures � Machine learning � Random Forest �
Catchment hydrological response

1 Introduction

Storm hydrographs have been traditionally associated with

physical portions of a catchment (Betson 1964; Hewlett

1974), whereby catchment runoff has been described as a

threshold-driven interaction of phenomena (Ali et al. 2013;

Bonell 1998; Graham and McDonnell 2010; Graham et al.

2010; Lehmann et al. 2007; Uchida et al. 2005; Zehe et al.

2005), whose prominence has been associated with rainfall,

seasonality, and connectivity (Detty and McGuire 2010;

Hopp and McDonnell 2009; Iwasaki et al. 2020; Jencso

and McGlynn 2011; Liu et al. 2019; McGuire and
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McDonnell 2010; Scaife and Band 2017; Subagyono et al.

2005). Efforts to investigate the contribution of individual

compartments to catchment-wide stormflow are limited

(Asano et al. 2020; Beiter et al. 2020; Bergstrom et al.

2016; Demand et al. 2019; Guastini et al. 2019; Jencso

et al. 2009). For instance, in Asano et al. (2020), the

catchment-wide propagation of a stormflow peak was

studied by quantifying flow paths in hillslopes and chan-

nels. According to this study, during intense storms, the

hillslope response may be quicker than theoretically pre-

dicted, thus abruptly increasing stormflow. Despite several

studies supporting the relevance of sub-basins in governing

the catchment-wide storm hydrograph, a quantitative

framework to describe their dynamics, and eventually,

inform monitoring of critical sub-catchment compartments

is still lacking. Investigating the hydrological response at

the sub-catchment level involves coping with a large

amount of hydrological data. In this vein, recent and rapid

technological advancements are providing new instru-

mentation, impressive computational power and huge data

storage opportunities to deal with big volumes of hydro-

logical data (Butler 2014; Tauro et al. 2018). In turn, big

data mandate advanced data analysis techniques (Chen and

Han 2016; Chen and Wang 2018; Blöschl et al. 2019; Sun

and Scanlon 2019; Papacharalampous et al. 2021).

Among emerging statistical and data mining methods,

machine learning (ML) approaches have had an impressive

diffusion in the environmental sciences and specifically in

hydrology. Several ML techniques, such as ensemble and

ordinary learning algorithms (i.e. Model Averaging,

Stacking, Bagging, Boosting, Dagging) have been exten-

sively tested, compared, and applied in river flow, river

quality, sediment transport, rainfall-runoff, and ground-

water modelling for simulation and forecasting applica-

tions at diverse time aggregation scales. The success of

such approaches is due as well to the mentioned increasing

data availability and to the complexity of hydrological

phenomena, which are difficult to model with linear or

simple non linear statistical methods. For a full overview

on the use of ML methods in hydrology, the reader could

refer to the following recent papers: Zounemat-Kermani

et al. (2021), Gharib and Davies (2021), Rajaee et al.

(2020), Tyralis et al. (2021).

Despite their popularity, ML models are often regarded

as ‘‘black boxes’’ whose internal working is not transparent

to the analyst (Molnar 2020). Towards correctly inter-

preting ML model findings, diagnostic tools (such as fea-

ture importance measures, marginal effect indicators, etc.)

may be beneficial. Among ML diagnostic techniques,

feature importance measures provide knowledge about the

key-drivers of uncertainty that drive the response of the

ML model. Several methods have been developed to assess

feature importance. They can be distinguished in model-

specific and model-agnostic methods (Molnar 2020).

Model-specific methods can be used solely in conjunction

with the ML model to which they are associated. Model-

agnostic methods are applicable to general classes of

models. In this class, popular approaches are permutation

feature importance (PFI) measures (Breiman 2001a; Fisher

et al. 2019).

In hydrology, Schmidt et al. (2020) use PFI measures to

check whether the key-drivers in forecasting the flood

magnitude match among different ML models. Thorslund

et al. (2021) use conditional PFI measures to recognise

key-drivers in predicting salinity levels.

Identifying influential features is also a crucial task in

Sensitivity Analysis (SA) (Saltelli et al. 2008). More

specifically, factor prioritization is the determination of the

features that drive variability in the model output (see

Saltelli et al. (2004); Borgonovo and Plischke (2016) for a

review). This information can be obtained using variance-

based sensitivity indices (Iman and Hora 1990; Saltelli

2002), density-based sensitivity indices (Borgonovo 2007)

or cumulative distribution-based sensitivity indices (Gam-

boa et al. 2018). These indices quantify the degree of sta-

tistical dependence between the output and the features

(Borgonovo 2007; Saltelli et al. 2008). The computation of

these indices can be performed using a data-driven

approach (Plischke et al. 2013), which enables us to esti-

mate the corresponding measures directly from given data.

In hydrology, Borgonovo et al. (2017) employ such an

approach to identify the most important features in

hydrological models of a river catchment generated using

the Framework for Understanding Structural Errors

(FUSE) (Clark et al. 2008).

In this work we test seven feature importance measures

combining model-agnostic methods and global SA indices

and, for the first time in hydrology, we employ Shapley

feature importance (Casalicchio et al. 2018), ALE-indices

(Borgonovo et al. 2022 (Unpublished data)) and ALE-

based feature importance (Greenwell et al. 2018). Such

testing is performed through a proof of concept that aims to

understand a catchment hydrological response by investi-

gating how the sub-basins of a selected natural watershed

contribute to its storm response. More specifically, the aim

of the proposed preliminary application is to verify if it is

possible (with the current results and/or in future research

applications) to answer the following questions:

1. Does one (or more) sub-basin exist that contributes

more than others to the catchment-scale hydrological

response?

2. Do eventually dominant sub-basins exhibit distinctive

morpho-hydrological characteristics that control the

feature importance measure analysis results?
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To this end, we focus on a natural catchment divided in 15

sub-basins, and analyze their individual flow discharge

signals along with the flow discharge at the catchment

outlet. Given the nature of the proof of concept, in this

preliminary work we opted for the well-known Hydrologic

Modeling System (HEC-HMS) semi-distributed hydrolog-

ical model for simulating runoff time series, and for a

supervised ML model for forecasting the catchment outlet

discharge. This simple model configuration (maybe the

simplest) will help to verify if the feature importance

measure could contribute to answer questions 1 and 2.

Addressing these outstanding questions bears remark-

able implications for the comprehension of hydrological

systems. In fact, identifying sub-basins within the catch-

ment as critical for the whole hydrological response is

expected to open new avenues in rainfall-runoff modeling

as well as in environmental monitoring and engineering

practice. For instance, the design of monitoring networks

and the installation of sensors in the catchment may be

optimized by insights on the areas that more significantly

contribute to watershed stormflow. The manuscript is

organized as follows: in Sect. 2 a full description of the

seven feature importance measures is provided. In Sect.3

case study information is described. The results for the

hydrological scenario and the ML forecasting tool are

illustrated in Sects. 4.1 and 4.2. In Sect. 4.3 the importance

measure analysis is reported. Comments and discussions

are given in Sect. 4.4. Finally, Sect. 5 concludes the

manuscript.

2 Feature importance methods

Here, we introduce the notation. In Section 2.1 we describe

three sensitivity measures from SA: variance-based, den-

sity-based and distribution-based methods. In Section 2.2,

we present some of the most relevant model-agnostic fea-

ture importance approaches applied in supervised machine

learning.

Let Y and X ¼ ðX1; :::;XpÞ denote the random variables/

vectors on the reference probability space (X;BðXÞ;P),
with X 2 XP � Rp, Y 2 Y � R and push forward mea-

sures PX and PY . We denote the observed value of the j-th

feature as xj ¼ ðxð1Þj ; :::; x
ðNÞ
j Þ

0
and the i-th observation as

xðiÞ ¼ ðxðiÞ1 ; :::; x
ðiÞ
p Þ 2 XP associated with the corresponding

target value yðiÞ 2 Y. In the remainder, it will be useful to

write X as X ¼ ðXj;X�jÞ, where

X�j ¼ fXl : l ¼ 1; :::; p; l 6¼ jg. We also have x ¼ ðxj; x�jÞ.
The data is divided into training data and testing data. We

suppose to use a supervised ML model bf to learn the

unknown mapping from an independent and identically

distributed training sample fðxi; yiÞ : i ¼ 1; :::;Ng. We

denote the loss function by L : Y � Rp ! R>0, which

quantifies the difference between the vector of observed

target values y and the vector of predicted values by. It is

used to compute the generalization error for a given fitted

ML model on unseen test data, i.e.,

geðbf Þ ¼ EXYðLðY ; bf ðXÞÞ.

2.1 Global sensitivity measures

2.1.1 Variance-based sensitivity index

The variance-based sensitivity measure of Xj is defined as

(Iman and Hora 1990; Homma and Saltelli 1996)

g2j ¼
VXj

½EX�j
½Y j Xj��

V½Y� ¼
V½Y � � EX�j

½VXj
½Y j Xj��

V½Y � : ð1Þ

This sensitivity measure corresponds to the expected

reduction in model output variance achieved by fixing Xj

and coincides with the Pearson correlation ratio (Pearson

1905).

2.1.2 Density-based sensitivity index

This sensitivity measure quantifies the expected distance

between the marginal output density pY and the conditional

density pY jXj
through the L1-norm (Borgonovo 2007). It is

given by

dj ¼
1

2
EXj

Z

Y

pYðyÞ � pY jXj
ðyÞ

�

�

�

�dy

� �

; ð2Þ

where pY jXj
ðyÞ can be obtained by fixing Xj at a realization

value.

2.1.3 Cdf-based sensitivity indices

The cumulative distribution-based sensitivity measure bKS

(Borgonovo et al. 2014) is based on the Kolmogorov-

Smirnov distance between cumulative distribution func-

tions (PY , PY jXj
, respectively). It is defined as

bKSj ¼ EXj
sup
Y

PYðyÞ � PY jXj
ðyÞ

�

�

�

�dy

� �

: ð3Þ

The global sensitivity measures in Eqs. (1), (2), (3) can be

estimated from the same dataset of features-forecast real-

izations. The computation is performed using the given-

data (or one-sample) approach proposed in Plischke et al.

(2013). In order to use this approach, the support X j of the

feature Xj is partitioned into mutually exclusive and col-

lectively exhaustive classes. Formally, we denote the par-

tition of X j intoM classes as P ¼ fCm : m ¼ 1; :::;Mg with
Cm;j \ Cm0;j ¼ ;;X j ¼

SM
m¼1 Cm;j for m 6¼ m0. Let Nm;j be the
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number of observations of the response variable Y in the m-

th class and N be the total number of observations.

Then, an estimate of g2j is given by

bg2j ¼
PM

m¼1
Nm;j

N ym;j � y
� �2

1
N�1

PN
i¼1 yi � yð Þ2

; ð4Þ

where ym;j and y are an estimate of the conditional mean of

Y given Xj 2 Cm;j and an estimate of the mean of Y,

respectively.

An estimate of the d-measure in Eq. (2) is given by:

bdj ¼
X
M

m¼1

Nm;j

N

Z

Y

bpYðyÞ � bpm;jðyÞ
�

�

�

�dy; ð5Þ

where bpY and bpm;j are kernel smoothing functions of the

output vector y ¼ fyj : j ¼ 1; :::; pg and the within class

output vector ym;j ¼ fyj : xj 2 Cmg.
An estimate of bKSj is given by

bbj
KS ¼

X
M

m¼1

Nm;j

N
max

i2f1;:::;Ng
bPYðyiÞ � bPm;jðyiÞ
�

�

�

�

�

�dy; ð6Þ

where bPY and bPm;j correspond to the empirical cumulative

distribution functions of y and ym;j, respectively.

2.2 Feature importance in supervised machine
learning

In this subsection, we present importance measures

specifically defined for machine learning applications.

2.2.1 Conditional permutation feature importance

The permutation feature importance (PFI) of (Breiman

2001a) a model bf is defined as

PFIj ¼ EXpX�jY L Y; bf Xp
j ;X�j

� �� �h i

� EXY L Y; bf Xj;X�j

� �

� �h i

;

ð7Þ

where Xp
j follows the marginal distribution of Xj. This

importance measure quantifies the variation in the accuracy

of the ML model fitted on the (original) training data after

permuting a feature of interest. A high value of PFIj means

that the predictive performance of the ML model drops

significantly when the dependence between Y and Xj is

broken as a result of the permutation of Xj. An estimate of

the PFI of feature Xj is given by

dPFIj ¼
1

N

X
N

i¼1

L yðiÞ; bf xp;ij ; x
ðiÞ
�j

� �� �

� 1

N

X
N

i¼1

LðyðiÞ; bf x
ðiÞ
j ; x

ðiÞ
�jÞ

� �

:

ð8Þ

Due to their popularity, PFI measures have been set under

intensive scrutiny. The work of Hooker and Mentch (2019)

shows that PFI measures may lead to misleading results

when there is a strong statistical dependence among fea-

tures. In order to overcome this drawback, numerous

alternatives have been explored in the literature (Casalic-

chio et al. 2018; Strobl et al. 2007; Candes et al. 2018).

Strobl et al. (2007) suggest to rely on a conditional PFI

defined as

cPFIj ¼ EXCpX�jY L Y; bf XCp
j ;X�j

� �� �h i

� EXY L Y ; bf Xj;X�j

� �

� �h i

;
ð9Þ

where XCp
j follows the conditional distribution of Xj given

X�j. This is equivalent to compute the PFI importance

using a conditional permutation scheme. Specifically, the

support of Xj is partitioned based on X�j and then the

values of Xj are conditionally permuted within each parti-

tion. This approach preserves the data dependence structure

without breaking the relationship between the feature and

the target variable: see also Debeer and Strobl (2020).

2.2.2 Shapley feature importance

Casalicchio et al. (2018) propose an extension of the PFI

measure called Shapley PFI (SPFI). The Shapley PFI is

based on the notion of Shapley value (Shapley 1952), a

method from game theory that it is known for its attractive

fairness properties (Lundberg and Lee 2017).

Consider a coalitional game with a payoff in which a

group of p players, denoted by P plays by joining coalitions

K � P. We denote the coalition value function by v : 2p !
R>0 with vð;Þ ¼ 0, where ; denote the empty set. The

Shapley value of the j-th player is given by

/jðvÞ ¼
X

K�Pnfjg

jKj! jPj � jKj � 1ð Þ!
jPj! vðK [ fjgÞ � vðKÞ½ �;

ð10Þ

where vðK [ fjgÞ � vðKÞ is the individual contribution of

the j-th player in coalitionK. Shapley values assign players a

fraction of the overall value by averaging their contributions

to all coalitions. Ribeiro et al. (2016) and Lundberg and Lee

(2017) define the value function v(K) as the conditional

expectation of the target variable on a specific observation

when the features in coalition K are known, that is

vðKÞ ¼ E½bf ðXÞ j XK ¼ xK � ¼ EX�K jXK
bf ðxKÞ;X�K

h i

:

ð11Þ

Based on this result, Casalicchio et al. (2018) propose the

SPFI measure as follows:

1250 Stochastic Environmental Research and Risk Assessment (2023) 37:1247–1264

123



SPFIj ¼
X

K�Pnfjg

jKj!ðjPj � jKj � 1Þ!
jPj! vgeðK [ fjgÞ � vgeðKÞ

	 


;

ð12Þ

where vgeðKÞ ¼ geK bf
� �

� ge; bf
� �

is the value function

associated to the predictive performance of a ML model.

Note that geK bf
� �

is the generalization error computed

using features in coalition K and ge; bf
� �

is the error when

no features are considered. SPFI is designed to quantify the

individual contribution of each feature to the prediction on

each observation x. Casalicchio et al. (2018) show that an

estimate of SPFIj is given by

dSPFIj ¼
1

P!

X

p

cgeBjðpÞ[fjg
bf

� �

� cgeBjðpÞ
bf

� �h i

; ð13Þ

where p is a permutation of the features. Given a permu-

tation p, BjðpÞ is the set of features preceding Xj. For

instance, if we assume that p ¼ 5, for j ¼ 3 and

p ¼ f2; 5; 3; 4; 1g, we have that B3ðpÞ ¼ f2; 5g.

2.2.3 ALE-index

Recently, Borgonovo et al. 2022 (Unpublished data) pro-

pose a new feature importance measure, called ALE-index.

We recall that an ALE-plot is a powerful graphical tool that

describes the relationship between the prediction of a

supervised learning model and the feature of interest

(Apley and Zhu 2020). However, it does not provide

insights concerning the relative importance of features

directly. Borgonovo et al. 2022 (Unpublished data) show

that one can compute the importance of Xj exploiting the

algorithm that produces these marginal effect indicators

introduced by Apley (2018).

To estimate an ALE main effect from data, one needs to

partition the support of Xj into K intervals, X k
j ¼ zk�1

j ; zkj

h i

,

with k ¼ 1; :::;K, such that their union equals the support

of Xj and their intersection is null. Here, Nk
j refers to the

number of values of Xj in the k-th interval. Apley and Zhu

(2020) propose the following finite difference estimator of

ALEjðxjÞ

dALEjðxjÞ ¼
X
K

k¼1

1

Nk
j

X

i:xðiÞ2X k
j

bf zkj ; x
ðiÞ
�j

� �

� bf zk�1
j ; x

ðiÞ
�j

� �h i

;

ð14Þ

for each xj 2 z0j ; z
K
j

h i

, where z0j is chosen slightly smaller

than xminj ¼ min x
ð1Þ
j ; :::; x

ðNÞ
j

n o

and zKj ¼ xmaxj ¼

max x
ð1Þ
j ; :::; x

ðNÞ
j

n o

. T0
j index is defined as (Borgonovo

et al, 2022 (Unpublished data))

T0
j ¼

1

2

EXk
j X�jX

bf Xk
j ;X�j

� �

� bf ðXÞ
� �2

� �

r2Y
;

ð15Þ

where r2Y is the output variance. The authors show that,

under feature independence, T0
j coincides with the total

order sensitivity index of Homma and Saltelli (1996). We

recall that a total index captures the contribution of Xj to

the output variance including its individual and interaction

contributions. The ALE-based feature importance measure

possesses the zero-independence property under both

independence and dependence (Renyi 1959). This property

states that the value of a feature importance measure is zero

if and only if the target variable and the feature of interest

are independent.

An estimate of T0
j is given by

T̂ 0
j;N ¼ 1

2Nr2y

X
N

i¼1

bf x
0;ðiÞ
j ; x

ðiÞ
�j

� �

� bf xðiÞ
� �� �2

, ð16Þ

where x
0;ðiÞ
j is the left endpoint of the interval in which xi;j

falls and it is assumed to be sampled from the marginal

distribution of Xj.

2.2.4 ALE-based feature importance

Another feature importance measure based on ALE-plots is

proposed by Greenwell et al. (2020) and used also in

Christensen et al. (2021). This importance measure is given

by:

ALE-IMPj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VXj
dALEjðxjÞ

� �

r

: ð17Þ

An estimate of the ALE-based feature importance measure

is given by

dALE-IMPj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

X
N

i¼1

dALEj xij

� �

� dALEjðxjÞ
h i2

v

u

u

t ;

ð18Þ

where dALEjðxjÞ ¼ 1
N

PN
i¼1

dALEj xij

� �

. It is defined by

computing the sample standard deviation of dALEj. So, this

measure quantifies the variability of the ALEjðxjÞ curve

itself. It is defined exploiting the marginal relationship of

the target variable and the feature of interest. For a flat

ALE curve ALE-IMPj � 0 meaning that Xj has a small

influence on Y. Differently, a fluctuating ALE curve has a

higher variability and so the value of ALE-IMPj is larger.

We use it for comparison purposes.
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Note that, the SA measures are calculated using a data-

driven approach of Plischke et al. (2013). So, such mea-

sures consider correlations among features and, thus, pro-

vide indications of their importance by taking into account

the dependency structure in the hydrological system.

Contrary, ML measures are selected to deal with the strong

correlations among features. Moreover, the statistical

importance measures derived from the SA are used to

confirm the ML finding arising from the importance

analysis.

Finally, in Table 1 we summarize the feature impor-

tance measures used in the case study in Section 4.4.

3 Materials and Methods

We consider a watershed with a dense hydrographic

monitoring network that provides discharge measurements

at n sub-basin outlets, and assume that an ML tool has been

selected to forecast discharge values. Calibration is based

on available observations. We aim to investigate whether

the feature importance measures are able to distinguish the

sub-basin influence identifying those that most affect the

discharge time series at the outlet. With this general aim, in

Sect. 3.1 we present the watershed selected for this appli-

cation. In Sect. 3.2 we present the semi-distributed

hydrology-hydraulic model HEC-HMS used to generate a

synthetic hydrologic scenario. In Sect. 3.3, we describe the

ML models used for forecasting the catchment outlet dis-

charge and the performance measures used to quantify the

accuracy of the ML models.

3.1 Watershed case study description

The selected study site is the Samoggia River basin, a

tributary of the Reno River located in the Emilia Romagna

region, Italy (see Fig. 1). We use a digital elevation model

at 20m resolution made available to the authors by the

Italian Geographic Military Institute. Land cover data

related to year 2018 are downloaded from the Coordination

of Information on Environment (CORINE) database, and

soil data are taken from the soil map provided by the local

administration. The elevation of the investigated basin lies

in the range 51–883 m a.m.s.l., the total contributing area

is 178.5 km2 and the basin average slope is approximately

19.1%. Regarding land cover, the site is characterized by

valley bottoms that are mainly floodplains hosting farm-

land and urban areas, and by mountain areas in which there

are mainly broadleaved woods. Regarding soil data, the

catchment can be classified as a mix between loamy sand

and sandy loam. Further details on the Reno River basin

can be found in Castellarin et al. (2009) and Di Prinzio

et al. (2011). Regarding the available hydrological data,

rainfall observations are downloaded from Emilia

Romagna regional agency for environmental protection

website (https://simc.arpae.it/dext3r/), selecting three years

(from 1st January 2014 to 31st December 2016) at 1 hour

time resolution.

3.2 HEC-HMS model implementation

The synthetic hydrologic scenario is carried out using the

software HEC-HMS by the Hydrologic Engineering Center

of US Army Corps of Engineer (2017). HEC-HMS allows

one to simulate hydrological processes using different

options and modules (Chu and Steinman 2009; De Silva

et al. 2014). In the present case study, we apply the HEC-

HMS to the Samoggia watershed selecting 15 sub-basins as

shown in Fig. 1 (panel d). Hereafter, we employ the sim-

plest configuration that includes:

• Spatial homogeneous rainfall estimation through Thies-

sen Polygons;

Table 1 Feature importance

measures calculated in this

work. The last column refers to

the framework in which the

importance measures are

evaluated

Importance measure Definition Context

Conditional PFI cPFIj ¼ E L Y ; bf XCp
j ;X�j

� �� �h i

� E L Y ; bf Xj;X�j

� �

� �h i

(9) ML

Shapley PFI SPFIj ¼
P jKj! jPj�jKj�1ð Þ!

jPj! vgeðK [ fjgÞ � vgeðKÞ
	 


(12) ML

ALE-plot total index

TALE
j ¼ 1

2

E
Xk
j
X�jX

bf Xk
j ;X�jð Þ�bf ðX�jÞ

� �2
h i

r2Y
(15)

ML

ALE-based importance
ALE-IMPj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VXj
ALEjðxjÞð Þ

p

P

j
ALE-IMPj

(18)
ML

Variance-based measure g2j ¼
V½Y��EX�j

½VXj
½Y jXj ��

V½Y � (1) SA

Density-based measure dj ¼ 1
2
EXj

R

Y jpY ðyÞ � pYjXj
ðyÞjdy

h i

(2) SA

Cdf-based measure bKSj ¼ EXj
supY PY ðyÞ � PY jXj

ðyÞ
�

�

�

�dy
h i

(3) SA

ML, Machine Learning; SA, Sensitivity Analysis
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• Soil Conservation Service—Curve Number (CN) infil-

tration approach;

• Soil Conservation Service—Unit Hydrograph (UH)

rainfall runoff model;

• Muskingum method for hydraulic propagation.

We use the physical and hydrological parameters for the

sub-basins obtained from HEC-GeoHMS and available in

previous literature (Ramly and Tahir 2016; Ramly et al.

2020; Mourato et al. 2021). As mentioned in Sect. 3.1,

rainfall data are collected from three rain gauge stations

(see panel c in Fig. 1). In order to emphasize the role of

sub-basins, we assume a spatially homogeneous rainfall.

Thus, the well known Thiessen method can be adopted for

computing the gauge-weighting factors. The Soil Conser-

vation Service dimensionless UH is used as rainfall-runoff

model. It includes the CN as main parameter affecting

infiltration and surface flow velocity defined using land use

information. The dimensionless UH is shaped using the

concentration time (Tc) and peak discharge (Qp). In par-

ticular, Tc is linked to the time lag (TL), calculated by

Mockus Formula (Mockus 1964), that depends on the

maximum flow length, the mean slope and CN value. The

flow length is calculated as the sum of sheet flow, shallow

concentrated flow and channel flow. Finally, we select the

Muskingum model as flow routing model, setting its

parameters (X, dimensionless attenuation, and K, travel

time) equal to 0.5 and 1, respectively (Gilcrest 1950).

3.3 Machine Learning models and performance
measures

We employ the following ML Models: a ridge regression, a

random forest, a gradient boosting machine and a neural

network.

Ridge regression is a regularized version of the linear

model, where the loss function includes a penalty term

(Gruber 2017). The magnitude of the penalty term is reg-

ulated by the hyperparameter lambda. The introduction of

the penalty term aims to reduce model complexity and

prevent overfitting.

Random Forests (Breiman 2001a) and Gradient Boost-

ing machines (Friedman 2001) are tree-based ensemble

models. Random Forests consist of many decision trees. A

decision tree presents a tree-like structure: it is composed

of nodes (root node, decision nodes and leaf node) and

branches. The root node represents the entire dataset. The

decision nodes flow from the root node and may have

several branches representing the decision rules applied to

split these nodes. From the decision nodes flow the nodes

leaf that are the outcome and have no branches (Hastie

et al. (2009), for a broader review). In a Random Forest

Fig. 1 a and b Samoggia river

basin, located in northern Italy,

c Digital elevation model,

Raingauge and drainage

network, d Fiftteen sub-basins
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each tree is trained on a randomized subset of features and

provides separate predictions. By averaging the predictions

resulting from the decision trees one obtains the final

estimate of the response variable, see plot panel (a) in

Fig. 2. This model includes two main hyperparameters: the

number of trees (n.trees) and the number of features sam-

pled for splitting at each node (mtry). For a full description

see Liaw and Wiener (2002) and Desai and Ouarda (2021).

Gradient Boosting machines use weak learner models

(usually decision trees) to iteratively build a strong learner

(ensemble model). At each step, we train a decision tree on

the residuals from the previous sequence of trees. The

resulting ensemble model is built using an additive model

defined through the contributions of each tree, see plot

(b) in Fig. 2. The training of a gradient boosting machine

requires analysts to set several hyperparameters: the num-

ber of trees (n.trees), the number of splits it has to perform

on a tree (interaction.depth), the learning rate (shrinkage),

the minimum number of observations terminal nodes of the

trees (n.minobsinnode) and the sub-sampling fraction of the

training set values randomly selected to propose the next

tree (bag.fraction) (Kuhn 2008; Fienen et al. 2018). These

tree-based ensemble models are able to manage nonlinear

and complex relationships among features. Moreover,

Breiman (2001b) shows that Random Forest is not affected

by multicollinearity (Farrar and Glauber 1967).

Neural networks are a class of ML models well known

for their versatility (Dreiseitl and Ohno-Machado 2002).

For this case study, we focus on a single layer neural

network Hn, several input neurons Xn and an output layer

with the observed outcome O. We denote the connection

weights from input to hidden layer by Wn and the con-

nection weights from hidden to the output layer by Wout
n . In

the hidden and output layer the output is computed as the

weighted combination of the outputs of the neurons of the

preceding layers processed by a predefined activation

function r, such as the sigmoid function or the softmax

function. Specifically, we have Hn ¼ r
P

Wnð Þ and

On ¼ rð
P

HnW
out
n ), respectively (see panel (c) in Fig. 2).

The hyperparameters of a single layer neural network are

the number of units in the hidden layer (size) and the

regularization parameter to avoid over-fitting (decay)

(Teweldebrhan et al. 2020).

In order to achieve a high performance of the ML

models, we combine hyperparameter tuning and cross

validation. Hyperparameter tuning is a process to search for

a set of optimal hyperparameters for a ML model to min-

imize the loss function (Hastie et al. 2009). We tune the

ML models using grid search method (Agrawal 2021). This

procedure builds a ML model for every combination of

hyperparameters specified in a predefined grid by the

analyst and evaluates each ML model through a perfor-

mance measure using k-fold cross-validation. Among all

evaluated ML model configurations, we select the hyper-

parameters that exhibits the smallest performance metric.

In the k-fold cross-validation scheme (Stone 1974), the data

is partitioned into k training and validation subsets. The

process is repeated for different model configurations. The

Training Data

......Tree 1 Tree 2 Tree 100

Prediction 1 .....

Averaging

Final Prediction

Prediction 2 Prediction 100

Input Layer Hidden Layer Output Layer

(a)

(b)

(c)

Dataset

Train TrainTest Test Train ....

Errors Errors

Final

Prediction
....

Fig. 2 ML algorithms: a Random Forest, b Gradient Boosting and c one single hidden-layer Neural Network
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configuration that achieves the smallest validation error,

computed averaging over all k subsets, is selected as

optimal.

The accuracy of the ML models is evaluated on the

testing data using three criteria: the root-mean-square error

(RMSE), the mean absolute error (MAE) and the coeffi-

cient of model determination (R2). The RMSE is defined

as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X
N

i¼1

yi � byið Þ2
v

u

u

t ; ð19Þ

where y is the vector of observed target values and by is the

vector of predicted values. The MAE is the mean of

absolute values of differences between observed and pre-

dicted values. The MAE is estimated by:

MAE ¼ 1

N

X
N

i¼1

jyi � byij: ð20Þ

Both performance measures range from 0 to 1, where the

value 0 indicates a perfect fit. RMSE and MAE are mea-

sured in the same units as the model output response. MAE

is less sensitive to outliers compared to RMSE. The third

performance measure is the coefficient of determination

(R2). It is equal to:

R2 ¼ 1�
PN

i¼1 yi � byið Þ2
PN

i¼1 yi � yið Þ2
; ð21Þ

where y is the average value of y. R2 is the proportion of

variation in the response variable that is explained by the

machine learning model forecasts. It ranges from 0 to 1,

where the value 0 indicates that the trained ML model does

not explain any variability in the target variable. On the

contrary, the value 1 indicates that the trained ML model

explains all variability in the target variable.

4 Results and discussion

In this section, we report and discuss the case study results.

Firstly, the HMS model implementation is presented in

Sect. 4.1, where the characterization of the 15 sub-basins

and the 15?1 discharge time series are provided. In

Sect. 4.2, the comparison of ML tools is presented. Sec-

tion 4.3 reports the feature importance measure analysis.

Section 4.4 discusses the results of the feature importance

analysis.

4.1 Hydrologic synthetic scenario

The watershed case study simulated using the HMS model

consists of 15 sub-basins (see panel d in Fig. 1) charac-

terized by heterogeneous geomorphological properties

(Table 2). The contributing areas span from 3.5 km2

(W200) to 34.5 km2 (W220), while slope values are in the

large range: 1.0% (W160)–22.9% (W240), reflecting the

watershed characteristics shown in Fig. 1 (panel c). In

particular, the watershed case study includes a mountain-

ous area in the upper part and a flat area near the outlet.

This is also confirmed by outlet elevations that vary from

51 m (W160) to 347 m (W300). The land use suggests a

limited variability of CN values in the range 84.8 (W240)–

Table 2 Main hydro-morphological properties of the fifteen sub-basins in the case study

Sub-

basin

Watershed area

[km2]

Average slope

[%]

Curve

number [-]

Mean elevation

[m]

Minimum

elevation [m]

Outlet flow length

[km]

Concentration time

[min]

W160 4.4 1.0 88.6 61 51 0 253

W170 6.9 2.4 92.0 82 54 3 164

W180 5.2 3.8 92.0 96 54 3.1 134

W190 11.0 22.8 86.6 203 95 10.6 78

W200 3.5 15.1 91.1 175 95 11 53

W210 6.6 21.3 86.4 195 118 12.9 63

W220 34.5 19.8 90.1 303 118 13.1 131

W230 4.7 10.8 88.2 195 150 17.9 56

W240 7.1 22.9 84.8 250 150 18 60

W250 33.8 19.7 91.7 427 175 21.8 117

W260 19.2 19.8 91.7 419 175 21.5 81

W270 2.2 22.0 92.0 424 347 31 21

W280 7.1 23.6 92.0 550 347 31.1 37

W290 18.7 22.1 92.0 640 347 32.6 67

W300 15.7 20.9 92.0 645 347 32.7 71
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92 (for six sub-basins), defined in the Antecedent Moisture

Condition (AMC) II, characterizing a soil in a moderate

humidity condition. The hydrologic synthetic scenario is

simulated applying the HEC-HMS model on the three

years of rainfall observations at 1-h resolution, generating

15 discharge time series at the same time resolution in the

outlet sub-basins and in the watershed outlet (hereinafter

Outlet). An overview of the considered scenario is pro-

vided in Table 3 and Fig. 3. In particular, Table 3 reports

the main summary statistics. The time series distributions

of flow discharge signals are positively skewed due to the

large proportion of zero values and exhibit sharp peaks.

Note that summary statistics reflect the typical hydrological

behavior of small sub-basins with low concentration times

and high CN values. In fact, the discharge median value is

zero and quantile values confirm the high time series

intermittency. Figure 3 displays the individual flow dis-

charge signals of the 15 sub-basins along with the flow

discharge at the catchment outlet. Note that since rainfall is

assumed spatially homogeneous, all recorded signals show

similar behaviour over the considered time interval.

4.2 Optimal ML method selection

We divide the feature-output data into 80% training and

20% testing. All features are normalized, i.e.,

0�Xj � 1 ðj ¼ 1; :::; 15Þ. We use the following R-pack-

ages: glmnet, randomForest, gbm, nnet (Friedman

et al. 2009; Liaw and Wiener 2002; Ridgeway 2007;

Ripley et al. 2016) and caret (Kuhn 2009) to perform

hyperparameter optimization. After training the models, we

obtain the following values of the hyperparameters:

• Ridge regression: lambda = 0.001;

• Random Forest: mtry = 15 and n.trees = 500;

• Gradient Boosting: shrinkage = 0.071, n.trees = 951,

interaction.depth = 7, n.minobsinnode = 10 and

bag.fraction = 0.65;

• Neural Network: size = 12 and decay = 0.1;

Note that in the Random Forest model, all features are used

in each tree (mtry = 15). Hence, it can be regarded as a

Bagging model (Breiman 1996). In Table 4 the estimates

of the performance measures of the ML models are

reported. Random Forest is the best performing model

according to all three measures compared to all other

models. Consequently, we select such ML model to carry

out the discharge forecasting analysis.

Note that the results illustrated here and in the next

sections refer to the case of lag equal to zero. In such a

case, the machine learning tool and the measure impor-

tance (later described) investigate on the dependence

among simultaneous flow discharge signals of the 15 sub-

basins and the flow discharge at the outlet. For offering a

more complete overview of the hydrological response the

case of lag ¼ 3 is reported in the Appendix. For such time

response the results are in line with results for the lag ¼ 0

case study.

4.3 Importance analysis

We recall that the first four feature importance measures

(cPFI, SPFI, ALE-IMP, T0), reported in Table 1, are

Table 3 Main summary

statistics of the simulated runoff

time series [m3/s]

Mean SD Min Max Median P0.75 P0.9 P0.99 P0.999

Outlet 5.63 20.79 0 351.68 0 1.3 12.81 103.17 252.3

W160 0.14 0.64 0 18.91 0 0 0.19 3.08 7.96

W170 0.21 1.02 0 30.09 0 0 0.3 4.87 12.6

W180 0.16 0.78 0 23.12 0 0 0.21 3.69 10

W190 0.34 1.67 0 49.31 0 0 0.44 7.87 21.33

W200 0.11 0.51 0 14.83 0 0 0.16 2.45 6.31

W210 0.21 0.94 0 25.86 0 0 0.32 4.6 11.7

W220 1.07 5.16 0 152.41 0 0 1.44 24.58 65.52

W230 0.15 0.7 0 20.78 0 0 0.19 3.33 9.03

W240 0.22 0.98 0 26.19 0 0 0.36 4.84 12.23

W250 1.06 5.04 0 148.99 0 0 1.45 24.03 63.65

W260 0.6 2.9 0 85.57 0 0 0.78 13.68 37.06

W270 0.07 0.32 0 9.41 0 0 0.1 1.54 3.96

W280 0.22 1 0 26.35 0 0 0.37 4.89 12.38

W290 0.58 2.56 0 64.65 0 0.01 0.98 12.77 31.15

W300 0.49 2.04 0 44.81 0 0.04 0.93 10.24 24.24

SD is standard deviation; P0.x is the percentile at 75%, 90%, 99%, 99,9%
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Fig. 3 The hydrologic synthetic scenario. Each plot displays the simulated runoff hourly time series. y-axis dimension [m3=s]

Table 4 Performance measures

estimated for the four ML

models

Performance measures Ridge regression Random forest Gradient boosting Neural network

MAE (10�4) 100 55 59 86

RMSE (10�3) 25 21 23 25

R2 (10�2) 87 89 86 82
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computed using the predictions of the optimal ML model

and the remaining feature importance measures (g2, bKS

and d) are evaluated directly from the data. For the com-

putation of the sensitivity measures we use betaKS3.m1.

The conditional PFI measure is calculated using the

algorithmic implementation of Debeer and Strobl (2020).

Both performance-based measures (cPFI and SPFI) are

computed using RMSE as a loss function. We use the

R-packages permimp (Debeer et al. 2021) and fea-

tureImportance2. The variance-based measures

(ALE-IMP and T0) are computed partitioning the support of

the feature of interest into 100 equally-spaced intervals

(K ¼ 100). The ALE-IMP measure is calculated using the

algorithmic implementation proposed by Christensen et al.

(2021). For both measures we use the R-package ALE-

Plot (Apley 2018).

Figure 4 displays the estimates of the feature importance

measures used in the case study. The results of the ML

feature importance measures show that only a few sub-

basins are influential for forecasting the watershed outlet

discharge. Differently, the global SA indices assign a

considerable importance to all sub-basins which is due to

the presence of a strong correlation between sub-basins.

This shows that all of them are active in the watershed

dynamics.

From our analysis we have that some estimates of

conditional PFI are close to zero. This means that per-

muting Xj does not produce a reduction in the performance

of the RF model. Then, such feature has no impact on the

predictive performance of the ML model. Therefore, the

corresponding sub-basin might be unnecessary. Differ-

ently, a high cPFI value denotes that the sub-basin is

important in the ML model. In order to have a better

understanding of the results presented in Fig. 4, we provide

the ranking for each feature importance measure and the

mean ranking resulting from the ensemble of the impor-

tance measures used (Table 5). The latter is defined as the

average ranking resulting from the ensemble of the

importance measures used (Kuncheva 2014).

The results in Fig. 4 and Table 5 suggest that we can

identify three groups of sub-basins based on their impor-

tance. The first group consists of sub-basins W300, W290

and W280. Note that the seven feature importance
1 https://zenodo.org/record/885332#.XgoB-kdKiUk.
2 https://github.com/giuseppec/featureImportance.

Fig. 4 Estimates of seven feature importance measure used in the case study
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measures defined on different aspects (i.e. the predictive

accuracy of the optimal ML model, the individual and total

contribution to the output variance and the probabilistic

effect on the output response) simultaneously identify

W300, W290 and W280 as the most influential sub-basins.

The second group consists of sub-basins W240, W210 and

W270. Note that, almost all feature importance measures

identify W240 and W210 as the fourth and fifth most

important sub-basins. While the ranking of W270 varies

across the importance measures. Note that there is a third

group of sub-basins for which the estimates of all impor-

tance measures are generally much lower than the esti-

mates of the first two classes, showing that such sub-basins

are less (or not) influential in predicting the catchment

outlet discharge. Interestingly, employing ML and SA

feature importance measures one can obtain rankings that

are in agreement with each other. Such correspondence

produces more confidence about which sub-basins are

important for forecasting the flow discharge at the catch-

ment outlet.

In order to increase our confidence on the ranking

reported in the last column in Table 5, we investigate the

predictive accuracy of the optimal ML model fitting an

incremental sequence of Model Configurations built by

including one sub-basin at a time. The order of inclusion

follows the ranking resulting from the importance analysis.

To be more precise, the sequence of Model Configurations

is initialised including only the first ranked sub-basin

(W300). Then, Configuration 2 includes sub-basins W300

and W290; Configuration 3 includes sub-basins W300,

W290, and W280 and, finally Configuration 15 includes all

sub-basins. For each configuration we train a Random

Forest model and evaluate the performance measures pre-

sented in Sect. 3.3. Based on predictive performances, we

aim to identify how many sub-basins we need to include in

the optimal ML model to achieve a desired high level of

accuracy.

The results reported in Table 6 suggest that the first

group of sub-basins (which includes the three most

important ones) explains 88% of the variability of the

output response. Including the second group produces only

a slight improvement in the performance measures. Table 6

also shows that including the least relevant sub-basins does

not improve accuracy further. Therefore, they can be

excluded from the machine learning analysis.

Conversely, if we were to include only the non-relevant

sub-basins, we would obtain the following values of the

performance measures: MAE = 0.0164, RMSE = 0.0501

and R2 ¼ 0:2748. These values confirm that if we were to

train the model using only the least relevant sub-basins as

inputs, we would not achieve a desirable prediction

accuracy.

Table 5 Ranking for each

feature importance measure and

the mean ranking

Sub-basin cPFI SPFI ALE-IMP T0 g2 bKS d Mean ranking

W300 1 1 1 1 1 1 1 1

W290 2 2 2 2 2 2 2 2

W280 4 3 3 3 3 3 3 3

W240 3 4 4 5 4 4 4 4

W210 5 8 5 4 5 6 6 5

W270 8 5 11 6 7 5 5 6

W260 14 7 8 7 6 7 7 7

W190 9 6 6 10 15 9 9 8

W180 6 9 7 11 14 12 12 9

W200 15 10 12 8 11 10 10 10

W170 7 11 13 13 13 8 8 11

W230 10 12 9 12 10 13 13 12

W160 13 13 10 9 12 11 11 13

W220 11 14 14 14 8 15 15 14

W250 12 15 15 15 9 14 14 15

Table 6 Estimates of the

performance measures for the

configurations defined using the

mean ranking

Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MAE (10�4) 110 61 58 58 58 56 56 56 56 56 56 56 56 56 56

RMSE (10�3) 37 24 22 22 22 21 21 21 21 21 21 21 21 21 21

R2 (10�2) 69 86 88 89 89 90 89 89 89 89 89 89 89 89 89
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4.4 Discussion

Let us now come to the questions posed in the introduction.

Regarding the first question, feature importance measures

have allowed us to identify the group of sub-basins that

influence the catchment-scale hydrological response the

most.

Regarding the second question, the discussion is a bit

more elaborate and we focus on: (a) the watershed and the

hydrological model characteristics shown in Table 3 and

(b) the insights arising from the ranking of the importance

analysis (Table 5). In particular, the sub-basin contributing

areas do not allow us to distinguish the role of the sub-

basins. In fact, the largest sub-basins (W220 and W250) are

included in the uninfluential group (bold group in Table 5)

and, interestingly, their contributing areas are twice those

of the dominant sub-basins. Differently, slope values are

more consistent with the importance ranking. Indeed, all

six influential sub-basins are characterized by slope values

higher than 20%. However, high values are observed also

for W190, W220, W250, W260, which belong to the

uninfluential group. The Curve Number is almost homo-

geneous among the sub-basins and it does not appear to be

a distinguishing characteristic. Note that, although the

dominant sub-basins have the highest CN values, the same

value is also observed for W170 and W180 (bold group).

Moreover, the lowest value (84.8) is registered for W240

which is in the italic group. The Average Elevation is also

in partial agreement with the importance ranking. In par-

ticular, the dominant sub-basins present the highest values,

nevertheless high values also characterize W220 and W260

(bold group). Conversely, we register an agreement

between Minimum Elevation and the sub-basins ranking.

In fact, the first three ranked sub-basins are characterized

by the highest minimum elevation. High outlet elevation

indicates that these three sub-basins are located in the

upper part of the watershed, as confirmed by the values of

the hydraulic distance to the watershed outlet listed in the

sixth column of Table 2. The last comparison involves the

concentration time parameter (Tc). This is estimated using

several empirical equations which include the slope, the

drainage network length, the contributing areas and the CN

values. Such parameter offers a combination of the previ-

ously described topographic properties. Tc is responsible

for the UH shape and then for the sub-basin response

function: small Tc values refer to concentrated response

functions while larger values refer to more spread func-

tions. Comparing the Tc parameter with the feature

importance measure ranking, one notes a good overall

agreement, with all influential sub-basins having low Tc

values.

In conclusion, even if the results do not suggest clear

agreement between watershed ranking and specific hydro-

morphological characteristics, useful for answering the

second paper question, it is possible to make some rea-

sonable hypotheses. The dominant role of sub-basins

W300, W290, and W280 is not surprising since (a) the

watershed dimension is above the average and (b) they are

located upstream and therefore they influence the down-

stream watersheds. Indeed, the outlet flow length shows the

maximum values. Moreover, the sub-basin W260, charac-

terized by the same distance to the outlet, is ranked in the

italic group in Table 5. So, the contributing area and the

upstream location could be relevant characteristics for

discriminating the role of the sub-basins.

However, making hypotheses for the other two sub-

basins located in the italic group in Table 5 (W240 and

W210) is more challenging. In this case, the time of con-

centration could be the prominent concomitant character-

istic, indeed, for both sub-basins it is very low due to the

steep slopes, therefore, the more concentrated hydrological

response could make their contribution more influential.

In order to properly answer the second question of the

paper, a more descriptive modelling approach should be

applied, as the simplified hydrological model scenario was

only used here to investigate the potential of the impor-

tance measure approach. In future research, a fully dis-

tributed hydrological model will be applied to a large basin

(\ 5000 km2), calibrating it with observed data and

referring to very long synthetic rainfall scenarios (1000

years at 15 minutes temporal resolution). Such realistic and

large case study will allow to investigate on the watershed

role at different spatial scale shedding the light on the

preliminary results here showed.

5 Conclusions

This work has investigated the use of feature importance

measures in hydrology and, specifically, it provides some

preliminary results on their use in dissecting the role of

sub-basins in hydrological response.

Our goal, partially reached with the simplified proof of

concept here presented, has been to verify: (a) whether such

measures are able to identify sub-basins that contribute more

than others to the outlet flow discharge and (b) whether such

sub-basins exhibit distinctive morpho-hydrological charac-

teristics that influence the feature importance analysis. We

use a well-known hydrological model (HEC-HMS) to sim-

ulate flow discharge signals of the sub-basins along with the

flow discharge at the catchment outlet in a watershed located

in Italy. For this synthetic scenario, we have applied seven

feature importance measures, three of them for the first time
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in hydrology, from the machine learning and the global

sensitivity analysis framework. The importance analysis

allows us to identify 3 sub-basins as highly influential, 3 as

moderately influential and 9 as uninfluential. The role of the

three ‘‘dominant’’ sub-basins is confirmed and quantified

comparing their prediction performances to the whole set of

15 sub-basins resulting in explaining the 88% of the vari-

ability of the output response. While the case study appli-

cation is able to distinguish the sub-basins role, as expected,

it only partially contributes to identify the factors that char-

acterize influential sub-basins. Indeed, given the complex

nature of the hydrological response, goal (b) is particularly

challenging and difficult to reach with a simplified model.

Comparing the resulting ranking to some morpho-hydro-

logical properties we can only note that a combination of

slope, CN, distance from the outlet and concentration time

plays a prominent role for predicting the catchment outlet

discharge. Surprisingly, the contributing area has a marginal

role compared to the above mentioned parameters.

Overall, our study demonstrates that feature importance

measures have a great potential for investigating the sub-

basin role, thus positively contributing to a variety of

possible investigation and applications: selecting ‘‘domi-

nant’’ sub-basins for designing Early Warning Systems

(based on discharge), selecting sub-basins where installing

instrumentations, setting automatic procedures for sub-

basin selection in semi-distributed models, calibrating

machine learning tools, and offering another perspective to

answer the theoretical question concerning the distinctive

morpho-hydrological characteristics of sub-basins. A future

research objective will include more complex hydrological

modelling and simulation for supporting in a more general

context the final goal here presented.

Appendices

See Fig. 5 and Tables 7, 8, 9.

Fig. 5 Estimates of seven feature importance measure used in the case study for three hours time response (lag¼ 3)
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Luigi Bocconi within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Agrawal T (2021) Hyperparameter optimization in machine learning:

make your machine learning and deep learning models more

efficient. Apress

Ali G, Oswald CJ, Spence C et al. (2013) Towards a unified

threshold-based hydrological theory: necessary components and

recurring challenges. Hydrol Process 27(2):313–318

Apley D (2018) Aleplot: accumulated local effects (ale) plots and

partial dependence (pd) plots. R package version 1

Apley D, Zhu J (2020) Visualizing the effects of predictor variables in

black box supervised learning models. J R Stat Soc Ser B Stat

Methodol 82:1059–1086

Asano Y, Uchida T, Tomomura M (2020) A novel method of

quantifying catchment-wide average peak propagation speed in

hillslopes: fast hillslope responses are detected during annual

floods in a steep humid catchment. Water Resour Res

56(1):e2019WR025,070

Beiter D, Weiler M, Blume T (2020) Characterising hillslope-stream

connectivity with a joint event analysis of stream and ground-

water levels. Hydrol Earth Syst Sci 24(12):5713–5744

Table 7 Performance measures

estimated for the four ML

models for three hours time

response (lag ¼ 3)

Performance measures Ridge regression Random forest Gradient boosting Neural network

MAE (10�4) 57 54 52 64

RMSE (10�3) 16 17 17 17

R2 (10�2) 95 95 95 94

Table 8 Ranking for each

feature importance measure and

the mean ranking for three hours

time response (lag ¼ 3)

Sub-basin cPFI SPFI ALE-IMP T0 g2 bKS d Mean Ranking

W300 1 1 1 1 1 1 1 1

W290 2 5 2 2 2 2 2 2

W280 3 3 3 3 4 3 3 3

W240 4 4 4 6 3 4 4 4

W210 5 2 5 5 5 5 6 5

W270 10 6 12 4 7 6 5 6

W160 9 8 14 8 8 9 11 7

W200 12 7 15 10 6 8 10 8

W260 14 10 9 7 12 10 7 9

W170 11 9 13 13 9 8 8 10

W190 8 12 6 9 14 12 10 11

W220 6 14 10 14 11 13 14 12

W250 7 15 11 15 10 12 15 13

W230 13 13 8 12 13 14 12 14

W180 15 11 7 11 15 15 13 15

Table 9 Estimates of the

performance measures for the

configurations defined using the

mean ranking for three hours

time response (lag ¼ 3)

Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MAE (10�4) 65 62 60 60 57 54 52 52 52 52 52 52 52 52 52

RMSE (10�3) 21 20 19 19 18 18 18 18 18 18 18 18 18 18 18

R2 (10�2) 92 93 94 94 94 95 95 95 95 95 95 95 95 95 95

1262 Stochastic Environmental Research and Risk Assessment (2023) 37:1247–1264

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Bergstrom A, Jencso K, McGlynn B (2016) Spatiotemporal processes

that contribute to hydrologic exchange between hillslopes, valley

bottoms, and streams. Water Resour Res 52(6):4628–4645

Betson RP (1964) What is watershed runoff? J Geophys Res

69(8):1541–1552
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