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Abstract
Since climate change is a major challenge that affects the environment, especially the hydrological flow, this research has

used the Soil and Water Assessment Tool (SWAT) to study the climate change effects on the runoff in Alvand mountain

basin in Iran. The SWAT model calibration was done based on the SUFI-2 algorithm and the validation results for a

20-year prediction period (2020–2040) showed that the model had high accuracy in simulating the runoffs. CMIP5 models

were used to predict the basin’s temperature and rainfall (the best scenario was Miroc5) and the results showed that the

basin’s future climate conditions increase in temperature and decrease in rainfall were appropriate. According to Miroc5

(RCP8.5), the annual runoff in the mentioned period would decrease by 8.36% compared to the past. In a seasonal scale,

the largest runoff reduction would be 75% in summer (under the Miroc5 (RCP4.5)), and in a monthly scale, it would be

79% in April increasing dramatically to reach 335% in September (under Miroc5 (RCP8.5)). The trend of the future runoff

was investigated using the Mann–Kendall model and the Gresson estimation method. Results showed that there would be

no significant trend in the mentioned period and the trend of the future drought intensity would be increasing under all

studied scenarios.

Keywords Alvand mountain basin � Climate change � Hydrological drought index � Lars-wg6 � Mann–Kendall test �
SWAT

1 Introduction

Climate change is a serious global challenge for the sus-

tainability of water, energy and ecosystem processes and

has very serious effects on the hydrological cycle. It is the

result of the population growth, increased fossil fuel uti-

lization, soil erosion deforestation and, hence, increased

greenhouse gases (Li et al. 2016; Pachauri et al. 2014; Liu

and Merwade 2018; Ashofteh et al. 2015a, b, 2017; Azadi

et al. 2019; Liu et al. 2021). Studying the climate change

parameters plays an important role in forecasting surface

runoffs to identify and manage the water resources because

climate change changes the rivers’ hydrological regimes

and, hence, the frequency and severity of floods making it

necessary to study hydrological processes required for

making environmental management decisions, allotting

water resources, protecting rivers’ ecosystems and restor-

ing rivers (Chu et al. 2013; Sharifi et al. 2017; Chen et al.

2019). The main source of water demand is the runoff

created by streams (Ercan et al. 2020). If water resources

are not available there will be hydrological drought

resulting in severe effects such as: (1) deteriorated water

quality, (2) crop failure due to limited irrigation water, (3)

reduced electricity generation, (4) disrupted river habitats

and (5) limited recreational/economic/social activities

(Mishra and Singh 2010).

Since this source does not sufficient, and the available

fresh water resources are limited, water shortage will
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become a major future problem of the human societies.

Therefore, more accurate prediction of the discharge and

its variations during the year is a basic step in the planning

and management of surface water resources (Shaigan et al.

2011). Naturally, since climate change affects runoffs, the

hydrological drought index will also change in the future;

in other words, the reduced runoff will increase the future

drought periods and severity. Among researchers who have

studied the drought index in previous periods, Babaeian

et al. (2021) introduced a combination of adaptation

pathway (AP) approaches that were used in conjunction

with the SWAT model to evaluate the resilience of adap-

tation measures and design robust adaptation pathways

taking into account the future climate uncertainty in the

Hablehroud River Basin. Salimi et al. (2021) studied the

effects of the climate change on hydrological and meteo-

rological droughts. They used Standardized Rainfall Index

(SPI), SPEI and Standard Stream flow Index (SSI) in the

Navrood and Lighvan watersheds in north of Iran and

observed high correlation between hydrological and

meteorological droughts. Also, they concluded that the

climate change was the most effective factor in the

occurrence of future droughts. Abdulai and Chung (2019)

studied the meteorological and hydrological droughts

caused by the climate change under the RCP4.5 scenario in

the Cheongmicheon watershed in South Korea. Their

Fig. 1 The site Location of Alvand mountain basin, Iran
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results referred to the occurrence of short-term severe or

extreme droughts according to the standardized rainfall

evapotranspiration index (SPEI) and streamflow drought

index (SDI). Kamali et al. (2017) examined the climate

change in the Karkheh river basin. They used the SWAT

distribution hydrological model for runoff projection. They

proposed the Drought Hazard Index (DHI), which is a

combination of meteorological, hydrological, and agricul-

tural droughts, and their results indicated the occurrence of

drought based upon the DHI index. Studies conducted, so

far, on the climate change effects on basins’ runoffs

include those of Xue et al. (2021), Kiprotich et al. (2021),

Su et al. (2021), dos Santos et al. (2021), Chang and Su

(2021), Lian et al. (2021), Li et al. (2021), Escanilla-

Minchel et al. (2020) and Ridwansyah et al. (2020), just to

mention a few.

Studying the effects of the climate change on runoff

requires the latter to be simulated by hydrological models

which are accurate tools necessary for the sustainable use

of water resources and studying hydrological processes

(Abbaspour et al. 2015). A comprehensive, accurate

hydrological model available for studying the hydrological

and biogeochemical effects of the climate change is the

Semi-Distributional Soil & Water Assessment Tool

(SWAT) which is an integrated, complex, basin-scale

model capable of analyzing data annually, monthly, daily

and hourly (Arnold et al. 1998). It was first presented by

Dr. Jeff Arnold (Arnold 1994) for the United States Agri-

cultural Research Service to predict the effects of man-

agement practices on water, sediment, and so on in large

and complex basins with different land uses (Arnold et al.

1998; Shaigan et al. 2011; Neitsch et al. 2011).

To date, several studies have used SWAT to investigate

runoffs; Alansi et al. (2009) used it to simulate runoffs to

study the land-use variation effects upstream of Bernam

basin in Malaysia. They used R2 and Nash-Sutcliff (NS)

impact coefficients to evaluate the simulated model and

showed, through their results, that SWAT was highly

capable of simulating and predicting runoff flows under

humid tropical conditions.

Goyal et al. (2018) used SWAT in different DEMs to

simulate runoff and sediment of the Narmada and Teesta

fall basins in India and showed that different DEMs did not

have meaningful effects on runoff results while their

effects on the sediment simulation results were significant.

Kaffas et al. (2018) used the Composite Mathematical

Model (CMM) – Arc SWAT composite mathematical

model for the modeling of hydro morphological processes

in the Nestos river basin with an area of 840 km2 in the

mountainous part of Greece. They measured the discharge

and sediment rates by SWAT and CMM methods and

showed that composite model modeled sediments less

accurately than CMM, but simulated runoffs satisfactorily.

Aiming at investigating the effects of climate on runoff,

flood and drought downstream of Kan semi-arid watershed,

west of Tehran, Ahmadi et al. (2019) used ANN, SWAT

and IHACRES used ANN, SWAT and IHACRES to sim-

ulate rainfall and runoff under daily, monthly and annual

scale for the period of 1987–1995. They suggested ANN

and IHACRES because the basin lacked information and

recommended SWAT for studying floods, runoffs and

basin’s physical properties. Chen et al. (2019) examined

the effects of parameter uncertainty and structure of

hydrological models in daily, monthly and annual land-use

variation studies and simulated the Xitiaoxi Basin runoff in

China using SWAT and HSPF hydrological models; the

HSPF showed more monthly and annual runoff variations

than SWAT. Differences in hydrological simulations could

have been due to different equations used for both models.

De Andrade et al. (2019) used SWAT to simulate the soil

moisture and runoff in Brazil’s northeastern basin. They

examined the related uncertainty data in hydrometric sta-

tions and found NS coefficients of 0.71–0.92 and 0.53–0.76

for annual calibration and validation and 0.55–0.78 and

0.62–0.72 for monthly calibration and validation, respec-

tively. Predicting the river discharge, where rainfall and air

temperature are vital parameters, is an important issue in

water resources engineering as regards the resource plan-

ning; in other words, the surface runoff discharge can be

predicted by predicting the air temperature and rainfall

(Khazaei and Mirzaei 2013) one method for which, for

future time periods, is using statistical exponential micro-

scale models. Some of the studies conducted, so far, on the

effect of climate change on basins’ runoffs using the pre-

dictions of exponential micro-scale models and simulations

of the SWAT model are as follows: Liu et al. (2020) used

SWAT to study the effects of climate change on the surface

water in the South-Central Valley, California, for the year

2020. In this study, they used four climate models (Had-

GEM-ESCMIP5, CNRM-CM5, CanESM2, Miroc5) and

two emission scenarios (RCP4.5, RCP8.5) and showed, by

their results, that the peak river flow was expected to

increase 0.5–4 times in the coming decades under warm

weather conditions and occur 2–4 months earlier in the

year due to snow melting. They also concluded that in the

near future (by the end of the twenty-first century), the

snow cover would gradually decrease with lower rates at

lower altitudes and with higher rates at higher altitudes.

According to their predictions, the surface water would

increase in the Valley, but increased time variations (more

wet seasons and drier dry seasons) would cause new

challenges for the supply management. They further

emphasized that the remote measurement-based snow

water equivalent (SWE) data could fill the current gap of

the SWE observations in a limited area to improve the Swat

snow setting and better predict the climate change effects
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in semi-arid and snowy watersheds. Tan et al. (2017) used

CMIP5 and SWAT models to study the Kelantan River

catchment area in Malaysia. In this study that included 36

micro-scaled weather forecasts from 5 general circulation

models (GCMs) under 3 RCP scenarios (2.6, 4.5, 8.5) in

the SWAT calibrated model for the 2015–2044 and

2045–2074 periods, they showed that monthly rainfalls

increased during wet seasons and reduced during dry sea-

sons concluding that the monthly surface flows were likely

to increase in November, December, and January and

reduce slightly between June and October during the

2015–2044 period. These findings can serve as a scientific

reference to develop better climate-adaptation strategies.

Using a set of CMIP5 GCMs, Wodaje et al. (2021) eval-

uated the climate-change uncertainty effects on the Bilate

River flood flow, Ethiopia, SWAT-simulated the water

flow and showed, statistically, that the model predicted the

flow logically. The annual discharge increased consider-

ably for all time periods throughout the century; the flow

increases under RCP8.5 scenario (compared to RCP4.5)

was nearly 42.42% during the 2080 period. Andrade et al.

(2021) used SWAT, two RCMs (Eta-Miroc5, Eta-Had-

GEM2) and two scenarios (RCP4.5, RCP8.5) to evaluate

the future climate-change effects on Mundaú River Basin

water resources, Brazil, for three time periods and showed,

by climate models’ predictions, that, in general, the Mun-

daú River Basin would experience significant annual

rainfall reductions of between 0.4% (1,087.45 mm) and

25.3% (815.59 mm) in both scenarios, respectively.

Studies conducted so far on the effects of climate

change on runoffs in mountainous basins are limited;

however, none has addressed the prediction of the hydro-

logical drought index in these basins. Therefore, this

research is aimed to study the effects of the climate change

on runoffs, evaluate the hydrological drought index and

examine the flow trend in the Alvand mountain basin in

Iran. To this end, SWAT and CMIP5 climate models were

used to simulate the basin runoff and predict the climatic

parameters, respectively. This study is mainly aimed to: (1)

calibrate SWAT and do a daily-monthly runoff comparison

of 4 hydrometric stations in the Alvand mountain basin, (2)

predict the temperature and rainfall in 2020–2040 period in

five meteorological stations and (3) simulate the runoff of

four stations using the predicted data and calibrated

parameters and compare the observed runoff with that

predicted for future periods, (4) investigate the runoff trend

using Mann–Kendall method and (5) evaluate the future

hydrological drought index and compare it with that of the

past.

2 Materials and methods

2.1 The study area

The Alvand mountainous basin, is located in Hamedan

province and a sub-catchment area in the western part of

Iran, which is formed along with the Zagros Mountain

range, and its other name is Central Zagros with an area of

1133.62 km2 along the longitude 48 Æ 360to 48 Æ 70North and

the latitude 34 Æ 280to 34 Æ 560East. The minimum altitude in

this area is 1582 and the maximum altitude is 3555 m

above sea level Fig. (1).

Hamedan synoptic stations have reported 8.36, 6.9

and - 6.29 �C for, respectively, the absolute maximum,

average and absolute minimum air temperature in the

Alvand mountain basin; the warmest months are July and

August (maximum 35 �C) and the coldest are January and

February (average - 4.25 �C). Reports also show that the

annual rainfall is more than 300 mm varying in different

months with a maximum of 95 mm in April, 82 mm in

May and 81 mm in June, and varying seasonally in other

months (http://www.irimo.ir).

2.2 SWAT model

To simulate the runoff flow, this study has used SWAT

which is a semi-distribution physical hydrological model

designed to predict long-term runoffs, sedimentations and

chemical-agricultural products in a watershed. It does the

simulation of hydrological processes in two phases: (1)

ground or soil profile and (2) routing, respectively (Arnold

et al. 1998). Phase ground calculates the inflow of water,

sediments, nutrients and pesticides to the main channel in

each reservoir based on the water balance concept that

considers such important processes as rainfall, ET, seep-

age, surface runoff, lateral flow and groundwater flow, and

phase routing uses the main channel to connect all sub-

basins and simulates the water and sediment movement

towards the basin outlet (Cibin et al. 2010; Chen et al.

2019; Arnold et al. 1993; Gebremariam et al. 2014). In

SWAT, interflow is calculated using a linear function that

consists of slope length and angle, saturated conductivity,

drainable porosity and the amount of water that is stored in

the saturated zone (Cornelissen et al. 2013). SWAT sim-

ulates hydrological cycles based on the following water

balance Eq. (1):

SWt ¼ SW0 þ
X

Rday � Qsurf � Ea �Wseep � Qgw

� �

ð1Þ
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where SW0 and SWt (mm) are the initial and final soil

water and Rday, Qsurf, Ea, Wseep and Qgw (mm) are the

rainfall, runoff, ET, water seepage to the upper soil layer

and return flow in the ith day, respectively.

2.3 SWAT input data

SWAT uses the digital elevation model (DEM) and Raster

primary functions through the Spatial Analyst feature in the

Fig. 2 a Digital elevation model of the study area, b Hydrometric stations and flow direction, c Division of Sub-basins, d Land use map
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ArcGIS software to design flow networks and basin

boundaries (Abbaspour et al. 2007). To this end, the

DEM10 map was first obtained from the Natural Resources

Department (Section of Studies), Hamedan Province, and

then used for modeling purposes (Fig. 2a). As the network

of waterways and sub-basins was not previously identified,

we formed it by the ‘‘flow direction and accumulation’’

technique and then examined it in the Google Earth soft-

ware (Fig. 2b). This network and its basins were divided

into 74 sub-basins (Fig. 2c). Since the provincial soil map

did not exist, use was made of a global soil map and the

land use map (Fig. 2d) was obtained from the mentioned

Unit and introduced to the model in the GIS.

Characteristics of the measuring stations of the meteo-

rological and runoff parameters in the study basin are listed

in Table 1. In this catchment, there were two synoptic

stations, Hamedan and Tuyserkan, that used the daily data

on radiation, rainfall, air humidity, wind speed, and air

temperature in the 2003–2017 period, and five hydrometric

stations (Fig. 2b), Ekbatan, SalehAbad, Maryanaj, Pole

Aliabad, and TaghsimAb, with the daily information in the

same period obtained from the Water Resources Depart-

ment; although Ekbatan Station was not inside the study

area, its daily rainfall data were used because it was quite

close to the area. Data introduction to the model should be

regular with no blanks or else the model will become

erroneous; here, the model received 65,700 meteorological

data.

Performance of the mentioned model was studied and

compared using such coefficients as: (1) Correlation, (2)

NS, (3) PBIAS and (4) RMSE (Liu et al. 2021).

2.4 Future climate scenarios (climate forecast
data)

To assess the climate change effects on runoffs as well as on

the hydrological drought, the Lars-wg6 model was used to

downscale and generate future daily rainfalls and tempera-

ture data through different general circulation models

(GCMs). Two scenarios (RCP4.5 and RCP8.5) and 4 CMIP5

models (GFDL-CM3, Ec_Earth, Hadgem2_ES and Miroc5)

were used to evaluate andmodel the rainfall and temperature

of the 5 meteorological stations. While the first three repre-

sented the ‘‘average temperature and rainfall’’, ‘‘cold and

humid climate’’ and ‘‘hot and dry climate’’, respectively, all

4 covered the CMIP5 model forecast results (Table 2).

Each CMIP5 model considered varying emission rates

of solar greenhouse gases, human activities, volcanic

eruptions, emission of short-term species, and natural/hu-

man aerosols known, also, as RCP-representing concen-

tration routes. This study considered RCP4.5 and RCP8.5

emission scenarios of each CMIP5 model both of which are

commonly used by researchers because RCP4.5 is an

intermediate scenario while RCP8.5 is generally consid-

ered as the worst climate-change scenario (Liu et al. 2021).

In short, to estimate the future runoff in SWAT, the men-

tioned models and scenarios.

2.5 Mann–Kendall trend test

In this study for investigate the trend of runoff Mann–

Kendall test was used. The Mann–Kendall method

explained briefly next.

Table 1 Specifications of the

stations used in the area
Station type Station name Latitude Longitude Elevation (m) Data collection period

Synoptic Tuyserkan 34.33 48.26 1783.2 2003–2017

Synoptic Hamedan 34.51 48.32 1741.5 2003–2017

Hydrometric Ekbatan 34.758 48.6 1935 2003–2017

Hydrometric SalehAbad 34.924 48.338 1786 2003–2017

Hydrometric Maryanaj 34.825 48.417 1979 2003–2017

Hydrometric Pole Aliabad 34.515 48.514 2098 2003–2017

Hydrometric TaghsimAb 34.766 48.45 2088 2003–2017

Table 2 Specifications of 4 models selected from the CMIP5 collection for the present study (IPCC 2013)

No. Model Institution/Country Spatial

resolution

1 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 2.5 9 2.0

2 EC_EARTH EC_EARTH consortium published at Irish Centre for High End Computing, Netherlands/Ireland 1.28 9 2.5

3 Hadgem2_ES Met Office Hadley Centre, UK 1.875 9 1.25

4 Miroc5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental

Studies, and Japan Agency for Marine-Earth Science and Technology, Japan

1.41 9 1.39
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In the MK (denoted by MK1) test, the first step is the

calculation of the S statistics using the observations and

employing the following Eq. (2) (Mann 1945; Kendall

1975):

Z ¼
Xn�1

i¼1

Xn

j¼1

sgnðxj � xiÞ ð2Þ

where xj is the value of jth data, n is the number of data,

and sgn (h) is the sign function, which is defined as:

sgnðhÞ ¼
1 if hi0
0 if h ¼ 0

�1 if hh0

8
<

:

9
=

; ð3Þ

If n[ 8, the S statistics has a normal distribution having

E(S) = 0 and following variance:

VðsÞ ¼ nðn� 1Þð2nþ 5Þ � tiðti � 1Þð2ti þ 5Þ
18

ð4Þ

where ti is the number of observations in the ith tied class,

and m is the total number of tied classes. The score of MK

test or Z statistic is calculated as follows:

Z ¼

S� 1ffiffiffiffiffiffiffiffiffi
VðsÞ

p if Si0

0 if S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffi
VðsÞ

p if Sh0

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð5Þ

If the (-Z1-a/2 B Z B Z1-a/2) condition is satisfied, H0

(null hypotheses) is accepted, which means there is no

significant trend in the tested time series; otherwise, H1

(alternative hypothesis) is accepted, which means there is a

significant trend in time series at a significance level.

2.5.1 Sen’s estimator

In this study, the magnitude of trends is calculated using

the Sen’s estimator (Theil 1950; Sen 1968) method using

the following Eq. (6):

b ¼ Median
xi � xj
i� j

� �
8jhi ð6Þ

where xj and xi are the jth and ith observations in the tested

time series. The positive values of b represent the upward

trends, whereas the negative values indicate the downward

trends.

2.6 The streamflow drought index (SDI)

For determination of the severity and weakness of hydro-

logical drought, an index similar to standardized rainfall

index (SPI) called streamflow drought index (SDI) is used.

This index is based on the monthly standard normal flow

and was first introduced by Nalbantis and Tsakiris (2009).

In the present study, SDI was calculated using a method

completely similar to SPI (McKee et al. 1993). Therefore,

for calculating this index, the same calculations were made

except that discharge monthly series were used instead of

rainfall data as the input. Accordingly, first, the time

window was introduced for the monthly series of river

discharge. The time window shows the multi-monthly

cumulative value of the river flow discharge. For example,

the 3-month time window of June-2014 is the cumulative

value of the streamflow values of the months April, May,

and June of 2014 or the 12-month time window of June-

2014 is the monthly cumulative streamflow values of July-

2013 to June-2014. A cumulative monthly time window is

derived based on the following equation:

Vi;k ¼
X3k

j¼1

Qi;j; i ¼ 1; 2; . . .; j ¼ 1; 2; . . .12;

k ¼ 1; 2; 3; 4

ð7Þ

where Vi;k is the cumulative streamflow value of the kth

monthly period in ith hydrological year, j denotes the

month within the hydrological year and Qi;j is the monthly

streamflow (Myronidis et al. 2018; Tabari et al. 2013).

After this step, by comparing different probability distri-

butions, the fittest distribution was applied on the data in

each of the time windows and the probability correspond-

ing to each average discharge value was calculated. Sub-

sequently, based on the principle of distribution

transformation, the mentioned probability was transformed

into standard normal distribution and new series of data

were obtained that had a standard normal distribution with

a mean of zero and a variance of 1. The SDI calculation

SDIi;k ¼
vi;k � vk

sk
ð8Þ

where vk and Sk are the mean and standard deviation of the

cumulative streamflow volumes, SDIi;k is the value of

streamflow drought index for kth monthly-based time

window (Malik et al. 2019; Borji et al. 2016). According to

Table 3, the severity and weakness of hydrological drought

(or wet) condition, can be classified in the resulting series.

The present study’s general flowchart is shown in

(Fig. 3).

3 Result

3.1 Calibrated parameters

The calibration step of a hydrological model is subjective

and no automatic algorithm can replace the researcher’s

knowledge in relation to their study area. Therefore, the
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calibration procedures and uncertainty analysis are closely

connected, and no calibration should be performed without

quantifying the degree of uncertainty associated with the

model prediction (Abbaspour et al. 2015; de Andrade et al.

2019).

This study has used period of 2003 to 2008 as the Warm

up period (because these 6 years had high positive effects

on the authors’ statistical results), 2009–2014 for calibra-

tion and 2015–2017 for validation. As the study basin was

mountainous and obtaining results was quite difficult, input

parameters were considered separately for each sub-basin,

which were totally 74 and similar ones were placed in one

direction so that instead of setting one parameter for every

sub-basin and finding an optimal value for it, only one was

obtained for similar sub-basins that were totally 12; same

was repeated for the soil map. Parameters used to simulate

monthly and daily runoffs, their description and their cal-

ibrated values are listed in Table 4.

In the present study, the Alvand mountain basin has 6

types of land use, and 3 types of soil. In this range, the

hydrological group of the basin soils is in the B and C

groups according to the soil permeability, i.e. the perme-

ability of the range is between 3.8 to 7.5 (mm per hour).

Besides the characteristics of the basin’s surface cover are

Fig. 3 The proposed modeling framework

Table 3 Classification of hydrological drought severity for stream

flow Drought Index

SDI value Class

2\ Extreme wet

1.5 to 2 Severe wet

1 to 1.5 Moderate wet

- 1 to 1 Normal

- 1.5 to - 1 Moderate drought

- 2 to - 1.5 Severe drought

- 2[ Extreme drought
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arable lands, grasslands, gardens or forests, there are also

unused areas which are bare, urban, rocky and mountain-

ous. In our study, the calibrated value of the curve

parameter (CN) for 12 similar sub-basins ranged from 35 to

98, where high CN values show the low permeability of the

soil and therefore more runoff. Parameters obtained in this

basin show different soil types and land uses. While this

calibration results for the CN parameter is consistent with

those of Lin et al. (2014), the related values obtained in de

Andrade et al. (2019), Zettam et al. (2017) and Hammouri

et al. (2017) studies ranged from 35 to 98. The value of the

Baseflow alpha-factor (ALPHA_BF) varied from 0 to

1 day, with a calibrated value of 0.040, which was con-

sistent with the results of de Andrade et al. (2019) and

Fereidoon et al. (2019). Groundwater delay time

(GW_DELAY) can vary from 0 to 500 days, which is the

default limit provided by the SWAT model. In this study

basin, the calibrated value (with 1333.62 km2) was

approximately 35 days, while de Andrade et al. (2019),

recorded 135 days in the Mundaú River basin (with an area

of 4090.39 km2), as well as Xue et al. (2014) in China (with

an area of 8,102 km2) obtained a calibrated value of

101 days whilst analyzing the surface current uncertainty

parameter and sediment production in the Huolin Basin. On

the other hand, Blainski et al. (2017) recorded a value of

0.65, indicating that the time interval required for under-

ground feeding in the Camboriú River Basin (195 km2) was

less than one day. These differences emphasize the sig-

nificant role of drainage zone size in the GW_DELAY

parameter. The water depth in shallow aquifers required for

return flow (GWQMN) can vary from 0 to 5000 mm. The

return flow from groundwater is related to rainfall and

particularly evapotranspiration, since it is strongly depen-

dent on capillary flow. A calibrated value of 239.9 mm

indicates that the water level must be equal to or greater

than approximately 0.24 m in depth for the return flow in

the catchment areas of the region. de Andrade et al. (2019)

obtained the GWQMN parameter value of 2686 mm.

The HRU_SLP (Average slope steepness) calibration

mean value of was 1.61 in this study, which was essentially

61% of the initial value of each subset. The permissible

value of RCHRG_DP deep aquifer percolation fraction

varies between 0 and 1%. Its calibrated value for the total

sub-basin is 0.9 Fereidoon et al. (2019) obtained the

RCHRG_DP value in the Karkheh Basin of Iran between

0.25 and 0.64. Bhatta et al. (2019) obtained this value in the

Tamor River Basin in Nepal 0.56. The Average slope

length of the SLSUBBSN slope is between 10 and 150, and

in this study, it was 94.42. Surface runoff lag time coeffi-

cient (SURLAG) can alter from 1 to 24, the calibrated

value in this area was 12.985. Semiromi and Koch (2019)

obtained the SURLAG value in the Gharehsoo River basin

in Iran at 3.63. Bhatta et al. (2019) obtained this value in

the Tamor River basin in Nepal 0.56. Aliyari et al. (2019)

obtained the calibrated amount of SURLAG for the Pallet

River Basin in Colorado at 6,985. The calibration value of

the manning coefficient (CH_N2) was 0.062 in this study,

which shows the effluents in the heavy clay-silty soil are

Table 4 SWAT model parameters’ calibrated and adjusted values

No. Parameter Description Initial range Calibrated value

1 CN2 Curve Number, moisture condition II 30–90 35–98

2 ALPHA_BF Baseflow alpha factor (days) 0–1.0 0/0403

3 GW_DELAY Groundwater delay, days 0–500 34.9778

4 GWQMN Depth of water in shallow aquifer required for return flow, mm 0–5000 239.961

5 HRU_SLP Average slope steepness 0–1.0 1.610

6 RCHRG_DP Deep aquifer percolation fraction 0–1.0 0.9

7 SLSUBBSN Average slope length 10–150 94.4244

8 SURLAG Surface runoff lag time 1–24 12.985

9 CH_N2 Manning’s ‘‘n’’ value for the main channel 0.016–0.2 0.0627

10 CH_K2 Effective hydraulic conductivity in main channel alluvium - 0.01–500 67.585

11 SOL_AWC Available soil moisture capacity, mm mm_1 - 0.6–0.6 - 0.13–0.58

12 SOL_K Saturated hydraulic conductivity, mm h_1 0–2000 123.686–1159.6

13 SOL_BD Moist bulk density 0.9–2.5 1.302–2.24
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almost uniform with the floor and the cross section of the

effluents (Chow and Patterson 1959). de Andrade et al.

(2019) found the calibration value of CH_N2 to be 0.34,

and the main features of this channel are very grassy,

torrential streams with heavy wood and plant bases. Rajib

et al. (2016) found adjusted values CH_N2 from 0.02 to

0.15 in the studied basins. Zhang et al. (2015) obtained this

parameter in the Jinjiang River Basin in China at 0.03.

Pereira et al. (2014) obtained the CH_N2 value of the

Headwater basin in southern Brazil at 0.011. The calibrated

value of the CH_K2 Effective hydraulic conductivity in

main channel alluvium in this study was 67.57.

For calibration of the Available soil moisture capacity

(SOL_AWC), values can vary from - 60% to ? 60%.

This value varies from 0.04 to 0.12 mm/mm for different

soil types. The calibrated value of SOL_AWC for the 5

similar sub-basins decreased from ? 58% to - 13%. The

highest is between 0.063 mm/mm and 0.19 mm/mm and

the lowest is between 0.0348 mm/mm and 0.1044 mm/

mm.

de Andrade et al. (2019) indicated that the SOL_AWC

value for all soils between 0.053 mm/mm and 0.158 mm/

mm. Aliyari et al. (2019) obtained the calibrated value of

SOL_AWC for the Pallet River Basin in Colorado at

0.9136. Chen et al. (2019) obtained the calibrated value of

SOL_AWC between 0.025 and 0.35. The calibration value

of saturated hydraulic conductivity (SOL_K) in this study

was between 123.68 and 1159.6 for pasture and basin

coverage. According to Andrade et al. (2013), saturated

hydraulic conductivity usually presents a high spatial

variability, and the SWAT model does not take into

account this spatial distribution but, rather, a mean value

for a given soil type. Then, the model provides, from the

optimization process, the maximum value allowed in the

calibration step.

The Moist bulk density (SOL_BD) varies from - 50%

to ? 50%. This amount has increased to 222 percent for

the same 5 sub-basins and also decreased to 14 percent.

Fereidoon et al. (2019) obtained SOL_BD values in the

Karkheh basin of Iran between 0 and 0.23.

3.2 Calibration and validation of SWAT

Comparison between the simulated and observed hydro-

graphs is an important procedure to evaluate model cali-

bration (Andrade et al. 2013; Blainski et al. 2017).

Figures 4 and 5 show the hydrographs observed and sim-

ulated by the SWAT model, in the calibration and valida-

tion phases, for the four streamflow gauge stations of the

Alvand mountain Basin (SalehAbad, Tooijin, TaghsimAb

and Pole Aliabad) for daily and monthly time steps,

respectively. For both time steps, a satisfactory fitting

between measured and simulated hydrographs was

observed. The model has simulated the studied area well,

but has been relatively erroneous in simulating the runoff

peak.

Table 5 shows the comparison among the statistical

indicators (R2, NS and PBIAS) for discharge calibration

and validation using the SWAT-CUP semiautomatic cali-

bration method. Values of R2 ranged from 0.48 to 0.76 for

daily and monthly flow calibration, and from 0.38 to 0.70

for validation; as shown, the difference between the two is

not much. The NS coefficient ranged from 0.4 to 0.7 for

monthly calibration and from 0.4 to 0.52 for daily cali-

bration; the reason for less daily accuracy factor than

monthly is that the data calibrated daily at each station are

2922, but for the monthly case they are 96. According to

the NRMSE coefficient that shows the percent error, the

highest calibration and validation error rates are, respec-

tively, 17.5 and 19.7% for the monthly data of the Tagh-

simAb, and the lowest are, respectively, 8 and 48.47% for

the daily data of Maryanaj station. These results show that,

in general, the SWAT performance is good and satisfactory

for rivers flowing from the Alvand mountain basin based

on Moriasi et al. (2007) proposed classification.

3.3 Evaluating the rainfall and temperature
parameters and simulating the future runoff

The statistical data, including the daily rainfall for Hame-

dan, Tuyserkan, SalehAbad, Maryanaj and Ekbatan sta-

tions and the minimum and maximum temperatures for

Hamedan and Tuyserkan stations were gathered in period

of 2003 to 2017, then used as input Lars-wg model to

simulate future rainfall and temperature based on the

CMIP5 models for period of 2020 to 2040.

Table 6 lists the R2, NS, PBIAS, RMSE and NRMSE

error criteria for the selected models. The results show that

Miroc5, with the lowest error, is the best model to predict

the rainfall and temperature in the study area. The R2 and

NS coefficients obtained in simulating meteorological sta-

tion data by Miroc5 model with RCP8.5 scenario have

values above 0.9, which are good results, and the RMSE

coefficient shows that the rainfall and the minimum and

maximum temperatures are, in a monthly scale, erroneous

by about 2.81, 0.17 and 0.29 mm, in Hamedan station,

4.32, 0.27 and 0.21 in Tuyserkan station and 5.52, 4.42 and

3.82 in Ekbatan, SalehAbad and Maryanaj stations,
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respectively. In Hamedan station, the rainfall and, the

minimum and maximum temperatures are erroneous by

5.3, 0.8 and 0.9%, in Tuyserkan station these values are

5.4, 1.2 and 0.7% and in Ekbatan, SalehAbad and Maryanaj

stations they are 8.6, 8.3 and 7.2%, respectively.

The average monthly rainfall and, the minimum and

maximum temperatures of the five meteorological stations,

Fig. 4 Comparison of the simulated daily runoffs with those observed in SalehAbad, TaghsimAb, Maryanaj and pole Aliabad stations
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which simulated by the outputs of the CMIP5 model

(Miroc5) with the RCP8.5 scenario in period of

2020–2040, are shown in Fig. 6. Where the rainfall is the

lowest in June to September (dry season) and the temper-

ature is, contrarily, at its maximum possible.

Figure 7 shows the predicted runoff with SWAT for

Pole Aliabad, Maryanaj, TaghsimAb and SalehAbad

stations under CMIP5 models (GFDL-CM3, EC_EARTH,

Hadgem2_ES, Miroc5) and two scenarios (RCP4.5 and

RCP8.5). According to the Fig. 7, it can be concluded that

the predicted runoff under Miroc5 model is more than

runoff under other models in all the stations. But, the

lowest predicted runoff in the study area is under GFDL-

CM3 model.

Fig. 5 Comparison of the simulated monthly runoffs with those observed in SalehAbad, TaghsimAb, Maryanaj and pole Aliabad stations
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The Z statistical values for Pole Aliabad, TaghsimAb,

Maryanaj and SalehAbad stations simulated under RCP4.5

and RCP8.5 scenarios are listed in Table 7 where the runoff

from 2020 to 2040 has a positive trend in most stations

under different scenarios, but has no significant trend in 90,

95 and 99% probabilities in any of the stations; the highest

runoff increase belongs to RCP4.5 and RCP8.5 scenarios in

SalehAbad station with the GFDL-CM3 model. In Table 8

that shows the S statistical values of the trend line slope

criterion, the highest slope belongs to SalehAbad station

(1.46) for the GFDL-CM3 model under RCP4.5 and

RCP8.5 scenarios; this slope is positive showing a runoff

increase, but only a little.

To check the uncertainty range of the present study’s

climate change models on runoffs resulting from the

SWAT model, first their outputs were produced in the form

of monthly average temperature and rainfall, then their

differences were calculated (for each model) using the

average of the base period and their variations were plotted

as box diagrams and, finally, the box plot resulting from the

runoff output of the SWAT model, which is under the

temperature and rainfall of climate change models, was

drawn. Figure 8 shows the box plot of the temperature and

rainfall predicted by Miroc5 model with RCP8.5 scenario,

which was the best model for the study area. As shown,

rainfall variations are high in wet season and low in dry

season (Jun, July and August). The highest variations

belong to Ekbatan Station in October; the highest/lowest

coefficient of temperature variations relate to the months of

winter/summer. In Fig. 9 that shows the box plot of the

runoff predicted by SWAT model under the Miroc5 cli-

mate change model with the RCP8.5 scenario, an increase

in the coefficient of rainfall/temperature variations in wet

seasons also increases the coefficient of the variations of

the runoff simulated with the SWAT model, but in dry

seasons (June, July, Aug. and Sept.), runoff variations are

more than the temperature and rainfall variations; most

variations belong to the TaghsimAb Station in Dec. and

June.

Table 9 shows the percentage of predicted runoff vari-

ations in the period of 2020–2040 compared to the period

of 2003–2017 under the CIMIP models. As shown, under

Miroc5 (RCP8.5) model, the surface runoff in Pole Ali-

abad, Maryanaj, TaghsimAb and SalehAbad hydrometric

stations is, respectively, 6.55, 2.56, 12.69 and 11.65% less

in period of 2020–2040 compared to 2003–2017. The lar-

gest decrease in runoff in the period of 2020–2040 com-

pared to the period of 2003–2017 is related to the GFDL-

CM3 (RCP8.5) model (75.68%). As whole, under all

models, the amount of average runoff decreases compared

to the past.

Table 10 shows the runoff variations in all seasons in

compared to the past under the models; as shown, the

runoff under Miroc5 (RCP8.5) model increases in the basin

by 99% and 165% in autumn and summer in compared to

the past, respectively, but in the spring, runoff decreases by

67%. The highest runoff reductions found by GFDL-CM3

model under RCP4.5 and RCP8.5 scenarios are, respec-

tively, - 60% and - 69% for winter. For spring, too, the

highest reduction is related to the same model under the

same scenarios, but for summer, it is related to Had-

gem2_ES model with the same scenarios and amount,

respectively, to - 79% and - 40%. Among all seasons,

the highest runoff reduction, compared to the past, is -

75% for autumn. As whole, on a seasonal scale under all

models, the amount of runoff decreases compared to the

past, except under the scenario of RCP4.5 in the fall season

which is unchanged (0%).

Table 11 shows the runoff variations in all months in

compared to the past under the selected models; as shown,

Table 5 A summary of the daily

and monthly time step

calibration and validation of the

SWAT model statistics in the

four streamflow gauge stations

of the Alvand mountain basin

Statistics SalehAbad Maryanaj TaghsimAb Pole Aliabad

Daily Monthly Daily Monthly Daily Monthly Daily Monthly

Calibration

R2 0.66 0.76 0.52 0.55 0.48 0.65 0.51 0.52

NS 0.52 0.7 0.47 0.50 0.40 0.50 0.41 0.42

PBIAS -18.6 -30.8 12.5 19.8 36.9 29.8 15.6 -26.0

RMSE 0.450 0.317 0.187 0.165 0.188 0.167 0.217 0.202

NRMSE 7.00% 9.44% 8.00% 14.08% 10.87% 17.5% 10.89% 15.89%

Validation

R2 0.47 0.70 0.55 0.46 0.45 0.44 0.56 0.38

NS 0.47 0.68 0.44 0.46 0.36 0.44 0.38 0.38

PBIAS 14.3 4.2 6.7 20.3 11.8 5.0 12.5 22.6

RMSE 1.274 0.28 0.529 0.159 0.532 0.114 0.615 0.148

NRMSE 30.80% 15.37% 48.47% 21.13% 34.47% 19.70% 18.58% 21.73%
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Table 6 Summary of Alvand mountain basin model statistics with RCP8.5 and RCP4.5 scenarios

Statistics Hamedan Tuyserkan Ekbatan SalehAbad Maryanaj

Rain Temp. (min) Temp. (max) Rain Temp. (min) Temp. (max) Rain Rain Rain

GFDL-CM3 (RCP4.5)

R2 0.89 0.9 0.89 0.9 0.87 0.77 0.87 0.86 0.89

NS 0.8 0.5 0.7 0.7 0.6 0.6 0.5 0.5 0.6

PBIAS -282.0 -402.4 555.2 -438.1 -244.5 538.3 -413.5 -493.9 -390.3

RMSE 11.38 7.51 4.16 16.29 6.44 4.85 13.19 14.45 12.82

NRMSE 16.70% 35.50% 14.90% 20.20% 19.15% 25.10% 20.40% 22.80% 19.60%

GFDL-CM3 (RCP8.5)

R2 0.86 0.91 0.7 0.89 0.91 0.77 0.91 0.86 0.83

NS 0..5 0.5 0.7 0.6 0.6 0.6 0.6 0.5 0.4

PBIAS -525.8 -532.9 -85.2 -423.2 -424.6 -244.5 512.2 -358.1 -549.7

RMSE 14.65 15.81 5.80 4.77 18.34 6.58 4.37 13.83 15.63

NRMSE 29.70% 23.20% 22.20% 25.20% 28.00% 23.00% 12.70% 21.40% 27.20%

EC_EARTH (RCP4.5)

R2 0.96 0.9 0.86 0.93 0.93 0.83 0.76 0.82 0.85

NS 0.9 0.7 0.7 0.7 0.9 0.5 0.4 0.4 0.5

PBIAS -104.4 -351.1 -241.5 373.4 -48.1 -344.1 -1210.0 -580.3 -549.8

RMSE 4.65 12.062 5.516 3.77 7.53 7.47 5.53 15.6 15.25

NRMSE 70.00% 20.00% 21.10% 13.00% 8.80% 27.00% 29.20% 31.40% 30.00%

EC_EARTH (RCP8.5)

R2 0.95 0.87 0.91 0.89 0.98 0.9 0.93 0.85 0.96

NS 0.9 0.6 0.8 0.8 0.7 0.8 0.8 0.5 0.9

PBIAS -130.7 -139.1 -155.1 -124.9 -426.9 -123.9 657.9 -415.2 -114.4

RMSE 6.14 13.96 4.28 4.74 14.48 4.53 3.53 13.41 4.96

NRMSE 9.20% 16.90% 16.10% 17.90% 22.10% 15.90% 11.90% 20.80% 7.50%

Hadgem2_ES (RCP4.5)

R2 0.89 0.81 0.87 0.97 0.95 0.82 0.92 0.96 0.77

NS 0.7 0.6 0.7 0.5 0.6 0.7 0.6 0.6 0.6

PBIAS -322.5 -376.1 270.83 838.5 -535.9 -200.3 1246.4 -519.8 -307.8

RMSE 12.01 14.28 5.81 5.00 17.707 5.89 4.68 12.7 12.59

NRMSE 18.00% 21.80% 18.00% 17.80% 25.10% 17.70% 16.00% 25.30% 18.90%

Hadgem2_ES (RCP8.5)

R2 0.89 0.89 0.86 0.87 0.93 0.91 0.89 0.87 0.97

NS 0.5 0.7 0.7 0.6 0.7 0.7 0.6 0.5 0.6

PBIAS -532.6 -376.2 -179.9 -352.4 -425.9 -145.1 538.3 -413.6 -396.4

RMSE 14.9 12.61 5.26 4.66 15.53 6.07 4.85 13.14 12.42

NRMSE 23.70% 21.60% 16.90% 20.30% 19.20% 18.00% 25.10% 26.40% 18.60%

Miroc5 (RCP4.5)

R2 0.92 0.93 0.96 0.95 0.93 0.98 1.00 0.97 0.9

NS 0.9 0.9 0.9 0.9 0.9 1.00 1.00 1.00 0.8

PBIAS -104.35 -140.83 -70.51 93.93 -48.02 -45.52 20.18 -80.14 -213.28

RMSE 6.89 7.417 2.64 2.21 7.54 1.72 0.377 4.09 8.29

NRMSE 10.40% 10.90% 10.10% 7.40% 8.80% 6.00% 1.60% 6.30% 11.90%

Miroc5 (RCP8.5)

R2 0.94 0.94 1.00 1.00 0.97 1.00 1.00 0.98 0.97

NS 0.9 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PBIAS -23.67 38.16 0.49 11.25 -15.52 -4.17 -5.4 -88.0 -88

RMSE 4.42 5.52 0.21 0.27 4.32 0.29 0.17 2.81 3.82
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Table 6 (continued)

Statistics Hamedan Tuyserkan Ekbatan SalehAbad Maryanaj

Rain Temp. (min) Temp. (max) Rain Temp. (min) Temp. (max) Rain Rain Rain

NRMSE 8.30% 8.60% 0.70% 1.20% 5.40% 0.90% 0.80% 5.30% 7.20%

Fig. 6 Average monthly rainfall and the minimum and maximum temperatures (2020–2040)
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the highest average increase of runoff in the basin is by

222% under selected models, in September, but the highest

average decrease is 78% in April. Among the models, the

GFDL-CM3 model shows the highest reduction of runoff

under the RCP8.5 scenario in April (87%) which this

reduction is 73% under Miroc5 (RCP8.5) model. Also,

between the models, Miroc5 (RCP8.5) shows the highest

increase of runoff in the basin, in September equal to

1102%.

Fig. 7 Runoff simulated with CMIP5 model for SalehAbad, TaghsimAb, Maryanaj and pole Aliabad stations during 2020 to 2040
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Figure 10 shows the SDIs in period of 2003–2017 for

Pole Aliabad, Maryanaj, TaghsimAb and SalehAbad sta-

tions using the log normal distribution; the average SDI

was normal for TaghsimAb and Maryanaj stations in the

2003–2017 period. A severe drought encountered for Pole

Aliabad station in the 2008–2015 period and a moderate

drought (-1.01) for SalehAbad station in the period of

2003–2017.

The SDI predicted for the 2020–2040 period is shown in

Fig. 11. Pole Aliabad station face severe drought (-1.84)

under the Miroc5 model with scenarios of RCP4.5 and

RCP8.5, other models had normal values in this station. At

the Maryanaj station, SDI shows normal (-0.06) under

Miroc5 (RCP8.5) model and mild drought for other models

under RCP4.5 and RCP8.5 scenarios; this station will face

extreme drought (-3.88) in 2022 under Miroc5 model with

RCP4.5 scenario. As whole, at TaghsimAb and SalehAbad

stations, the SDI under all models showed mild drought,

But under the GFDL-CM3 model, the SalehAbad station

experiences extreme droughts in 2026 (-4.35) and 2021

(-4.28). Also, TaghsimAb station faces extreme droughts

in 2025 and 2026 under Miroc5 (RCP8.5) model.

Table 12 shows the percentage of SDI variations in

period of 2020–2040 compared to 2003–2017 in the basin

for under the selected models. As shown, the drought

intensity in the Alvand basin will increase under all sce-

narios (126%). The highest increase of SDI occurs under

Miroc5 (RCP8.5) model (180%) and the lowest increase of

SDI (77%) occurs under Hadgem2_ES (RCP4.5) model in

the basin. In stations of Pole Aliabad, Maryanaj, Tagh-

simAb, and SalehAbad, the average of highest increase of

SDI under the all models is in the months of January

(5505%), December (125%), January (201%), and

December (100%), respectively.

4 Discussion

In studies related to the effects of the climate change on the

environment, CMIP3 to CMIP6 models have had satisfac-

tory results in various researches (Sharafati and Pezeshki

2020; Shadkam et al. 2016; Vaghefi et al. 2019). The present

research has used theCMIP5model to study the effects of the

climate change on runoffs and hydrological drought, and,

among the selected models and scenarios, Miroc5 model

under the RCP8.5 scenario had the best predictions for the

Alvandmountainous basin. Comparing the results of CMIP5

(used in this study) with those of CMIP6 (relatively new)

have shown that ACCESS-CM2 and Miroc5 models have

good rainfall predictability in, respectively, CMIP6 and

CMIP5 (Kamruzzaman et al. 2021). Zamani et al. (2021),

too, have shown that CMIP5 performs better than CMIP6 in

the fall season, but, in general, CMIP6 predicts the rainfall

and temperature more accurately. Many global-scale GCM

models have been developed to predict the future climate

conditions (Hoegh-Guldberg et al. 2019; Piao et al. 2019).

Since uncertainty is central in GCMs, and natural variability

and resolution can affect them, downscaling is essential to

adapt outputs of GCMs and conditions of the desired area

(Zhou et al. 2020); among conventional techniques, random

downscaling is the one worth mentioning. The Lars-WG

model allows the user to generate daily weather data con-

sidering the changes in the variables. GCM results under

different scenarios showed that Lars-WG predicted the air

temperature better than the rainfall, which is consistent with

the results of Doulabian et al. (2021). The very practical

Table 7 Statistical values of Z for SalehAbad, TaghsimAb, Maryanaj

and Pole Aliabad stations

Z Pole Aliabad TaghsimAb Maryanaj SalehAbad

RCP8.5

Miroc5 0.03 0.49 -0.03 0.36

Hadgem2_ES -0.29 1.07 1.33 1.07

EC_EARTH -0.16 0.75 1.46 0.49

GFDL-CM3 -0.36 1.14 0.68 1.46

RCP4.5

Miroc5 0.03 0.00 -0.03 0.03

Hadgem2_ES -0.36 1.14 1.33 1.07

EC_EARTH -0.62 0.75 1.46 0.49

GFDL-CM3 -0.62 0.75 1.07 1.46

Table 8 Statistical values of S (trend line slope) for SalehAbad,

TaghsimAb, Maryanaj and Pole Aliabad stations

S Pole Aliabad TaghsimAb Maryanaj SalehAbad

RCP8.5

Miroc5 0.004 0.032 -0.004 0.014

Hadgem2_ES -0.011 0.019 0.010 0.004

EC_EARTH -0.013 0.009 0.019 0.040

GFDL-CM3 -0.006 0.007 0.001 0.042

RCP4.5

Miroc5 0.006 0.000 -0.003 0.017

Hadgem2_ES -0.013 0.019 0.013 0.092

EC_EARTH -0.011 0.009 0.019 0.04

GFDL-CM3 -0.013 0.009 0.001 0.042
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semi-distributive SWAT model requires future temperature

and rainfall to estimate the future river-flow. Analyzing

future river-flow characteristics such as the presence of a

significant trend/homogeneity or occurrence of hydrological

drought conditions is vital tomake proper decisions on issues

related to the basin assessment/planning systems. The above

model has simulated the studied area well, but has been

relatively erroneous in simulating the runoff peak, which is

consistent with the results of Sharafati and Pezeshki (2020)

and Zakizadeh et al. (2021); however, this weakness does not

hinder the study of hydrological drought, which is the pri-

mary objective of this research. General results of climate

Fig. 8 Future temperature and rainfall boxplots
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change studies on runoffs in the region (under themodels and

scenarios mentioned in this study) have shown that runoffs

will decrease significantly during 2020 to 2040 due to

reduced rainfalls and increased temperature. These results do

not conform to those of Zakizadeh et al.’s (2021) found in

relatively flat Darabad area, Tehran (Iran) that show (under

RCP2.6, RCP4.5 and RCP8.5 scenarios with the CanESM2

model) runoffs will increase in thementioned basin. It seems

that the decrease in runoff will be due to reduced snowfalls in

the region because the past years’ decreasing snowfall trend

Fig. 9 Future runoff boxplots

Table 9 Percent future runoff variations based on past measurements

GFDL-CM3

(RCP4.5)

GFDL-CM3

(RCP8.5)

EC_EARTH

(RCP4.5)

EC_EARTH

(RCP8.5)

Hadgem2_ES

(RCP4.5)

Hadgem2_ES

(RCP8.5)

Miroc5

(RCP4.5)

Miroc5

(RCP8.5)

SalehAbad -20.98 -54.44 -51.95 -17.93 -18.58 -66.77 -71.07 -11.65

Maryanaj -51.39 -85.35 -85.36 -72.72 -72.71 -93.73 -91.37 -2.56

TaghsimAb -63.90 -85.75 -85.87 -77.39 -77.39 -91.86 -77.39 -12.69

Pole

Aliabad

-54.81 -44.79 -44.49 -33.58 -34.49 -50.37 -48.35 -6.55

Average -47.77 -67.5825 -66.9175 -50.405 -50.7925 -75.6825 -72.045 -8.3625
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approves it; hence, it can be concluded that snowfalls will

decrease during 2020 to 2040 causing runoffs to decrease in

dry seasons.

5 Conclusion

The current study used the soil and water assessment tool

(SWAT) with SUFI2 algorithm to evaluate the past daily

and monthly runoffs, predicted the effects of 4 CMIP5

climate models (Hadgem2_ES, EC_EARTH, GFDL-CM3,

Miroc5) and two emission scenarios (RCP4.5 and RCP8.5)

on 5 meteorological stations (Ekbatan, SalehAbad, Mar-

yanaj, Pole Aliabad, and TaghsimAb in Alvand mountain

basin and studied the effects of climate variations on the

monthly flow. According to the results, SWAT simulated

the daily and monthly runoffs well and was quite capable in

the Alvand mountain basin. The results showed that, the

best model for the prediction of temperature and rainfall in

the region was the Miroc5 model with the RCP8.5 scenario

among the climate change models from Cmip5. According

to the results found from the mentioned models and

Table 10 Percent runoff variations in all seasons and for all periods and scenarios in relation to the past

Winter Spring Summer Fall

RCP4.5 (%) RCP8.5 (%) RCP4.5 (%) RCP8.5 (%) RCP4.5 (%) RCP8.5 (%) RCP4.5 (%) RCP8.5 (%)

GFDL-CM3

SalehAbad -77 -77 -80 -80 38 38 -52 -52

Maryanaj -94 -95 -94 -96 -76 -83 -89 -91

TaghsimAb -60 -91 -86 -95 -64 -83 -71 -91

Pole Aliabad -9 -11 -63 -66 -88 -88 20 17

average -60 -69 -81 -84 -48 -54 -48 -54

EC_EARTH

SalehAbad 4 4 -47 -47 181 181 118 118

Maryanaj -54 -54 -83 -83 -48 -48 -63 -63

TaghsimAb -60 -60 -86 -86 -64 -64 -71 -71

Pole Aliabad 5 14 -60 -60 -95 -93 141 131

average 31 -26 -24 -69 -69 -7 -6 31

Hadgem2_ES

SalehAbad -48 -50 -65 -70 80 80 -19 6

Maryanaj -82 -81 -90 -91 -68 -68 -86 -83

TaghsimAb -79 -79 -90 -91 -76 -74 -87 -84

Pole Aliabad 4 -9 -66 -64 -94 -92 66 69

average -32 -51 -55 -78 -79 -40 -39 -32

Miroc5

SalehAbad -31 0 -49 -43 154 239 -2 106

Maryanaj -15 -22 -65 -85 -16 157 -70 294

TaghsimAb -27 62 -75 -81 -51 59 -76 133

Pole Aliabad -11 56 -77 -59 -77 -59 74 123

average -21 24 -67 -67 3 99 -19 164

Total Average -17 -40 -31 -74 -75 -23 0 -17
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Table 11 Percent runoff variations in all months for all periods and scenarios in relation

January February March April May June

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

GFDL-CM3

SalehAbad -77 -77 -75 -75 -86 -86 -82 -82 -69 -69 9 9

Maryanaj -93 -94 -94 -95 -94 -95 -95 -96 -94 -96 -84 -89

TaghsimAb -51 -89 -69 -91 -85 -96 -86 -95 -85 -94 -71 -87

Pole

Aliabad

19 13 -45 -48 -34 -40 -73 -75 -73 -72 -98 -98

Average -51 -62 -71 -77 -75 -79 -84 -87 -80 -83 -61 -66

EC_EARTH

SalehAbad 13 13 -11 -11 -50 -50 -54 -54 -33 -33 119 119

Maryanaj -45 -45 -62 -62 -76 -76 -85 -85 -85 -85 -64 -64

TaghsimAb -51 -51 -69 -69 -85 -85 -86 -86 -85 -85 -71 -71

Pole

Aliabad

33 51 -30 -30 -20 -23 -70 -70 -76 -75 -99 -99

Average -13 -8 -43 -43 -58 -59 -74 -74 -70 -70 -29 -29

Hadgem2_ES

SalehAbad -45 -45 -46 -55 -68 -76 -69 -73 -55 -57 43 42

Maryanaj -78 -76 -79 -81 -86 -89 -91 -92 -91 -91 -78 -78

TaghsimAb -73 -73 -79 -82 -90 -92 -91 -91 -90 -90 -80 -79

Pole

Aliabad

42 18 -32 -43 -33 -32 -74 -72 -79 -76 -99 -99

Average -39 -44 -59 -65 -69 -72 -81 -82 -79 -79 -54 -54

Miroc5

SalehAbad 53 10 15 -11 -45 -49 -58 -50 -41 -22 95 162

Maryanaj 2 -19 -7 -75 -35 -73 -70 -88 -75 -88 -42 -29

TaghsimAb -9 112 -30 -9 -67 -72 -77 -85 -79 -84 -60 -43

Pole

Aliabad

-17 64 -24 -17 -57 -45 -78 -67 -91 -58 -99 -38

Average 7 42 -12 -28 -51 -60 -71 -73 -72 -63 -27 13

Total

Average

-21 -50 -65 -78 -74 -38

July August September October November December

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

GFDL-CM3

SalehAbad 87 87 151 151 266 266 40 40 -81 -81 -82 -82

Maryanaj -59 -70 -34 -50 -27 -42 -91 -92 -94 -95 -94 -95

TaghsimAb -48 -75 -59 -80 -68 -83 -76 -91 -70 -95 -55 -94

Pole

Aliabad

-53 -50 -100 -100 -89 -90 52 39 40 40 14 17

Average -18 -27 -11 -20 21 13 -19 -26 -51 -58 -54 -64

EC_EARTH

SalehAbad 280 280 443 443 789 789 415 415 41 41 25 25

Maryanaj -12 -12 35 35 41 41 -75 -75 -65 -65 -52 -52

TaghsimAb -48 -48 -59 -59 -68 -68 -76 -76 -70 -70 -55 -55

Pole

Aliabad

-78 -71 -100 -100 -73 -75 245 212 160 158 26 39

Average 36 37 80 80 172 172 127 119 17 16 -14 -11

Hadgem2_ES

SalehAbad 140 143 228 234 416 431 127 185 -61 -41 -56 -45

Maryanaj -46 -45 -15 -13 -8 -7 -88 -86 -92 -87 -89 -84

TaghsimAb -65 -62 -72 -71 -78 -76 -88 -85 -91 -87 -85 -80
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scenarios where GFDL-CM3 model with RCP8.5 scenario

predicted the least runoff compared to other models, the

2020–2040 future runoffs will decrease (75.68%) com-

pared to the past and the Alvand mountain basin will face

such problems as increased temperature, reduced rainfall

and, hence, reduced surface runoff. Also, according to the

best model (Miroc5 (RCP8.5)), the amount of runoff will

decrease by 8.36. The Mann–Kendall Trend Test results

show that the 2020–2040 runoffs will be increasing

although the trend is not significant. The SDI calculations

also show that the drought severity will increase in future

compared to the past which, for the best model (Miroc5

(RCP8.5)) this value was 180%. As the population is

growing fast and a large part of the agricultural and

Table 11 (continued)

July August September October November December

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

RCP4.5

(%)

RCP8.5

(%)

Pole

Aliabad

-76 -65 -100 -100 -86 -84 117 129 89 88 18 13

Average -12 -7 10 13 61 66 17 36 -39 -32 -53 -49

Miroc5

SalehAbad 244 365 415 563 692 949 113 416 -53 20 7 10

Maryanaj 41 332 117 1729 122 2943 -76 239 -83 91 -43 50

TaghsimAb -29 145 -44 327 -55 338 -78 97 -84 74 -43 126

Pole

Aliabad

-100 29 -100 80 -84 177 113 114 105 110 14 153

Average 39 218 97 675 169 1102 18 217 -29 74 -16 85

Total

Average

33 115 222 61 -13 -22

Fig. 10 SDI series in study

stations for the 2003–2017

period
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domestic water consumption in Hamedan is supplied from

Fig. 11 SDI series in study stations for the 2020–2040 period
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Table 12 Percent future SDI variations compared to the past

Miroc5

(RCP8.5)

(%)

Miroc5

(RCP4.5)

(%)

Hadgem2_ES

(RCP8.5) (%)

Hadgem2_ES

(RCP4.5) (%)

EC-EARTH

(RCP8.5)

(%)

EC_EARTH

(RCP4.5)

(%)

GFDL-CM3

(RCP8.5)

(%)

GFDL-CM3

(RCP4.5)

(%)

Average

(%)

Pole Aliabadj

January 3098 5186 5833 6257 5943 5724 5979 6019 5505

February 11 -266 -155 -220 -170 -175 -153 -159 -161

March 89 -41 -51 -49 -47 -50 -51 -54 -32

April 105 33 25 28 30 29 26 25 38

May 95 61 50 59 54 54 43 44 58

June 152 345 402 421 420 423 383 391 367

July -6 -471 -297 -304 -311 -311 -235 -243 -272

August 12 -154 -128 -127 -131 -128 -135 -134 -116

September 57 4 3 6 6 1 -10 -7 8

October 89 170 158 159 169 176 146 148 152

November 420 722 615 602 649 646 573 564 599

December 594 712 474 486 496 481 490 470 525

Maryanaj

January 240 154 5 35 -33 -33 97 165 79

February 271 -93 31 14 32 32 71 101 57

March 167 -21 65 38 38 38 68 82 59

April 155 23 53 34 40 40 58 54 57

May 156 35 43 31 41 41 50 42 55

June 106 -25 -18 -53 -3 -3 -1 -48 -6

July 171 67 80 87 66 66 80 102 90

August 150 53 63 64 52 52 71 79 73

September 144 36 52 52 38 38 68 72 63

October 204 -107 5 -25 -30 -30 38 35 11

November 1803 1444 -1599 -3010 -1196 -1196 -1057 -1414 -778

December 53 131 105 275 11 11 170 243 125

TaghsimAb

January 207 566 146 176 177 177 -19 177 201

February 118 -175 61 -5 12 12 70 12 13

March 122 10 68 43 49 49 89 49 60

April 133 31 45 34 40 40 59 40 53

May 135 39 38 34 35 35 54 35 51

June 199 -37 -102 -89 -83 -83 -130 -83 -51

July 137 71 103 102 82 82 134 82 99

August 150 33 58 51 40 40 90 40 63

September 123 13 41 42 13 13 69 13 41

October 103 -66 3 -12 -16 -16 28 -16 1

November 106 -308 -94 -201 -27 -27 -109 -27 -86

December 222 88 32 -67 111 111 -111 111 62

SalehAbad

January 94 -35 82 83 75 75 89 89 69

February 34 -26 40 20 25 25 34 34 23

March 19 9 40 14 18 18 51 51 28

April 3 14 21 6 11 11 25 25 15

May -22 1 9 -5 1 1 4 4 -1

June -1017 -585 -571 -710 -563 -563 -788 -788 -698

July 70 49 41 50 44 44 60 60 52
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rivers flowing in the Alvand mountain basin, management

plans are quite important in this area and play a key role in

providing water resources and solving the future water

crises problems.
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