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Abstract
Crop growth models are multi-outputs and can be valuable tools for the quantification of crop Growth and production.

However, these models usually require several input data, which are costly, time-consuming, and sometimes impossible to

measure. These model parameters are mostly estimated by calibration and inverse solving. In this study, five output

variables of the AquaCrop model, including soil evaporation, crop transpiration, evapotranspiration, crop biomass at

maturity, and grain yield, were investigated to study 47 genotypic model parameters on the output time series of the model

for wheat in the Qazvin Synoptic Station. The main objective of this study was to find the most critical variables of the

AquaCrop model as well as find the probabilistic behavior of inputs to estimate the missing values. The SAFE toolbox in

the Matlab was used to study the global sensitivity analysis (GSA) and uncertainty of inputs and their impact on outputs.

The uncertainty in the outputs of the AquaCrop model in simulating wheat yield, in the Qazvin Synoptic Station, over

36 years was analyzed using the Generalized Likelihood Uncertainty Estimation (GLUE) method. Using RMSE\ 0.9 as

the threshold in a 95% confidence level, the best parameter sets included all the observations. Results showed that

evaporation and yield rates are the least reliable outputs of the AquaCrop model that have not been calibrated, while others

consider them reliable. After that, the new domain of each output was determined based on the two indexes. Then we

modified the domain to reduce its size. Finally, the probabilistic distribution of each inputs were introduced by the Easy Fit

software. The main result of this study is that the probabilistic distribution of the model parameter that is calibrated for a

particular output variable can differ from other output variables. Also, when we trust a specific run of the model (calibrated

run) as observed data, the uncertainty bounds covering are very high. So we can find an efficient bound of uncertainty

which was one of the main goals of the study. Finally, we utilized the GLUE to optimize multi-output models by

introducing one unique, optimized Probability Density Function (PDF) for each model parameter for all outputs estimated

by collecting all accepted output series of all target outputs.

Keywords Crop modelling � Generalized likelihood uncertainty estimation (GLUE) � AquaCrop � SAFE toolbox �
Uncertainty � Probability density function (PDF)

1 Introduction

The need for accurate and up-to-date space–time infor-

mation on crop needs based on a specific region climate for

water resources managing and agricultural decision-mak-

ing is undeniable (Shelia et al. 2019). Usually estimating

agriculture parameters carried out through field sampling

measurement (Wellens et al. 2017). However, as the tra-

ditional estimation is costly and time-consuming

(Mohamed Sallah et al. 2019), there is a need to use crop

models for agriculture planning and irrigation scheduling

(Midingoyi et al. 2021).
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Several significant crop models have been developed in

the last few decades to understand the relationship between

the soil-crop-atmosphere system and their main controlling

factors (Bouman et al. 1996; Droutsas et al. 2019; Yu et al.

2021). Crop models are practical tools in research and

management for different purposes such as ecology, envi-

ronment, agronomy (Jin et al. 2018). They quantify the

analysis of the growth and production of crops. These

models can be helpful for irrigation scheduling, climate

change impact evaluating, field managing, and crop yield

predicting (Hossard et al. 2017; Huang et al. 2020).

Crop models (such as PMWIN, DSSAT, CropSyst, and

APSIM) represent the mathematics of agricultural pro-

cesses based on theory and empirical research; thus, the

representation entails different assumptions and simplifi-

cations of reality that make the output variables uncertain

and inaccurate (Han et al. 2019; Andrea Saltelli et al.

2008). On the other hand, too many parameters (up to

hundreds) must be specified to describe the properties of

the soil-crop-atmosphere system (Ganot and Dahlke 2021;

Thorp et al. 2020). Estimating every parameter in the

model needs significant field measurements, which is

costly and time-consuming. To reduce the costs and time-

saving, there is a need to find fewer parameters that affect

crop growth most than others (Kelly and Foster 2021;

Poulose et al. 2021; Xu et al. 2016).

The AquaCrop model is a water-driven model devel-

oped by FAO, which simulates the crop’s parameters under

different management conditions. This model makes a

good balance between robustness, simplicity, and output

accuracy (Raes et al. 2009; Steduto et al. 2009; Vanuy-

trecht et al. 2014a, b). The model is based on the concepts

of crop yield response to water developed by Doorenbos

and Kassam (Delgoda et al. 2016; Doorenbos et al. 1980).

There have been several research-tested using the Aqua-

Crop model to simulate yields for various crops under

normal and different stress situations (e.g., wheat Jalil et al.

2020; Ruane et al. 2016; XING et al. 2017); maize

(Elbeltagi et al. 2020; Jalil et al. 2020; Sandhu and Irmak

2019), barley (Hellal et al. 2019; López-Urrea et al. 2020),

potato (Montoya et al. 2016; Razzaghi et al. 2017), rice

(Er-Raki et al. 2021; Xu et al. 2019; Zhai et al. 2019),

grape (Er-Raki et al. 2021), date (Nunes et al. 2021),

soybeans (Adeboye et al. 2019), cotton (Tsakmakis et al.

2019). Although the results proved the AquaCrop model’s

accuracy, the need for extensive data is not desirable. So,

there is a need to reduce the number of input, find the most

influential ones, and understand the relations between dif-

ferent parameters and their best-fitted values to calibrate

the model more efficiently (Hamby 1994; Shirazi et al.

2021; Zhang et al. 2022).

To quantifying and comparing the impact of various

parameters on a model’s output, the sensitivity analysis

(SA) can be used (Green and Whittemore 2005). SA is an

uncertainty analysis technique that characterizes the impact

of the input factors on the output of a model (Sarrazin et al.

2016), which considers as a prerequisite step in the model-

building process (Campolongo et al. 2007). This diagnostic

tool suggests considering high-impact parameters while

neglecting the low-impact ones (Stella et al. 2014) by

identifying parameters that have a significant impact on

model simulations for specific regions (van Griensven et al.

2006). The modeling domain and the specific applications

aim control the type of approach, level of complexity, and

purposes of SA (Pianosi et al. 2016).

SA methods are classified as local SA (LSA) and global

SA (GSA) methods. In the local SA method, only one input

factor varies at a time, while others are fixed at a nominal

value (Wang et al. 2013). Although this method is efficient,

quick, and easy to use (Xu et al. 2016), it cannot be used to

study the effects of several model parameters on the model

output responses (DeJonge et al. 2015). So to check the

interactions of several factors and to evaluate the varying

model parameters simultaneously, the global SA algo-

rithms were developed considerably (Hamm et al. 2006).

GSA investigates the impact of input variation of a

numerical model on output variations by a set of mathe-

matical techniques. GSA has been used for different pur-

poses, such as apportion output uncertainty to different

sources of uncertainty of a model (e.g., unknown parame-

ters, measurement errors in input data) (Pianosi et al.

2015), model calibration, verification, diagnostic evalua-

tion, or simplification (Sieber and Uhlenbrook 2005),

uncertainty reduction (Hamm et al. 2006), analysis the

dominant controls of a system (Pastres et al. 1999), and

robust decision-making (Anderson et al. 2014).

There have been several GSA methods developed

(Morris 1991; Pappenberger et al. 2008; Saltelli et al. 1999;

Sobol 1993; Yang 2011), which are commonly used as

auxiliary tools for different purposes (e.g., hydrology

(Mehdi Ahmadi et al. 2014) Ecology (Ciric et al. 2012),

and crop models (Vazquez-Cruz et al. 2014)). Although

GSA is an essential tool for developing and calibrating

models, its techniques are rather limited in some domains

(Pianosi et al. 2015). There are some freely available GSA

tools such as a repository of Matlab and Fortran functions

maintained by the Joint Research Centre, the GUI-HDMR

Matlab package, the C?? based PSUADE software,

Python Sensitivity Analysis Library SALib, and Matlab

Sensitivity Analysis For Everybody (SAFE) (Pianosi et al.

2015). The last one, SAFE, is used in this study.

In recent years, there has been a surge in the number of

ways for calculating meaningful uncertainty boundaries on

the model predictions, such as classical Bayesian (Kuczera

and Parent 1998; Liu et al. 2021; Vrugt et al. 2001; Yin

et al. 2021), pseudo-Bayesian (Beven and Binley 1992;
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Freer et al. 1996; Freni et al. 2009), set-theoretic (Klepper

et al. 1991; Van Straten and Keesman 1991; Jasper A.

Vrugt et al. 2003), multiple criteria (Gupta et al. 1998;

Madsen 2000; Henrik Madsen 2003; Yapo et al. 1998),

sequential data assimilation (Blasone et al. 2008; Fan et al.

2016; Moradkhani et al. 2005; Jasper A. Vrugt et al. 2005),

and multi-model averaging methods (Jasper A. Vrugt and

Robinson 2007). Despite the different advantages and

disadvantages of each of these models, the main difference

between them is their assumptions and the kind of different

errors that are treated and made explicit (Blasone et al.

2008). In this study, Generalized Likelihood Uncertainty

Estimation (GLUE) is used to study different model

parameters of the AquaCrop model. This method, which

was introduced in 1992 (Beven and Binley 1992), is one of

the first attempts of Beven and Binley to represent pre-

diction uncertainty.

The Monte-Carlo simulations can be used to combine

probability distributions and examine the relationships

between model input and outcome variables (Nash and

Hannah 2011). Monte-Carlo simulations have been used in

different studies, such as flood zoning (Natale and Savi

2007), agriculture (Baranyai and Zude 2009; Nash and

Hannah 2011; Qin and Lu 2009), environmental modeling

(Jasper A. Vrugt 2016), hydrology modeling (Jeremiah

et al. 2012), groundwater modeling (Hassan et al. 2009),

rivers (Berends et al. 2018), wastewater managing (Piri

et al. 2021), and coastal lands (Cooper et al. 2019).

Recently, Adabi et al. (2020) studied on LSA of the

AquaCrop model for wheat and maize in two plains in Iran.

They studied 47 crop parameters on five output variables

on this closed-source crop model. The relative Nash–Sut-

cliffe Efficiency Index was used to evaluate the sensitivity

of these parameters. They found out that around half of the

selected parameters in the Qazvin plain were ineffective,

and calibrating the AquaCrop model would be more effi-

cient and simpler than different GSA methods (Adabi et al.

2020).

In this study, we continued this research on GSA and

GLUE methods of wheat, for the Qazvin plain to find

efficient domains of every 47 parameters to calibrate the

AquaCrop model with the highest accuracy output. Five

outputs were studied in this research as soil evaporation,

crop transpiration, evapotranspiration, crop biomass at

maturity, and grain yield. For this purpose, the model was

calibrated by the two-years observed data, then ran for

36-years data from the synoptic station in the Qazvin plain.

After that, 3000 random runs based on the Monte-Carlo

method were conducted. Then a new domain of each

parameter was introduced with a 5% error with the real

data. Finally, the probabilistic behavior of each parameter

on five outputs was introduced.

2 Methods and materials

2.1 The AquaCrop model

In this study, the AquaCrop model was calibrated by GSA

methods. AquaCrop, a water-driven model, evolved from

the previous Doorenbos and Kassam (1980) approach that

simulates crop modeling by different factors. A water

balance approach is used in this model to simulate the soil

water condition in the root zone. The FAO-PM evapo-

transpiration is divided into actual crop transpiration and

soil evaporation by using the soil water status and the

canopy cover information. The first-order kinetics is used

to develop the canopy cover. Also, the model considers

different stresses such as water, temperature, and salinity

stress. Then the actual crop transpiration uses a normalized

form of the water productivity leading to estimating the

biomass production. At last, biomass production is used to

calculate the crop yield by a specific harvest index. The

model inputs can be classified into four main groups:

meteorological conditions, initial values of the model

parameters, soil characteristics, and management practices

(Li et al. 2016; Linker et al. 2016; Steduto et al. 2009). The

ability of the model in predicting the total biomass and

yield of a wide range of crops to various irrigation strate-

gies with high accuracy has been proved in multiple studies

(Andarzian et al. 2011; Araya et al. 2010; Battilani et al.

2015; Heng et al. 2009).

The model has two main aspects that set it apart from

other crop models: First, proportional green canopy cover

is used instead of leaf area index. In this way, the output is

more accessible from visual field observations and remote

sensing (Calera et al. 2001; Carlson and Ripley 1997;

Johnson and Trout 2012; Kim and Kaluarachchi 2015).

Second, the model considers stresses more than any other

cop models, as it was mentioned (Foster et al. 2017). This

model can be run in thermal mode or calendar time mode

(Vanuytrecht et al. 2014a, b). In this study, AquaCrop

version 5 was used in the thermal time model. In Table 1,

the name of 47 crop parameters used in the AquaCrop

model is represented. These parameters change to under-

stand their impact on the output results. These outputs are:

soil evaporation (E), crop transpiration (T), evapotranspi-

ration (ET), crop biomass at maturity (Biomass), and grain

yield (Y).

2.2 SAFE toolbox and easy fit software

The SAFE toolbox, which is designed for both specialist

and non-specialist users, is used in this study for evaluating

the uncertainty of 47 model parameters based on five

outputs. Non-specialist users with basic knowledge in GSA
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Table 1 Name of the crop parameters using in the AquaCrop model and change to study their impact on results

Symbol Name of Crop Parameters

X1* Soil water depletion factors (p) are adjusted by Eto

X2 Base temperature (�C) below which crop development does not progress

X3 Upper temperature (�C) above which crop development no longer increases with an increase in temperature

X4 Soil water depletion factor for canopy expansion (p-exp)—Upper threshold

X5 Soil water depletion factor for canopy expansion (p-exp)—Lower threshold

X6 Shape factor for water stress coefficient for canopy expansion (0.0 = straight line)

X7 Soil water depletion fraction for stomatal control (p—sto)—Upper threshold

X8 Shape factor for water stress coefficient for stomatal control (0.0 = straight line)

X9 Soil water depletion factor for canopy senescence (p—sen)—Upper threshold

X10 Shape factor for water stress coefficient for canopy senescence (0.0 = straight line)

X11 Soil water depletion factor for pollination (p—pol)—Upper threshold

X12 * Vol% for Anaerobiotic point (* (SAT—[vol%]) at which deficient aeration occurs *)

X13 * Minimum air temperature below which pollination starts to fail (cold stress) (�C)
X14 * Maximum air temperature above which pollination starts to fail (heat stress) (�C)
X15 * Minimum growing degrees required for full biomass production (�C—day)

X16 * Electrical Conductivity of soil saturation extract at which crop starts to be affected by soil salinity (dS/m)

X17 * Electrical Conductivity of soil saturation extract at which crop can no longer grow (dS/m)

X18 Crop coefficient when canopy is complete but primitive to senescence (KcTr,x)

X19 Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency, etc

X20 Minimum effective rooting depth (m)

X21 Maximum effective rooting depth (m)

X22 * Shape factor describing root zone expansion

X23 Maximum root water extraction (m3water/m3soil.day) in top quarter of root zone

X24 Maximum root water extraction (m3water/m3soil.day) in bottom quarter of root zone

X25 * Effect of canopy cover in reducing soil evaporation in late season stage

X26 Soil surface covered by an individual seedling at 90% emergence (cm2)

X27 Canopy size of individual plant (re-growth) at 1st day (cm2)

X28 * Number of plants per hectare

X29 Canopy growth coefficient (CGC): Increase in canopy cover (fraction soil cover per day)

X30 Maximum canopy cover (CCx) in fraction soil cover

X31 Water Productivity normalized for ETo and CO2 (WP*) (gram/m2)

X32 * Water Productivity normalized for ETo and CO2 during yield formation (as % WP*)

X33 * Crop performance under elevated atmospheric CO2 concentration (%)

X34 * Reference Harvest Index (HIo) (%)

X35 * Possible increase (%) of HI due to water stress before flowering

X36 Coefficient describing positive impact on HI of restricted vegetative growth during yield formation

X37 Coefficient describing negative impact on HI of stomatal closure during yield formation

X38 * Allowable maximum increase (%) of specified HI

X39 * GDDays: from sowing to emergence

X40 * GDDays: from sowing to maximum rooting depth

X41 * GDDays: from sowing to start senescence

X42 * GDDays: from sowing to maturity (length of crop cycle)

X43 * GDDays: from sowing to flowering

X44 * Length of the flowering stage (growing degree days)

X45 CGC for GGDays: Increase in canopy cover (in fraction soil cover per growing-degree day)

X46 CDC for GGDays: Decrease in canopy cover (in fraction per growing-degree day)

X47 * GDDays: building-up of Harvest Index during yield formation

* Parameters that must be integer
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or Matlab can use this toolbox. On the other hand, expe-

rienced users have the chance to understand, customize,

and develop the code (Pianosi et al. 2015). The initial

release of the toolbox comprises the Elementary Effects

Test (EET or Morris method (Morris 1991)), Regional

Sensitivity Analysis (RSA (Spear and Hornberger 1980;

Thorsten Wagener and Kollat 2007)), Variance-Based

Sensitivity Analysis (VBSA, or Sobol method (Andrea

Saltelli et al. 2008)), Fourier Amplitude Sensitivity Test

(FAST (Cukier et al. 1973)), Dynamic identify-ability

analysis (DYNIA (T. Wagener et al. 2003)), and PAWN

(Pianosi and Wagener 2015). The SAFE toolbox is written

in Matlab, but it may also be used with the free GNU

Octave environment (www.gnu.org/software/octave) by

any operating system (Windows, Linux, and Mac OS X)

(Pianosi et al. 2015). Also, there is another available ver-

sion of the SAFE toolbox for R. In this research, a personal

computer Core i7, 2.2 GHz with 8.0 GB Ram, was used to

run the SAFE toolbox.

In this research, the Easy Fit software, Version 5.5, was

used to determine the probability density function (PDF) of

parameters fitness by the Kolmogorov-Smirnoff goodness

of fit test. This software was used to evaluate 65 different

PDFs and present the best PDF of each output.

2.3 Monte-Carlo simulations methods

Monte-Carlo simulation is a mathematical modeling tool

that can be used to obtain values for uncertain variables.

Monte-Carlo simulations can also be used to assess the

impacts of individual terms on model outcomes when using

stochastic data and stochastic models (Metropolis and

Ulam 1949). These methods rely on repeated random

sampling to obtain numerical results based on the large

number of class of computation algorithms. They are

mainly used in optimization, numerical integration, and

probability distribution, which the last one is the reason of

using these methods (Kroese et al. 2014). In this study,

3000 runs were conducted to simulated time series for each

output target by the Monte-Carlo method. The large

number of runs was due to converging the data.

2.4 The GLUE methodology

The GLUE approach is a Monte Carlo method that aims to

find a set of behavioral models from many of possible

model/parameter combinations. Each group of parameter

values is assigned a likelihood value based on the com-

parison of predicted and observed responses. Higher like-

lihood function values often suggest a better match

between model predictions and observations. The complete

sample of simulations is then divided into behavioral and

non-behavioral parameter combinations based on a cutoff

threshold. The likelihood values of the preserved solutions

are then rescaled to create the output prediction’s cumu-

lative distribution function (CDF). In most published

GLUE studies, the deterministic model prediction is often

supplied by the median of the output distribution, and the

related uncertainty is determined from the CDF, which is

commonly chosen at the 5% and 95% confidence levels,

and known as 90% confidence bounds or prediction limits

(Blasone et al. 2008).

The GLUE method has three steps which include: (1)

Monte Carlo sampling from a possible parameter space

with uniform distribution. Due to the lack of a prior dis-

tribution of a parameter, this distribution is selected

because of its simplicity (Migliaccio and Chaubey 2008).

The range of each model’s parameter is divided into a

number of intervals based on equal probability and for each

running of the AucaCrop model one set of the parameters is

randomly selected from the possible ranges. In this study,

the random sampling method is used for parameter sam-

pling from each interval. (2) Definition of likelihood

function to AucaCrop’s outputs against observed values.

Table 2 The maximum and the

minimum temperature and

Average monthly effective

rainfall of the Qazvin plain

Month Maximum Temperature Minimum Temperature Rainfall (mm)

January 6.2 -4.1 30.4

February 8.6 -2.5 33

March 14.1 1.4 44.9

April 20.6 6.6 40.9

May 26 10.3 28.1

June 32.6 14.8 3.8

July 35.4 17.6 3.2

August 34.9 17.1 5.7

September 30.8 13.2 1.1

October 23.4 8.3 20.4

November 14.6 3 34.9

December 8.3 -1.8 35.9
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The NRMSE is selected because it is a widely used like-

lihood measure for GLUE method (Arabi et al. 2007;

Beven and Freer 2001). (3) Defining threshold value for

identifying behavioral and non-behavioral sets of parame-

ters. Based on the literature (Beven and Binley 1992;

Beven and Freer 2001) the NRMSE value of 10% is con-

sidered as a reasonable threshold for AucaCrop simulation.

Parameter sets with NRMSE values higher than 10 are

chosen as behavioral parameters sets (best simulations).

The mean simulated time series of the best simulations is

judged as the optimum simulated time series and the mean

of the corresponding parameters sets is considered as the

calibrated values.

However, these bounds do not have a statistical mean-

ing. So, for not being properly Bayesian, the GLUE method

is criticized, which is one the main drawbacks of this

approach. (Christensen 2004; Y. Liu and Gupta 2007;

Mantovan and Todini 2006; Montanari 2005; Vogel et al.

2008). Although because of this reason, the GLUE method

is considered incoherent and inconsistent from a statistical

point of view, some easy adjustments to GLUE can

improve the drawbacks (Beven et al. 2007).

In this study, the following steps were used for the

GLUE approach:

• Primitive parameter distributions definition (Table 2—

The first and second columns).

• Random parameter sets generation based on the Monte

Carlo methods (SAFE toolbox).

• Model run (from the previous step) (MATLAB).

• Likelihood values calculation (SAFE toolbox) (The

index was Normalized Root Mean Square Error

(NRMSE) (Eq. 1), and the threshold was 10%).

• Secondary distribution construction (SAFE toolbox and

Easy Fit software).

NRMSE ¼ RMSE

l
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ðXs�XcÞ2

n

q

l
ð1Þ

In which RMSE is the root mean square error, l is the

average comparison criterion, n is the number of data

(length of time series), Xs is simulated output, and Xc is the

comparison criterion.

Fig. 1 The location of the Qazvin province and the synoptic station in the province (Mojgan Ahmadi et al. 2021)

Table 3 Daily and monthly average evapotranspiration of the refer-

ence plant, and the avereage monthly rainfall

Month Qazvin Province

Daily ET (mm) Monthly ET (mm) Rainfall (mm)

January 0.9 29.3 35.8

February 1.6 44.2 40.4

March 2.7 84.7 51.1

April 4 119.5 47.4

May 5.3 163.6 30.9

June 7.5 224.6 4.2

July 7.8 242.7 3.3

August 7.2 221.8 8.7

September 5.5 165.8 1.2

October 3.3 100.8 28.1

November 1.6 47.6 44.7

December 0.9 28.3 43.6

Year – 1472.9 339.4
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The three main phases for all GSA approaches are:

(i) Taking a sample of the inputs within their range of

variability, (ii) Testing the model against the sample input

combinations, and (iii) Calculating sensitivity indices after

post-processing the input/output samples (Pianosi et al.

2015).

2.5 Case study and field data

Qazvin province is located in the central and northern

region of Iran (48� 53’ to 36� 50’ longitude, and 53� 35’ to
35� 18’ latitude) with 15 821 square kilometers area

(Fig. 1). This province has an average annual precipitation

of 300 mm, which varies from 210 mm in the eastern parts

to more than 550 mm in the northeastern heights. The

maximum and minimum temperature as well as average

monthly effective rainfall of Qazvin Plain are shown in

Table 2. Also, daily and monthly average evapotranspira-

tion of the reference plant as well as the average monthly

rainfall are represented in Table 3. The longitude, latitude,

and elevation of the synoptic station in the province are

50.03, 36.15, and 1279.2 m, respectively (Mojgan Ahmadi

et al. 2021). This province contains various geomorpho-

logical regions such as steep mountains (to the north),

upland areas (south and west), and plains (in the center)

which makes agricultural activities a major challenge

(Darvishi et al. 2015; Yousefi et al. 2020). Therefore, this

province has an important role in agriculture and is

Fig. 2 Simulated time series of five target outputs. Blue lines represent 3000 simulated time series ran, black points are real data, red lines

illustrate the 10% threshold of NRMSE, and green lines responsible for uncertainty bounds of 5% confidence level
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responsible for 3% of the country’s total Gross Domestic

Product (GDP) (Census Center of Iran, https://www.amar.

org.ir/). The plain in the province is the most extensive

plain in the Salt Lake basin, with an arid to semi-arid cli-

mate. According to the Regional Water Company of

Qazvin, there are 22 000 deep and semi-deep wells in this

province (http://www.qzrw.ir/).

The agricultural lands are irrigated by a network of

irrigation dams and channels. Wheat, maize, barley, alfalfa,

saffron, sugar beet, lentils, beans, potatoes, walnuts,

grapes, hazelnuts, and hawthorns are cultivated crops in the

province. More than 144 000 ha of land in this province is

dedicated to wheat, as the most important crop in the

region, which produces about 315 000 t yr-1. Also, maize

is responsible for more than 11% of irrigated lands of the

province, which results in 1,008,015 tons per year (Moj-

tabavi et al. 2018). In this study, both crops, wheat and

maize, were investigated, but due to the similarity of the

results, only one crop, wheat, was studied.

3 Results and discussion

Finding observed historical data for calibrating a model is a

crucial issue in time-series-generating models. According

to the lack of long-term data and time-saving in running

models, we calibrated the model by accessible data. Then,

we ran the model for long-term years. The new run with a

good approximation can be assumed as observed data. In

this study, the AquaCrop model was calibrated by yield

output of wheat and maize for two years, then ran for

36 years of meteorological data from the Qazvin synoptic

station (from 1979 to 2014). For this research, 3000 runs

were conducted randomly for every 47 parameters from

Table 1 to uniform probability distribution function. The

number of runs continued until all output results became

convergence. There were five output targets: output targets,

soil evaporation, crop transpiration, evapotranspiration,

crop biomass at maturity, and grain yield. The 10%

threshold of the NRMSE index was considered in this study

for applying Acceptable Sample Rate (ASR). In other

Fig. 3 The probability distribution functions (PDFs) of all important parameters of AquaCrop model

Table 4 The number and percent of accepted time series of 3000 runs based on NRMSE\ 10% threshold and 5% confidence level for soil

evaporation (E), crop transpiration (T), evapotranspiration (ET), crop biomass at maturity (Biomass), and grain yield (Yield)

Output Targets E Tr ET Biomass Yield

RMSE threshold 10.4 (mm/year) 43.34 (mm/year) 53.74 (mm/year) 1.45 (Ton/hectare/year) 0.73 (Ton/hectare/year)

number of accepted time series 31 549 780 398 80

percent of accepted time series 1.03 18.3 26 13.26 2.67
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words, the amount of RMSE should be less than 10 percent

of the comparison criterion of this time series period

average. Also, the 5% confidence level of observed data

was used as another index.

Simulated time series of five output targets (soil evap-

oration (E), crop transpiration (T), evapotranspiration

(ET), crop biomass at maturity (Biomass), and grain yield

(Yield)) are represented in Fig. 2. In other words, the 47

model parameters in Table 1 are used to result in these five

targets. In Fig. 2, the blue lines represent all 3000 simu-

lated time series ran for each output target by the Monte-

Carlo method. The black points, which are located

between the green lines, represent observed data of

36-years simulation. Then, the 10% threshold of the

NRMSE of these black points is presented by red lines as

ASR. Also, 95% of the confidence level was performed

(2.5% below and above the red time series) by green lines,

which are responsible for uncertainty bounds. Actually, all

of the comparison criteria are covered by a confidence

level of 95%. The cause of this phenomenon is because of

that the comparison criterion time series is a specific run of

the model and acts similar behavior with its near Monte-

Carlo time series. Also, the probability distribution func-

tions (PDFs) of all important parameters are shown in

Fig. 3.

The quantified expression of Fig. 2 is represented in

Table 4. In other words, the number of accepted time

series based on the 95% of ASR threshold are given for

soil evaporation (E), crop transpiration (T), evapotranspi-

ration (ET), crop biomass at maturity (Biomass), and grain

yield (Yield).

According to Table 4, the number of accepted time

series of these five targets among all 3000 runs are rep-

resented in the second row. In the last row, the percent of

the accepted time series are represented, which is the ratio

of the second row to the total runs multiplied by 100. From

this table, we can find out that how much we can trust the

model that is not calibrated. As seen from the table,

evaporation and grain yield are the least unreliable targets,

while crop transpiration, evapotranspiration, and crop

biomass are reliable targets. Among all these targets,

evapotranspiration is the best parameter by 26%. In other

words, we can trust this target more than all other targets

in this study. Transpiration and biomass are the second and

third most reliable targets with 18.3 and 13.26 percent,

while evaporation and yield are not reliable with 1.03 and

2.67% accepted time series. So, if we do not have a chance

to calibrate the AquaCrop model, we can trust these three

outputs: Evapotranspiration, Transpiration, and Biomass.

For each 47 parameters in Table 1, there is an efficient

range of numbers that can be used as input of the model.

As it was mentioned, due to lack of technology, time-

saving, and cost-saving, we are not able to read andTa
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measure each parameter from field. So, if we do not have

the choice to gather data from a field, we have to suppose a

quantity between this efficient domains of numbers. On the

other hand, we have to maximize the possibility of our

choices. In other words, we have to guess an amount more

precisely to maximize the accuracy of output, and mini-

mize the amount of error. In Table 5, the domain of

numbers that can be used as an input of each parameters for

five targets are represented in the second and third col-

umns. This domain, which is consider as primitive domain,

is the amount of domain that is only between the 10 percent

threshold from Fig. 2. After applying the ASR threshold of

95% confidence level, the subsequent distribution of model

parameters derived from the accepted domains. In the

subsequent columns, the amount of minimum, maximum,

and percentage of covering (PoC) of each five targets are

given for all 47 targets. POC is defined by the subsequent

distribution domain divided by the primitive distribution

domain for each model parameter and each output variable.

This new domain is smaller or equal to the primitive

domain from the second and the third columns. The aim of

this table is to minimizing the domain of estimation, which

results in maximizing the accuracy of the model. For each

target, there is a column in which the percentage of

primitive distribution are given. Also, parameters that are

marked by ‘‘*’’ means that the model accepts only integer

numbers. Finally, at the last column, the average POC of

five targets are represented.

For a better understanding of this table, we have to talk

about three parameters. For instance, the primitive range of

the first parameter, X1, after applying the 10% of NRMSE

threshold and 95% confidence level, is from 0 to 2. Also, it

is marked by the only integer acceptance meaning. It

means that the model accepts only 0, 1, or 2 as input for

this parameter. Now, if we look at the results of evapora-

tion, we can see that the minimum and maximum of input

are considered as the same domain of the primitive distri-

bution domain. It means that the model covers the entire

domain of primitive distribution domain. In other words,

we cannot reduce the size of the domain. In the last column

of this row, we can see that the average POC of this

parameter is 100%.

Now, we can see the second row, which is responsible

for the X2 parameter. The primitive distribution domain of

this parameter is from 0 to 5. Also, it is not marked, so the

model accepts both integers and decimals. Unlike the first

row, the domain of this parameter is different from the

primitive distribution domain. As can be seen from the first

and second columns of the evaporation section, the amount

of the evaporation domain starts from 0.1523 to 2.751,

which is much smaller than the primitive domain. The

percentage of primitive distribution covered by subsequent

distribution is represented in the third column, which is

52%. It means that the POC of this target is 52% of the

primitive domain. In other words, the model is reduced for

48% of the primitive domain. So, if we do not have data for

estimating the model, we can use the new domain to

increase the estimation efficiency. However, the domains

of transpiration, evapotranspiration, and biomass have not

been decreased significantly, which the POC of the new

domain of these targets are 99.6, 99.4, and 99.5%,

respectively. Also, the amount of POC of the last column in

this row is 87.2%, which is the average amount of other

POCs from five targets.

Finally, if we look to the 23rd parameter, X23, we can

see that the domain has been reduced for all targets. As can

be seen from the table, the primitive distribution domain of

this parameter is [0.0196–0.065]. But after applying sub-

sequent distribution, the size of the evaporation domain

reduces to 33% of the primitive domain, which is from

0.0214 to 0.0363. The subsequent domain of transpiration

starts from 0.0196 to 0.0364, which covers only 36.9% of

the primitive domain. The subsequent distribution domain

of the other three targets is given in the subsequent col-

umns, which the POC of them are 36.9, 36.7, and 36%,

respectively. The average POC of these five targets is

35.9%, according to the last column of the 23rd row of this

table. In other words, the new domain has been reduced to

35.9% on average.Finally, the probabilistic behavior of

crop parameters of these five output variables is analyzed

in this study. In Table 6, the probabilistic distribution of

crop parameters of each output after the 10 percent

NRMSE in 95% of confidence level is represented. Also,

the optimized PDF of these targets is given in the last

column. It should be mentioned that the yield output was

used to calibrate the model.

Table 6 shows the probabilistic behavior of each

parameter for each target. For instance, the X1 parameter

has a Poisson distribution, while the other four targets have

a uniform distribution. Also, the optimized PDF is con-

sidered Uniform. Another example of this table could be

the probabilistic distribution of X36. For this parameter,

Wakeby, GenPareto, Johnson SB, Wakeby, and Johnson

SB are considered as probabilistic behavior of soil evapo-

ration, crop transpiration, evapotranspiration, crop biomass

at maturity, and grain yield, respectively.

We can deduce from Table 7 that there are different

types of PDFs for each parameter. Table 7 shows the

percentage of dominant PDF types of 47 parameters of the

AquaCrop model. This table summarizes the Table 7.

According to this table, 34% of PDFs are considered

Uniform. Johnson SB and Wakeby are the second and third

types of PDFs with 23.4 and 21.3 percent. Also, other types

are responsible for 21.3% of PDFs. This table shows that

about 80% of all parameters have one of the Uniform,

Jonson SB, or Wakeby PDFs.
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Table 6 Probabilistic distribution of crop parameters of each output after the 10% threshold of NRMSE applying and 95% confidence level, with

the optimized PDF of each output

E Tr ET Biomass Yield Optimized PDF

X1 * Poisson D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X2 Wakeby Wakeby Wakeby Wakeby Johnson SB Wakeby

X3 LogLogistic (3P) Johnson SB Johnson SB Johnson SB Johnson SB Johnson SB

X4 Wakeby Error Wakeby Wakeby Reciprocal Wakeby

X5 Uniform Wakeby Wakeby Wakeby Johnson SB Wakeby

X6 LogLogistic (3P) Johnson SB Johnson SB Johnson SB Johnson SB Johnson SB

X7 Johnson SB Beta Wakeby GenPareto Wakeby PowerFunction

X8 Wakeby Uniform Johnson SB Johnson SB Johnson SB Johnson SB

X9 Wakeby Wakeby Johnson SB Johnson SB Wakeby Wakeby

X10 Johnson SB Johnson SB Johnson SB Johnson SB Beta Johnson SB

X11 Beta Uniform Beta Wakeby GenPareto Beta

X12 * D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X13 * Poisson D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X14 * D.Uniform D.Uniform D.Uniform D.Uniform Binomial D.Uniform

X15 * GenPareto GenPareto Beta Johnson SB Wakeby Wakeby

X16 * Poisson D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X17 * Binomial D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X18 Wakeby Wakeby Wakeby Wakeby Wakeby Wakeby

X19 Johnson SB Johnson SB Wakeby Wakeby Johnson SB Uniform

X20 Wakeby Johnson SB Wakeby Error Johnson SB Error

X21 Johnson SB Johnson SB Johnson SB Wakeby Wakeby Johnson SB

X22 * D.Uniform D.Uniform D.Uniform D.Uniform Poisson D.Uniform

X23 GenPareto Beta Kumaraswamy Beta Wakeby Wakeby

X24 Wakeby Johnson SB Johnson SB Johnson SB Johnson SB Johnson SB

X25 * NegBinomial D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X26 Johnson SB Wakeby Wakeby PowerFunction Johnson SB Uniform

X27 Frechet Wakeby Wakeby Johnson SB Wakeby Wakeby

X28 * D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X29 Johnson SB Johnson SB Johnson SB Johnson SB Johnson SB Beta

X30 Triangular Wakeby Johnson SB Wakeby Kumaraswamy Wakeby

X31 Johnson SB GenPareto Wakeby Wakeby Wakeby Wakeby

X32 * D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X33 * D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X34 * D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X35 * D.Uniform D.Uniform D.Uniform D.Uniform Poisson D.Uniform

X36 Wakeby GenPareto Johnson SB Wakeby Johnson SB Johnson SB

X37 Frechet(3P) Wakeby Wakeby Wakeby GenPareto Beta

X38 * D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X39 * D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X40 * D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X41 * D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X42 * D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X43 * D.Uniform D.Uniform D.Uniform D.Uniform NegBinomial D.Uniform

X44 * D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform D.Uniform

X45 Wakeby Johnson SB Johnson SB Wakeby Beta Johnson SB

X46 Johnson SB Johnson SB Johnson SB Johnson SB Wakeby Kumaraswamy
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In other words, the perspective of yield output to the

statistical population of parameters differs from soil

evaporation’s perspective (or different target outputs).

Considering that (i) the model is calibrated by yield, also

(ii) for multi-output calibration by GLUE, we need to

select just one PDF for sampling from target parameter

domains.

As we know, for trusting and using each output of multi-

output models (as AquaCrop), we must calibrate the model

just by itself output. But this process is costly and time-

consuming. One of the best ways for this situation is multi-

output calibration that providing all output conditions in

their optimized mode. From an optimization perspective,

we recommend that probabilistic distributions of all 47

parameters in the optimized condition of five target outputs

are according to the last column of Table 4. This column is

derived by considering all of the accepted series for all five

target outputs. For multi-criteria calibration of AquaCrop

by GLUE in Qazvin Synoptic Station, we can refer to this

column.

4 Conclusion

Although there has been significant progress in developing

new crop models in recent years, measuring a large number

of data as input for the specific region and crop is difficult,

time-consuming, and cost-consuming. So, we have to find

the most important and influential model parameters that

significantly impact outputs. In this study, we tried to make

the un-calibrated model more efficient.

In conclusion, the summary of this research is presented

as below:

• The AquaCrop model was chosen because of its

simplicity, output accuracy, and application in research

and managing.

• Forty-seven parameters were chosen as input of the

AquaCrop model to understand their impact on outputs.

• The Qazvin province was used as the case study in this

study to evaluate the results. Also, wheat was chosen as

the most important crop in the province.

• Five output targets were chosen to be studied: soil

evaporation, crop transpiration, evapotranspiration,

crop biomass at maturity, and grain yield.

• The Global Sensitivity Analysis (GSA) methods were

used to evaluate the model parameters’ impact on

output targets.

• The SAFE toolbox in the MATLAB environment was

used for GSA and uncertainty of inputs and their impact

on outputs.

• The model calibrated by the two-years observed data,

then ran for 36-years from the synoptic station in the

province.

• Based on the Monte-Carlo method, 3000 runs were

conducted for each parameter to evaluate the reliability

of different outputs of the AquaCrop model that have

not been calibrated.

• The 10% NRMSE threshold and 5% confidence level of

real data were used as an index.

• Five targets were ranked according to their reliability

when the model is not calibrated.

• A domain of each output target with a 5% confidence

level of real data was determined.

• The new domain was introduced. The size of some

model parameters reduced significantly, while others

remain approximately the same.

• The probabilistic behavior of each 47 parameters on all

five outputs was introduced.

• The Easy Fit software was used to determine the

probability density function (PDF) of parameters based

on the Kolmogorov-Smirnoff goodness of fit test. The

software evaluated 65 different PDFs.

• The optimized PDF of each parameter was introduced,

which was the average of probabilistic behavior of five

outputs.

• Four classes of optimized PDFs of each parameter were

found, including Uniform, Johnson SB, Wakeby, and

others. It was found that about 80% of all parameters

have one of the first three PDFs, and only 20% of them

have different probabilistic behavior.

Table 6 (continued)

E Tr ET Biomass Yield Optimized PDF

X47 * D.Uniform D.Uniform D.Uniform D.Uniform NegBinomial D.Uniform

* Model accept only integer

Table 7 Percentage of PDFs

types of parameters for yield

output

PDF types Percent (%)

Uniform 34

Johnson SB 23.4

Wakeby 21.3

Others 21.3
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• About 66% of PDFs were not uniform. This issue

demonstrates that the first assumption of GLUE (sam-

pling uniformly) is not noticeable. In other words, in

these parameters, the probability of some values is more

than others.

So, this study will help the agriculture and irrigation

manager make a better estimation of different inputs if they

cannot calculate and measure inputs from the field. They

can predict the probabilistic behavior of each parameter

and find an efficient domain of them to maximize the

accuracy of outputs. The methods and process of this study

are suggested for other crop models in other places with

different crops. We can extend this research to other

regions with different climates and crops. We can use these

methods for other crop models.
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