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Abstract
Flash Flood Guidance (FFG) is a rainfall threshold which initiates flooding in streams. It merely provides a binary output

(yes or no) which has large uncertainties in forecasting. In this paper, we propose a new method by combining FFG with

the Frequentist method to present the probability of flash flood occurrence based on historical rainfall events. We first

calculated deviation from the log transform rainfall data leading to flash floods. Kernel Density Estimation (KDE) was used

to describe the deviation. Normal Distribution Function (NDF) was chosen to fit the KDE output and to calculate

probabilities of flooding as per the Frequentist FFG. In order to aid decision making, three probability thresholds (10, 20

and 60%) were used for defining four flood risk classes, namely very low, low, significant and high, and were colour coded

respectively as green, yellow, orange and red. The proposed Frequentist FFG method was then applied to the Posina River

basin in Italy. Comparison of forecasts from the conventional FFG (with probability 0 or 1) and Frequentist FFG for 94

6-hourly rainfall events, including 23 flood events, shows that the Frequentist FFG presented a probability of flooding

varying from 0 to 100% and the corresponding risk class can be used to reduce false alarms while still reducing the disaster

risk. The application of the developed approach to the Posina basin shows that decision making regarding flash forecasting

is easier with the presented approach compared to the traditional FFG approach.
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Abbreviations
FFG Flash Flood Guidance

KDE Kernel Density Estimation

NDF Normal Distribution Function

AMC Antecedent Moisture Condition

MISE Mean Integrated Squared Error

WMO World Meteorological Organization

FFC Flood Forecasting Centre

ERA Extreme Rainfall Alert

1 Introduction

Flash floods are floods with rapid occurrence, likely to

occur after short intense rainfall in small catchments.

Distinguished from regular floods, flash floods are usually

localized disasters hitting basins up to a few hundred

square kilometres or less and leaving short time for hazard

warnings (Borga et al. 2007). Flash floods are almost a

global issue frequently causing both mortality and eco-

nomic loss during last decades (Creutin et al. 2013; Miao

et al. 2016; Ntelekos et al. 2006). Often accompanied with

landslides and mudflow, flash floods have huge destructive

capabilities. In addition, changing demography (and con-

sequent increased urbanisation) and climate change will

result in larger population being prone to more severe flash

floods (Hapuarachchi et al. 2011). Therefore, challenges of

flash floods, including risk assessment and forecasting,

always attract researchers’ attention (Ali et al. 2017; Braud

et al. 2018).
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Flood forecasting is considered to be the main risk

mitigation tool for catchments experiencing flash floods.

Nowadays, discharge threshold comparison methods and

rainfall threshold comparison methods are often used in

flash flood forecasting (Hapuarachchi et al. 2011). The core

idea of flow threshold comparison approaches is to com-

pare the modelled flow value with the observed flooding

threshold. They usually rely upon the understanding of the

physical laws in local hydrological processes with high

quality data (Hapuarachchi et al. 2011). Using lumped

conceptual rainfall-runoff models or physically based dis-

tributed hydrological models, runoff is simulated with

measured/forecasted rainfall (often together with soil

moisture condition) (Reed et al. 2007; Ghadua and Bhat-

tacharya 2019). This runoff is then compared with a pre-

determined runoff threshold to determine whether flooding

is likely to happen. Global Mapper is used for the river

simulation level to produce flooding maps on a large-scale

or when a rapid flood risk assessment is required (Shareef

and Abdulrazzaq 2021). However, small catchments

experiencing flash floods are often poorly gauged or

ungauged, which limits the use of such a modelling system

in forecasting (Hapuarachchi et al. 2011). Instead of

comparing discharge, rainfall comparison methods (e.g.

Flash Flood Guidance), which compare the rainfall

required to produce flooding with the rainfall forecast, are

widely used in different regions (Hapuarachchi et al. 2011).

They are easily understood by the general public and allow

decision makers to estimate and consider risks in different

time frames (e.g.3 h, 6 h, 12 h) (Ntelekos et al. 2006).

Therefore, rainfall threshold-based methods may be an

option to cope with flash flood alert challenge.

Flash Flood Guidance (FFG) is the numerical estimation

of rainfall depth in a given duration that initiates flash

floods in small streams of ungagged basins (Norbiato et al.

2008). In computing FFG, rainfall-runoff curves are pre-

pared with rainfall depth on the x-axis and corresponding

runoff on the y-axis. For every chosen rainfall duration, a

rainfall-runoff curve can be prepared. From the rainfall-

runoff curves the rainfall amount for a specific duration

that causes flooding in the basin may be determined and is

known as FFG. Subsequently, in the operational mode if

the forecasted rainfall depth is greater than FFG, then

flooding in the basin is likely. FFG is widely used as a part

of flash flood warning programmes (Mogil et al. 2002). For

example, a real-time flash flood warning system was setup

for the basins in Vietnam using FFG to issue an appropriate

warning (Chau et al. 2021).

Computation of FFG and its operational usage has some

more complexities. Due to varying catchment conditions,

typically the antecedent moisture condition (AMC), the

required rainfall to cause flooding in streams varies.

Accordingly, different FFG values are computed for

different AMC, such as AMC1 (dry condition), AMCII

(average condition) and AMCIII (wet condition). While

using the computed FFG for the operational usage typically

a hydrological model for the river basin which contains the

flashy catchment is run at daily level. The prevalent soil

moisture condition is used in selecting the right FFG (wet/

dry/average soil moisture condition).

However, it is worth noting that FFG only forecasts a

binary flooding possibility with yes or no. While there may

be rainfall events with rainfall depths lower than FFG

resulting in flash floods, some rainfall amounts greater than

FFG may not lead to flooding. Considering the fact that

FFG is used to issue a flood alert, the likely high rates of

false alarms and misses may lead to a lack of trust to the

alert (Ntelekos et al. 2006). As a result, uncertainties are

inherent in FFG which constrain decision making regarding

the issuance of warning.

On the contrary, probability-based methods provide a

quantitative assessment of threshold reliability and present

a better ground for estimating extreme events using prob-

ability distribution of the forecast quantity (Bean 2009;

Berti et al. 2012). With the above advantages, probabilistic

methods are commonly used to decide the confidence

levels of the prediction in quantitative risk assessment

(Refice and Capolongo 2002). For example, Bayesian

probability, which can be defined as the probability of an

event A given the occurrence of another event B, is applied

in issuing natural hazard warning and landslides occur-

rence (Berti et al. 2012; Economou et al. 2016).

A Bayesian approach is a conditional probability or a

probabilistic construct that allows new information to be

combined with existing information. This approach has

been explored to compute Bayesian probabilities of flash

flood occurrence (Ghadua and Bhattacharya 2019; Martina

et al. 2006). By using pressure distribution graphs, the

position of maximum dynamic pressure on the bed of flip

buckets in large dam reservoirs with high radius can be

determined (Yamini et al. 2020).

Another method known as the Frequentist approach is

based on a frequency analysis of the empirical conditions

(e.g. rainfall) that have resulted in known events (e.g.

flooding) (Brunetti et al. 2010). Specifically, for any given

event, only one of the two possibilities may hold: it occurs

or it does not. The relative frequency of occurrence of an

event, observed in a number of repetitions of the experi-

ment, is a measure of the probability of that event. It does

not need assumptions similar to the Bayesian method and it

may perform better when it is applied to large data sets

(Brunetti et al. 2010; Peruccacci et al. 2012). Recently, the

Frequentist approach has been used for the possible

occurrence of landslides (Brunetti et al. 2015). Although

we have not noticed any publication on the use of the

Frequentist approach in flash flood forecasting, it seems
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that this probabilistic approach may be appropriate to

estimate uncertainties in flash flood alert.

The innovation of the paper is in presenting a proba-

bilistic approach for flash flood forecasting and warning to

complement the binary alerts issued following the FFG

approach. We first illustrate the Frequentist flash flood

probability by combining the FFG with the Frequentist

method in order to forecast probability of flash floods

corresponding to any rainfall amount in a specific duration.

Then, we define different risk levels based on the proposed

Frequentist FFG. Finally, we apply the proposed method to

Posina River basin in Italy and provide flash flood forecasts

as well as suggestions on alert to local decision makers.

2 Study area and data

The Posina river basin (Fig. 1) is located in the north-

eastern Italian region Veneto, close to Venice and Padua,

and has an area of 116 km2. Most of the catchment (about

75%) is covered by deciduous forests, thereby saturation-

excess is the main rainfall-runoff generation mechanism of

the basin. The forest area expanded significantly in last

decades due to land use changes. Elevation range from

387 m at the outlet to 2232 m at the watershed divides

(Ghadua and Bhattacharya 2019).

As a natural watershed situated in one of Veneto’s most

rainy areas, the annual precipitation accumulation of the

Posina basin is estimated to be in the range of

1600–1800 mm. Especially during autumns the region is

often hit by severe rainfall that can result in flooding sit-

uations (Barbi et al. 2005).

In this study, we used hourly rainfall depth data for the

time period 1992–2000. Measured data from five gauges

were used to compute basin average hourly rainfall data

using Thiessen polygons. Typically, 1, 3, 6, 12 and 24 h are

used in FFG as rainfall accumulation time periods; the

suitable time window is a characteristic of the catchment

under study. For Posina 6-hourly rainfall typically leads to

flash floods (Ghadua and Bhattacharya 2019). As in this

paper a comparison with FFG is presented so we consid-

ered 6-hourly rainfall amounts in all analyses. The histor-

ical rainfall data was used to compute 6-hourly rainfall

amounts. Hourly discharge data at the outlet of the basin

was collected for the time period 1985–2000. The threshold

discharge that causes flood in the basin was considered as

24 m3/s. In total, 94 separate six-hourly rainfall events,

including 23 flood events, were selected (Fig. 2). The

Fig. 1 The Posina river basin with the main river network, the rain gauges and stream gauge (Ghadua and Bhattacharya 2019. Source: the

University of Padova, Italy)
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considered FFG was 36 mm/6 h. Note that some rainfall

events with rainfall depth less than the FFG resulted in

flooding.

Soil moisture condition in the drainage basin is an

important factor influencing the discharge. Here three types

of antecedent moisture condition (AMC) according to

seasonal rainfall limits for AMC classes were considered

based on 5-day antecedent rainfall amounts (Soil Conser-

vation Service, 1985). There were 8 events with AMCI

(dry), 2 with AMCII (average) and 13 with AMCIII (wet)

conditions. A HEC-HMS based event simulation model

was developed for the Posina basin and all 23 flood events

were simulated by varying AMC to find out effect of the

same rainfall with different AMC. This resulted in a dataset

(simulated and observed) with 23 events with AMCI (dry),

23 with AMCII (average) and 23 with AMCIII (wet)

conditions. More details are provided in Ghadua and

Bhattacharya (2019).

3 Method

3.1 Frequentist FFG method

In order to introduce the proposed methodology, 200

rainfall events of 6-h duration (measured and simulated)

have been used in Fig. 3. The conventional FFG of this

dataset was 36 mm/6 h (Fig. 3a). This dataset was not used

in the subsequent computation specific to Posina basin.

Suppose for a specific time duration D (which is con-

sidered to be 6 h in this study), there are n rainfall data RD,i

(i = 1, 2, …,n) leading to flood. Following Brunetti et al.

(2010) we first log (base 10) transform RD,i into log(RD,i)

(Fig. 3b). Differences between each rainfall amount

Fig. 2 Measured rainfall data (over 6 h) for the Posina basin. Some of

the rainfall events led to flash floods (shown in red triangles) while the

other rainfall events did not lead to flash floods (shown in grey

triangles)
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(dlogðRD;iÞ) and mean rainfall amount (for the same time

duration, i.e., 6 h) are calculated as

dlogðRD;iÞ ¼ logðRD;iÞ �MlogðRDÞ ð1Þ

The mean value MlogðRDÞ (in Fig. 4a) is described by:

MlogðRDÞ ¼
1

n

Xn

i¼1

logðRD;iÞ ð2Þ

Kernel Density Estimation (KDE) is a non-parametric

estimation method based on a group of observations and

random variables from an unknown distribution function

(Silverman 2003; Terrell and Scott 1992). Only using the

sample data itself, this method is often used to estimate an

unknown probability density function without any prior

knowledge or hypothesis of the data distribution (Peng

et al. 2016; Wang et al. 2019). Hence, we use KDE to

describe the distribution of the difference dlogðRD;iÞ first.

Here, we suppose xi ¼ dlogðRD;iÞ(i ¼ 1; 2; :::; n). The KDE

function bfðxÞ can be expressed as,

bfðxÞ ¼ 1

n

Xn

i¼1

wðx� xi; hÞ ð3Þ

where x is a data series consisting of several points equally

spaced within the range of xi values. The parameter h is

called the bandwidth or smoothing constant. It is a free

parameter which determines the amount of smoothing

applied in estimating f(x) (Zucchini 2003). The most

common optimality method used to select this parameter is

the Mean Integrated Squared Error (MISE) (Parzen 1962).

The MISE of bfðxÞ is given by

MISEðbfðxÞÞ ¼ E

Z
ðbfðxÞ � f ðxÞÞ2dx ð4Þ

E denotes the expected value with respect to that sam-

ple. There is an optimal value of h which minimizes

MISEðbfðxÞÞ(Zucchini 2003).
The expression wðx� xi; hÞ in Eq. (3) is named as the

weighting function which can be based on different types

of kernels (Zucchini 2003). In this paper we use Gaussian

weighting function which is widely used. Suppose t = x-xi,

then,

wðt; hÞ ¼ 1ffiffiffiffiffiffi
2p

p
h
e�

t2

2h2 ;�1\t\þ1 ð5Þ

The KDE result further fits with Normal Distribution

Function (NDF, also known as Gaussian Distribution

Function) according to least square method (Luciani et al.

2010),

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�

ðx�lÞ2

2r2 ð6Þ

where x represents the residuals (dlogðRD;iÞ),l and r are the

mean and standard deviation of the differences (dlogðRD;iÞ).

The fitted KDE and NDF curves are shown in Fig. 3c.

In accordance with Eq. (6), we can calculate the prob-

ability of each xi ¼ dlogðRD;iÞ using:

bFig. 3 Results from each step of the Frequentist FFG method based

on simulated data as a conceptual case (duration D is 6 h). a 200

simulated 6-hourly rainfall events with conventional flash flood

guidance (FFG). b Log transformed rainfall data with probability

density of the differences dlogðRD;iÞ obtained by Kernel Density

Estimation (KDE). c KDE curve fitted with the Normal Distribution

Function curve which shows the probability density f(x). d Probability

of a particular xi is obtained by integral calculation which is described

by the area under the probability density curve. e Comparison

between Frequentist FFG and conventional FFG after probability

calculated by Eq. (7) using

Fig. 4 Steps of the proposed Frequentist FFG method to calculate

flash flood probabilities based on known rainfall events leading to

flash flood
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PðxiÞ ¼
Zxi

�1

1ffiffiffiffiffiffi
2p

p
r
e�

ðx�lÞ2

2r2 dx ð7Þ

It shows that, we can obtain the probability PðxiÞ of each
rainfall difference (Eq. 1) to result in a flash flood, which

can be used to estimate the probability of each rainfall

amount to result in a flash flood. Thus, for any new rainfall

amount R of duration D, we can first calculate dlogðRD;iÞ as xi
and then obtain its flash flood occurrence probability PðxiÞ.
Note that if Fig. 3 is created with actual data of a basin

corresponding to a specific time duration then PðxiÞ can be

directly estimated from Fig. 3d.

Corresponding to different rainfall amounts the proba-

bility of having flash floods with this method will be

between 0 and 100% and not just 0 (will not flood) and

100% (will flood) (in Fig. 3e). The methodology described

above has been presented as a flowchart in Fig. 4.

3.2 Warning levels of flash flood based
on Frequentist FFG curve

We present in this section the assessment of the potential

risk of flash floods based on the Frequentist FFG method.

The World Meteorological Organization (WMO) suggested

the use of colour coded hazards or risk matrix for

expressing the extreme weather impact (WMO 2015). The

UK Met Office issued Flood Guidance Statements which

provide colour-coded risk information based on the confi-

dence of the alert (Met Office 2017). The Flood Forecast-

ing Centre (FFC), based at the Met Office in Exeter,

proposed four levels of flood impact based on forecast

likelihood of flooding, which were used for surface water

flood risk assessment (Perez 2016):

• 0–19%: Very low

• 20–39%: Low

• 40–59%: Medium

• 60–100%: High

While, Extreme Rainfall Alert (ERA) service pro-

vided warnings of extreme rainfall via three types of

alert. They were based on the predicted probability of

the extreme rainfall event to trigger the issuing of an

alert occurring at the county level (Hurford et al. 2012):

• 10%: Advisory alert

• 20%: Early alert

• 40%: Imminent alert

These types of ERA have been revised to the second-

generation surface water flood risk assessment, but are still

based on the level of flooding probability according to FFC

(Hurford et al. 2012).

Inspired by FFC and the ERA services, we propose to

use four alert classes for flash floods based on the Fre-

quentist FFG method: very low, low, significant and high

and adopt the following four colours to express them:

green, yellow, orange and red (Table 1).

From Table 1, when the probability of flash flood

occurrence is less than 10%, we suppose the flash flood risk

is very low. Here the advice could be to keep monitoring but

not to issue a public warning. If the flood probability

exceeds 10%, but is lower than 20%, the flash flood risk is

classified as low and we suggest decision makers to focus

on the area and people most likely to be affected first and

keep watching the situation. With higher flood probability

(20–60%), the flash flood risk is classified as significant and

we suggest that all mitigating actions against the probable

flash flood should be prepared. Decision makers are sug-

gested to make public announcements about the significant

risk from a likely flash flood occurrence. If flooding prob-

ability further increases ([ 60%), the flash flood risk is

classified as high and we suggest decision makers to raise

alarm to the local people and to take emergency actions.

The probability thresholds adopted are to some extent

arbitrary and needs to be re-evaluated based on future

research and practical applications. We anticipate that these

thresholds will vary with catchments and the users’ needs.

Users may have to define their suitable thresholds.

4 Results

We first obtained the KDE curves corresponding to dif-

ferent soil moisture conditions (AMCI, AMCII, AMCIII

and without considering the influence of AMC) to present

the distribution of differences (dlogðRD;iÞ). Figure 5 shows

the KDE results together with the respective NDF fitting

curves. Parameters, including expected values of l and

variance r2 in NDF are shown in Table 2.

Flash flood probability corresponding to each rainfall

amount for the three AMC classes and the case without

considering the influence of AMC were calculated based

on Eq. (7). The Frequentist FFG as well as conventional

FFG are shown in Fig. 6. For AMCI, the FFG was 44 mm.

As a result, if the rainfall in 6 h is larger than 44 mm then

according to the conventional FFG, a flash flood is immi-

nent and a warning should be issued. However, the pro-

posed FFG shows the flash flood occurrence probability is

only about 10%. Flash flood probability increases a lot with

the increase of rainfall from 44 to 75 mm. Even when

rainfall is larger than 95 mm the probability of flash flood

occurrence is still about 95%.
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In AMCII, the conventional FFG is 36 mm, whereas

according to the Frequentist FFG the flash flood occurrence

probability with the same rainfall amount is only about

30%. The probability of flash flood occurrence with 60 mm

rainfall is much higher (* 91%).

In AMCIII, the conventional FFG is 28 mm which

means if rainfall is less than 28 mm, there will not be flash

floods, but the Frequentist FFG shows a potential flash

flood occurrence probability of about 44% even when the

rainfall amount is only 25 mm in 6 h.

For the cases without considering the influence of AMC

based on Fig. 6d if the rainfall amount is 36 mm the

probability of flooding is 100% according to existing FFG

whereas it is only about 22% accordingly to the Frequentist

FFG.

Comparison of (a), (b) and (c) in Fig. 6 shows that the

probability of flooding based on the Frequentist FFG

Table 1 Risk levels based on flash flood probabilities associated with different suggested actions for decision makers, inspired by FFC and ERA

services.

Very low risk Low risk Significant risk High risk

Probability 

threshold
< 10% ≥ 10 to < 20% ≥ 20 to < 60% ≥ 60%

Reflect to 

potential risk
Keep monitoring

Be aware

Keep watching

Give 

announcement

Be prepared

Give alarm

Take emergency 

action

Fig. 5 Kernel Density Estimation (KDE) curve of the differences fitted with a Normal Distribution Function curve (duration is 6 h). a AMCI

(dry); b AMCII (average); c AMCIII (wet); d Without AMC

Table 2 Parameters used to describe NDF fitting curves under dif-

ferent AMC in Posina river basin

AMC l r2

AMCI - 8.69E-16 0.2677

AMCII - 1.16E-15 0.2681

AMCIII - 5.99E-16 0.2696

without AMC 4.83E-16 0.3655
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changes slowly with dry antecedent soil moisture (AMCI)

whereas it increases rapidly if the soil is wet before rain

comes. With AMCIII (wet) the flooding probability

according to the existing FFG and as well as the Fre-

quentist FFG is 100% when the rainfall amount increases

to 60 mm. However, with AMCI the Frequentist flooding

probability with similar rainfall amount is still not high.

Besides, conventional FFG in Fig. 6b and d are the same,

while Frequentist FFG are different. In general, Fig. 6 can

be used as an aid to decision making.

Based on the procedure described in Sect. 3.2 and using

the probability curves (Fig. 6) we further calculated rainfall

thresholds according to four risk levels: very low, low,

significant and high corresponding to four AMC classes

(Table 3). Then, rainfall thresholds combined with the

Frequentist FFG show the four risk levels in different

colours (Fig. 7).

Figure 7 shows the relationship between flash flood

probability, rainfall amount in 6 h and flood risk levels. As

can be seen from Fig. 7 that the width of the green area

(= risk class very low) is directly related to the AMC class.

With higher soil moisture the width of the green area is

smaller. For the narrow yellow areas (= risk class low) we

suggest decision makers to keep monitoring rainfall event

since it is easy to increase the flooding risk. Similarly, the

orange area (= risk class significant) has smaller widths

with increased soil moisture and the red area (= risk class

high) have increased widths with higher soil moisture. The

red areas denote high risk, which may be used by the

decision makers to raise alarms to residents. Note that the

probability thresholds for all four cases are the same (based

on the definition presented in Table 1). The rainfall

thresholds are different based on AMC (Table 3).

Fig. 6 Comparison between the proposed Frequentist FFG and traditional FFG for different antecedent soil moisture conditions: a AMCI (dry);

b AMCII (average); c AMCIII (wet); d Without AMC

Table 3 Rainfall threshold R (in

mm) for flash flood risk levels

with different AMC in Posina

river basin

AMC Very low risk Low risk Significant risk High risk

AMCI R\ 43.6 43.6 B R\ 49.1 49.1 B R\ 65.8 R C 65.8

AMCII R\ 29.5 29.5 B R\ 33.2 33.2 B R\ 44.5 R C 44.5

AMCIII R\ 18.4 18.4 B R\ 20.8 20.8 B R\ 27.9 R C 27.9

without AMC R\ 29.8 29.8 B R\ 35.0 35.0 B R\ 52.2 R C 52.2
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To illustrate the application of the Frequentist FFG

together with the four risk levels, we chose four rainfall

events corresponding to each of the four risk levels defined

as per the Frequentist approach. We calculated the proba-

bility of flash flooding occurrence based on the Frequentist

FFG curves (Fig. 6) and then compared them with the

existing FFG. Furthermore, the risk classes were computed

for these four rainfall events using Fig. 7. Results are

compared in Table 4.

These four rainfall events conceptually depict the pres-

ence of inherent uncertainty in the forecasts from con-

ventional FFG and the handling of it in the Frequentist

FFG. For the first event, both approaches forecasted zero or

close to zero probability (very low risk, colour code green)

of flooding and the event did not end up in flooding

(Table 4). For the second event, which ended up in

flooding, was forecasted as no-flood and as of low risk

(colour code yellow) respectively based on the conven-

tional FFG and Frequentist FFG. Based on the conven-

tional FFG no action might be taken whereas the low risk

forecast from the Frequentist FFG might be used in mon-

itoring and as a result the disaster risk might be reduced

substantially. For the third rainfall event (Table 4), which

did not end up in flooding, the conventional FFG raised a

false alarm, too many of which may cause cry wolf syn-

drome (see also Fig. 2). Compared to that the Frequentist

FFG presented a significant risk (* 40% probability of

flooding, colour code orange). Although this also was

somewhat a false alarm but * 60% chance of not being

flooded also helps in realizing that this was still not a

highly likely flood. Once again if the emergency team uses

similar forecasts in continuing to monitor, likely without

issuing public flash flooding warning, then risk can be

managed without increasing false alarms. For the last event

the conventional FFG and Frequentist FFG forecasted flash

flood probability of 100% and 82% (high risk, colour code

red) respectively and it ended up in flooding. The proba-

bilistic forecasts and the corresponding risk classes present

the uncertainty of forecast, helps in decision making

regarding issuance of flood warning and when combined

with monitoring can aid in reducing disaster risk.

Figure 8 presents a comparison of forecasts from the

conventional FFG and Frequentist FFG for 94 6-hourly

rainfall events in Posina, which include 23 flood events.

For each event Fig. 8 shows the flooding probability based

on the conventional FFG. For the same events Fig. 8 also

Fig. 7 Flash flood risk levels based on the Frequentist FFG for

different antecedent soil moisture conditions (the duration is 6 h).

Green represents very low risk; yellow means low risk; orange is

significant risk; red alerts high risk. a AMCI (dry); b AMCII

(average); c AMCIII (wet); d Without AMC
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shows the flooding probability and the corresponding risk

class based on the Frequentist FFG. This figure should not

be read as a comparison of accuracy of the two approaches.

It rather presents the uncertainty of forecasts in the con-

ventional FFG and the handling of it to present the prob-

ability of flooding and risk class according to the

Frequentist approach. As can be seen that for several

events, which ended up in flooding, while the conventional

FFG forecasted no-flood, the Frequentist FFG presented a

probability of flooding. Decision makers can use the

probability and the corresponding risk classes to take dif-

ferent actions. Actions can be starting to monitor, alert

notification or issuance of forecasts. Similarly, for the

events which did not end up in flooding, the probability of

flooding and the corresponding risk class can be used in

similar decision making and it is likely that this will reduce

false alarms while still reducing the disaster risk. The

actual number of classes, their description, actions and the

associated probability boundaries require more careful

study, which in this study was taken up somewhat arbi-

trarily to present the usefulness of the approach.

5 Discussion

The Frequentist FFG requires historical rainfall records.

Availability of sufficient rainfall data will improve the

reliability of forecasted probabilities of flooding. This

approach, similar to many hydrological approaches, has a

limitation. It assumes stationarity in catchment responses to

meteorological forcing. However, urbanisation, deforesta-

tion and other land-use changes may affect catchment

response. In such cases past rainfall-flood data may not be

useful. Moreover, as the flash flood prone catchments often

have hilly terrain and spatial variation of rainfall in such

terrains are high so computing basin wide areal rainfall by

using any interpolation technique may introduce errors.

These errors also depend upon the gauge density. Addi-

tionally, gauges (and weather radars if they are used) may

introduce measurement errors. These errors were not con-

sidered in this research and may be taken in future

research.

Nevertheless, some ungauged basins lack flow and

precipitation data. Regionalization techniques, which can

be defined as the transfer of information from one catch-

ment to another (Kokkonen et al. 2003; Li et al. 2019), may

help data scarcity issues. Also, for flash flood warning,

rainfall forecast data are needed. Remote sensing data can

be used to obtain rainfall data (if latency allows) but need

to be first evaluated by data from rain gauges (Bytheway

et al. 2019). Accuracy of rainfall forecast data is critical to

reducing errors in computing flood probability and issuance

of flood warning. Moreover, Frequentist FFG can be

updated in future with new rainfall data. Extending the

rainfall database with new rainfall data will help adjusting

the flash flood probability ranges to better help the public

and decision makers with more reliable forecasts. Land use

changes in the basin will call for adjusting the probability

ranges associated with the risk classes of the Frequentist

FFG.

Hence, a possible future application of the proposed

method may consider more factors impacting flash flood.

Combining with hydrological modelling, more scenes with

various local land and soil characteristics, topography and

land use changes can be designed. Also, the Frequentist

FFG method will be used in other cases to get more suf-

ficient information for result evaluation and method

improvement in order to better support decision makers

during the flash flood warning process.

6 Conclusions

In this paper, a new flash flood forecasting method Fre-

quentist FFG, which is developed by combining Flash

Flood Guidance (FFG) with the Frequentist method, is

presented. The proposed method can be used to compute

the probability of flash flood corresponding to a rainfall

Fig. 8 Flash flood probability of 94 rainfall events with 23 flood events: a with the conventional FFG, b with the Frequentist FFG
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amount (or rainfall forecast). Compared to the existing

FFG, which presents a binary output flood or no-flood, the

Frequentist FFG depicts specific flood probability values

for any rainfall amount. Four risk classes, namely, very

low, low, significant and high, and the probability ranges

corresponding to each class were proposed. For the issu-

ance of warning the four risk classes were colour coded as:

green (very low), yellow (low), orange (significant) and red

(high). In the Posina river basin, flash flood probabilities

for 6-hourly rainfall events were calculated. Based on the

Frequentist FFG method the probabilities changed slowly

in dry soil condition but rapidly in the wet. The rainfall

ranges for very low level of risk (colour code green) was

larger in dry soil conditions, which is intuitively under-

standable. The small rainfall ranges for low level of risk

(colour code yellow) showed flooding risk easily increased

whether in dry or wet conditions. Rainfall range of sig-

nificant risk (colour code orange) was smaller in wet soil

condition while it of high risk (colour code red) was larger.

When rainfall amount increased to these two levels, deci-

sion makers would be suggested to give announcement or

even alarm to local residents. The application of the pro-

posed method in the four rainfall events (Table 4) illus-

trated the usefulness of the approach. The applicability of

the approach is further elaborated with 94 6-hourly rainfall

events (Fig. 8). It showed it was reliable to support deci-

sion makers with flooding probability varying from 0 to

100% and appropriate risk level warnings.
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