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Abstract
The concentrations of As, Cd, Co, Cu, Mn, Ni, Pb and Zn in 78 urban soil samples from Zhengzhou, Henan Province,

China were determined in the study. The mean values of the eight heavy metals were lower than the natural background

reference values of soils from Henan Province, with the exception of Cd and Pb. However, the peak values for six species

of the elements exceed the corresponding reference values, indicating enrichment of these metals in urban soils in

Zhengzhou City, especially for Cd and Pb. The spatial distribution patterns showed that levels of As, Co, Mn and Ni

decreased gently from northwest to southeast without hot-pot area, whereas Cd, Cu, Pb and Zn were with significant spatial

variability. PMF model coupled with Pearson’s correlation analysis was performed to apportion and quantify possible

sources of the eight elements. Four Factors (natural source, industrial production, agricultural activities and traffic dis-

charges) were distinguished and their respective contribution rates were 18.73%, 33.22%, 23.91% and 24.14%, respec-

tively. Results of uncertainty analysis confirmed that the all four source Factors based on the PMF model were reliable.

Furthermore, the probability distribution of health risk assessed by means of Monte Carlo simulation revealed that non-

carcinogenic risks associated with heavy metals were acceptable for both adults and children, while the total carcinogenic

risk values remained relatively high. Additionally, the children were more susceptible to health risks in comparison to

adults, and the ingestion way was considered to be the major exposure pathway. The results of source-oriented health risk

demonstrated that the agricultural source was the major contributor to health risks, which was characterized by As, Ni and

Co.

Keywords Pollution assessment � Potential ecological risk � Zhengzhou urban area � Source identification �
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1 Introduction

Urban soils are regarded as a crucial component of the city

ecological system which closely related to the general life

quality of residents (Pecina et al. 2021). However, with the

accelerated urbanization and industrial expansion in and

around cities, frequent anthropogenic disturbances have led

to the accumulation of various pollutants in urban soils.

Among numerous types of pollutants, heavy metal con-

taminants are of great concern due to their biotoxicity and

irreversibility, and they are considered to be important

indicators for monitoring the impact of anthropogenic

processes on soil environmental quality (Tong et al. 2020).

The sources of heavy metals in the soil can be either

natural or anthropogenic or both (Siddiqui et al. 2020).

Urban soils differ significantly from other natural ones in

that they are more susceptible to human activity. Therefore,

anthropogenic sources are seen as the primary cause of the

increased pollution elements in urban soils, for instance,

vehicle emissions, municipal and industrial wastes dis-

posal, mining and smelting activities, construction waste
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and domestic waste, fossil fuel combustion, huge usage of

agrochemicals(Ma et al. 2016; Men et al. 2018; Hou et al.

2019; Faisal et al. 2021). It is reported that over five million

sites were contaminated by heavy metals worldwide(Sun

et al. 2019). In view of the non-degradable properties,

heavy metals tend to accumulate in organisms, and they

may damage the nervous, lungs, liver, kidneys skeletal,

enzymatic, endocrine, and immune systems promoting

several disease conditions and even lead to cancer ulti-

mately (Jaishankar et al. 2014; Li et al. 2014; Vareda et al.

2019). Heavy metals can do harm to humans in three ways:

ingestion, inhalation, and dermal contact (Safiur Rahman

et al. 2019). Previous studies have showed that ingestion is

the as the main exposure route for risk of humans, fur-

thermore, children were more susceptible health threats

from toxic elements than adults (Tong et al. 2019, 2020;

Zhang et al. 2019; Huang et al. 2021; Siddiqui et al. 2021).

Since the origins of elements in urban soils were com-

plex and varied, source identification and distinction of

heavy metals was regarded as precondition of preventing

and controlling pollution (Wu et al. 2018). The positive

matrix factor (PMF) model cannot only allow for non-

negative constraints on both the loadings and contribution,

but can also handle some missing data (Li et al. 2020). In

consequence, the PMF model has been used previously to

apportion the source allocation of atmospheric, water,

sediment and soil pollutants (Zhang et al. 2018, 2020; Liu

et al. 2019b; Srivastava et al. 2021). Nonetheless, the

approach relies predominantly on the researcher’s analysis

for the local background parameter values, and its accuracy

and application were constrained (Huang et al. 2021).

Consequently, a comprehensive research method based on

PMF in conjunction with correlation coefficients was

employed to ensure the reliability of source assignment

results in the study.

Meanwhile, the health risk levels varied by element type

and population group, and the contribution of each pollu-

tion source to health risk accounts for different shares. To

accurately control the health risks related to heavy metals

in soil, there is a need for conducting the health risk

assessment and identify highlight risky elements. In term of

health risk assessments, previous studies tended to depend

upon traditional models with fixed parameters, resulting in

overestimation or underestimation results (Chen et al.

2019; Zeng et al. 2019; Qiao et al. 2020). Fortunately,

Monte Carlo simulation technique, which take both the

variability of specific exposure parameters and uncertainty

of heavy metal concentrations into account, can minimize

the uncertainties in the evaluation of health risks. Given

this advantage of the Monte Carlo simulation approaches, it

has been shown to be one of the most powerful method for

probabilistic risk assessment (Ma et al. 2017; Wang et al.

2020b). Therefore, it was employed to evaluate health risks

resulting from soil elements and to identify preferent heavy

metals for risk control in the study.

Urban soils have been regarded as a good tool for

diagnosing environmental pollutions (Awasthi et al. 2016;

Liu et al. 2009). The spatial distributions, pollution level

analysis, source identification and concentration-oriented

health risk caused by toxic elements in urban soils have

been studied a lot (Wang et al. 2017, 2019; Men et al.

2018; Sun et al. 2019). However, very few studies explored

source apportionment and source-oriented health risk of

heavy metals in urban soils, especially that in large

megacity. As the core city of central plains city group, the

soil pollution characteristics and the related health risks to

human beings in the urban areas of Zhengzhou remains to

be lack of study, in spite of the fact that many people may

be involved. On account of this, the study focused on the

contamination characteristics and probabilistic health risk

of pollution elements in urban soils from Zhengzhou. The

core objectives include (1) to investigate pollution char-

acteristics and the potential ecological risk of eight heavy

metals in urban soils, (2) to identify and quantify the source

apportionment of targeted pollutants, (3) to evaluate con-

centration-oriented and source-oriented health risk for both

adult and children exposed to heavy metals.

2 Experimental

2.1 Site description

Zhengzhou city (112�420–114�140 E, 34�160–34�580 N)
which locates in the geographical center of China is the

capital of Henan Province, and is an important trans-

portation junction, as well as a national logistics and

population catchment area. The city covers an area of

7,446 km2, and it contains 12.6 million residents according

to the seventh national census. The climate of Zhengzhou

is characterized as northern temperate continental monsoon

climate with an average rainfall of 633.1 mm per year. In

the past decades, the predominant geological location,

policies, cultural conditions played key roles in attracting

more people to visit or settle in the city. While the huge

population drives economic development, and it also con-

tributes directly or indirectly to the formation of massive

amounts of pollutants (Wang et al. 2020a). In Zhengzhou,

there are ring roads surrounding the Erqi Tower up to

various distances. The areas within 4th ring road have the
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higher population density and vehicle stream, and it’s the

regions of concern for the study.

2.2 Sample collection and preparation

In this study, the area within 4th ring road of Zhengzhou

was divided into a sampling grid of 2.5 km 9 2.5 km. A

total of 78 urban soils were gathered in March 2019

(Fig. 1), and renovation soil sites were avoided. At each

sampling location, no less than 5 subsamples were sampled

using a stainless steel spatula within the radius of 50 m.

Samples at each sub-sites were blended to obtain one

composite sample and sealed in a self-sealing polyethylene

pouch subsequently. After being naturally dried at room

temperature, stone oak, construction debris, dry branches

and fallen leaves were removed from the samples. The

remaining were abraded and passed through a 0.15-mm

nylon sieve, and then the homogeneous sieved samples

were kept in polyethylene bags before analysis.

2.3 Heavy metal determination

The contents of As, Cd, Co, Cu, Mn, Ni, Pb and Zn were

measured according to previously described methods with

minor modification (Ma et al. 2016). A microwave diges-

tion (Mars One, CEM Corporation, Matthews, USA) was

employed to extract target analytes from soil samples.

Approximately 0.50 g sample was weighed and digested

under pressure into a polytetrafluoroethylene (PTFE) vessel

with 9 mL of concentrated HNO3 (70%) and 3 mL of HCl

(37%). On completion of the digestion procedure, the

digestion solutions were heated to less than 5 mL in the

acid detector. After adequate cooling, solutions were fil-

tered and then replenished to 50 mL with deionized water

(18.2 MX cm, ULUP-III-10 T-ZL, Sichuan Youpu Ultra-

pure Technology Co., Sichuan China). The element con-

centrations were determined by ICP-MS (Agilent 7700x,

Tokyo, Japan). A certified reference material (CRM) soil

GBW07444 was applied to verify the digestion efficiency.

Results showed that the recovery rates for all the heavy

metals were around 85–105%.

2.4 Statistical analysis

The descriptive statistics of eight metals were performed

on the strength of SPSS software (version 21.0). Pearson

correlation matrix analysis was performed by Origin 2020b

to quantify the relationship between each pair of targeted

pollutants. Positive matrix factorization (PMF) model was

carried out through the EPA PMF software (version 5.0) to

allocate the hypothetical sources of pollutants. Given the

great impact of outliers on PMF results, the dataset was

Fig. 1 Sampling sites distribution of urban soils in Zhengzhou City
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detected before performing PMF model, and the outliers

were identified and eliminated on the basis of interquartile

ranges and histograms (Guan et al. 2018; Huang et al.

2021). In addition, to prevent the underestimation or

overestimation of risks because of utilizing constant

parameters, Monte Carlo simulation was selected to keep

the uncertainties of the health risk evaluation to a minimum

(Jiang et al. 2021). Crystal Ball software (version 11.1.24)

was applied to perform the Monte Carlo simulation by

considering 10,000 iterations with 95% confidence level.

The spatial distribution of the contaminants in study area

was drawn by Geographic Information System (GIS)

software. The geostatistical interpolation method of ordi-

nary kriging was selected to predicted the heavy metal

concentrations at unsampled area (Zhang et al. 2021).

2.5 Ordinary kriging interpolation method

Geostatistical analyses based on ArcGIS software were

used to describe all spatial variations. In order to develop

better predictions, ordinary kriging interpolation method

was introduced to estimate the attributes values at non-

sampled sites by combining observed values with weights

linearly. The predicted value could be calculated as

follows:

Z� x0ð Þ ¼
Xn

i¼1
kiZðxiÞ ð1Þ

where Z*(x0) is the predicted value at an unknown location

x0, Z (xi) is the observed values at location xi, ki is the

weight placed on Z (xi).

2.6 Pollution levels and potential ecological risk
of heavy metals

Geo-accumulation index (Igeo) was applied to assess the

pollution level of individual heavy metal in soils, and it can

be achieved by the following formula (Huang et al. 2021):

Igeo ¼ log2ð
Ci

1:5� Bi
Þ ð2Þ

where Ci is the determined content of metal, Bi represents

the geochemical background value of individual element

and 1.5 is the constant value allowing the analysis of

fluctuations heavy metals based on natural processes. Igeo is

unitless, and it can be divided into seven classes, as shown

in Table S1.

Different from the Igeo, all the individual evaluation

factors and highlights the contribution of the highest

enrichment elements were taken into account in the

Nemerow composite index (Ps) method (Cui et al. 2021),

which expressed as follows:

Ci
f ¼

Ci

Bi
ð3Þ

Ps ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCi

fmaxÞ
2 þ ðCi

faveÞ
2

2

s

ð4Þ

where Ci
f is the individual pollution index of element i,

Ci
fmax represents the maximum value of Ci

f , and Ci
fave is the

average of single pollution index of all the elements. Ps can

be classified into five grades and listed in Table S1.

Ecological risk index (RI) was selected to estimate the

adverse effect caused by heavy metals on the urban

ecosystem, which considers the toxicity and environmental

response of different heavy metals based on the toxicity

response (Liu et al. 2019a). The RI was defined as

((Mihankhah et al. 2020):

RI ¼
Xn

i¼1

Ei
r ¼

Xn

i¼1

Ti
rC

i
f ¼

Xn

i¼1

Ti
r Ci=Bið Þ

� �
ð5Þ

where Ti
r is the biological toxic response factor of each

element. According to previous studies, the values of Ti
r for

As, Cd, Co, Cu, Mn, Ni, Pb and Zn are 10, 30, 1, 5, 1, 2, 5

and 1, respectively (Hakanson 1980; Dehghan Madiseh

et al. 2009). Ei
r represents the potential ecological risk

factor for a given substance. The division of RI values was

suggested as Table S1.

2.7 Source apportionment model
and uncertainty analysis

2.7.1 Source apportionment model

In the research, the PMF model was introduced for source

allocation of heavy metals following the guidelines of the

USEPA (USEPA 2014). The model divided the original

matrix into two factor matrices gik and fjk and a residual

matrix eij. The basic equation can be formulated as follows:

Xij ¼
Xp

k¼1

gikf kj þ eij ð6Þ

where Xij is the concentration of heavy metal j measured in

sample i, gik is the contribution of source k to sample i (mg/

kg) and fkj is the amount of element j from source k. The

residual eij is calculated by adjusting gik and fkj to minimum

value of the objective function Q, which is defined as:

Q ¼
Xn

i¼1

Xm

j¼1

eij
uij

� �2

ð7Þ
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uij ¼

5

6
�MDLC�MDL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðErrorFraction� CÞ2 þ ð0:5MDLÞ2

q
C[MDL

8
><

>:

ð8Þ

where uij represents the uncertainty of heavy metal j in

sample i, Error fraction is the measurement percentage, and

MDL represents the method detection limit.

2.7.2 Methods of uncertainty analysis

The goodness of fit, bias and variability were considered to

be the common method for testing the uncertainties of PMF

model results (Men et al. 2019; Chai et al. 2021). In the

research, fitting coefficients (r2) between soil heavy metals

observed concentrations and predicted concentrations by

PMF model were applied to evaluate goodness of fit, and it

could be calculated based on formula below:

r2 ¼
Pn

i¼1ðbyi � yÞ2
Pn

i¼1ðyi � yÞ2
ð9Þ

where byi is the predicted concentration at site i, yi is the

observed concentration at site i, y is the mean observed

concentration and n is the number of sampling sites.

Bootstrap (BS) could be estimate effects from random

errors and part effects of rotational ambiguity, and it was

used to test bias and variability of PMF model results

consequently (Paatero et al. 2014). The essence of the

method is to generate replicate datasets from the original

observations by re-sampling with replacement. The boot-

strap samples (X* = [x1
*, x2

*, _, xn
*]) were developed by

sampling from empirical distribution function (Fn) of

original data set (X = [x1, x2, _, xn]). The statistical object

(R* (X*, Fn)) could be calculated from the following

formula:

R� X�;Fnð Þ ¼ h F�
n

� �
� h Fnð Þ ð10Þ

where Fn
* represents the empirical distribution function,

h(Fn
*) and h(Fn) are the estimation of parameter h of

population distribution of X. The distribution of R and the

parameter h could be obtained after repeating the sampling

and calculation of R* (X*, Fn) for enough times.

The BS data sets were specified number of 100 in this

study and then processed with PMF. For each BS run, the

BS factors were compared with the base run factors. If no

base factors correlate above the threshold for a given BS

factor, that factor is considered ‘‘unmapped’’. This process

would be repeated for as many BS runs as the specifies.

There could be instances when multiple BS factors from

the same run may be mapped to the same base factor.

Based on the BS simulations, the coefficient of variation

(CV) values were applied to reflect the deviation level of

heavy metals source apportionments, greater CV values

suggest greater level of deviation (Liu et al. 2018). It could

be obtained from standard deviation (SD) values divided by

average values of the 200 iterations BS results.

2.8 Probabilistic health risk assessment

The hazard quotient (HQ) and carcinogenic risk (CR) were

widely employed to quantify the potential health risk posed

by chemical elements for both children and adults (Gu and

Gao 2018; Islam et al. 2020; Lee et al. 2021). HQ and CR

were calculated using the corresponding average daily dose

(ADD), reference dose (RfD) and cancer slope factor (SF),

respectively. Given that the risk generated by heavy metals

in soil comes from ingestion (ADDing), inhalation (ADDinh)

and dermal contact (ADDderm), the ADD could be calcu-

lated by Monte Carlo simulation according the following

Eqs. (11)–(13). The optimal probability distributions for

concentration database of exposure heavy metals and

exposure parameters used in the method were presented in

Table S2 and Table S3.

ADDing =
C� Ring � EF� ED

BW� AT
� 10�6 ð11Þ

ADDinh ¼
C � Rinh � EF � ED

PEF � BW � AT
ð12Þ

ADDderm ¼ C � SL� SA� ABF � EF � ED

BW � AT
� 10�6

ð13Þ

The evaluation indicators of hazard index (HI) and total

carcinogenic risk (TCR) for elements could be estimated by

the following formulas (Han et al. 2020; Li et al. 2020):

HI ¼
Xn

i¼1

HQi ¼
Xn

i¼1

ðADDing

RfD
þ ADDinh

RfD
þ ADDderm

RfD
Þ
i

ð14Þ

TCR ¼
Xn

i¼1

CRi =
Xn

i¼1

ðADDing � SF + ADDinh � SF + ADDderm � SFÞi

ð15Þ

When HQ\ 1 or HI\ 1, adverse health effect of heavy

metals to the population is unlikely. If HQ[ 1 or HI[ 1,

it indicates that harmful effects on health caused by soil

heavy metals may occur. When CR is less than 1.00E-06,

the carcinogenic risk of elements is deemed negligible.

When CR between 1.00E-06 and 1.00E-04, indicates that

the risk to human beings is within the acceptable range.

When CR is ore than 1.00E-04, shows that the carcino-

genic risk produced by pollutants is unacceptable. The

corresponding RfD and SF values used in equations were

shown in Table S4.
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3 Results and discussion

3.1 Pollution levels and spatial distribution
of the heavy metals

Statistical descriptive analysis results of elements including

minimum, maximum, mean, standard deviation, and coef-

ficient of variation, in soils from study area are listed in

Table 1. The results showed that the arithmetic mean

concentrations of the elements were less than the natural

background reference values of soils from Henan Province,

with the exception of Cd and Pb. However, the peak values

for As, Cd, Co, Cu, Pb and Zn were13.845, 0.744, 11.420,

48.830, 131.860 and 168.760 mg/kg, respectively, and they

were 1.2, 10.1, 1.1, 2.5, 6.7 and 2.8 times of the corre-

sponding reference values. Especially, the average values

of Cd and Pb were 2.51 and 1.90 times higher than the

corresponding background reference values, respectively

(Fig.S1), which revealed that heavy metal contamination

occurred in the study area. Additionally, Cd levels were

above background values in 97.44% of samples, and Pb

levels above background values in all samples, demon-

strating that Cd and Pb were the dominant concentrated

elements in urban soils. The CV shows that the concen-

tration distribution of Cd, Cu, Pb and Zn with considerable

high spatial differentiation (CV[ 30%), especially Cd

with the variation coefficient of 65.05%. The higher vari-

ation coefficients may be caused by elevated levels of

elements in some sampling sites, suggesting that point

sources pollution may exist for Cd, Cu, Pb and Zn in the

study area (Huang et al. 2021). The remarkably high kur-

tosis values of the Pb distribution suggested the occurrence

of abnormally high values in some sample, and it was

presumably related to anthropogenic discharges (Huang

et al. 2020).

In order to clarify the transformation of the heavy metals

in the research area, ordinary kriging interpolation was

introduced to obtain the spatial distribution patterns of the

target elements. The spatial distribution of As, Cd, Co, Cu,

Mn, Ni, Pb, and Zn in downtown area of Zhengzhou were

described in Fig. S3. As illustrated in Fig. S3, the spatial

distribution maps for As, Co, Mn and Ni were similar, all

showing high levels in the northwest and low levels in the

southeast. The distribution trends of the four elements were

gently and without hot-pot areas (exclude Co). Further-

more, the maximum values of all elements were not sig-

nificantly different from the background values, and all the

mean values were lower than the corresponding back-

ground values. The above certificate proves that As, Mn

and Ni in urban were uncontaminated, and derive mainly

from the soil parent material. A hot-pot area can be

observed in contour maps of Co, which locates the inter-

section of Jinshui Road and Zhongzhou Avenue, Zhengz-

hou’s main thoroughfares, and it is the location of two

large commercial plazas (Manhattan Plaza and Chinatown

Cultural Plaza) in the area. The slightly elevated Co in this

region may be associated with deliberate applications of Co

salts, such as Co-containing plating materials in infras-

tructures, Co treated phosphate fertilizers for greening

(Salah et al. 2015; Han et al. 2020). The overall Co dis-

tribution map showed that the slight increase of Co con-

centration in the region has only a minor effect on the mean

values, indicating that the Co was also primarily derived

from soil parent material.

Spatial distribution patterns of Cd, Cu, Pb and Zn were

similar with significant spatial variability as presented in

Fig. S3. All hot-pot areas of Cu, Pb and Zn appeared in

downtown areas with high traffic volumes or near outer

rings of dense traffic lanes, indicating that high concen-

trations of them might be attributed to engine wear, leaded

gasoline, braking and other traffic sources (Dao et al. 2014;

Du et al. 2019; Huang et al. 2021). Two hot-pot areas of Cd

could be observed in Fig. S3, one near the Zijinshan

interchange where traffic volumes were high, and the other

Table 1 Statistical results of heavy metal concentrations in urban soils from Zhengzhou

Min. (mg/

kg)

Max. (mg/

kg)

Mean (mg/

kg)

Std. deviation

(mg/kg)

Coefficient of

variation (%)

Skewness

(mg/kg)

Kurtosis

(mg/kg)

Background valuesa

(mg/kg)

As 6.402 13.845 10.654 1.555 14.60 - 0.215 0.271 11.4

Cd 0.057 0.744 0.186 0.121 65.05 2.261 6.759 0.074

Co 4.340 11.420 7.916 1.191 15.05 0.212 1.060 10.0

Cu 9.350 48.830 15.289 4.993 32.66 4.242 26.081 19.7

Mn 254.160 588.270 374.469 59.281 15.83 1.103 2.385 579

Ni 9.660 24.130 17.583 2.543 14.46 - 0.225 0.424 26.7

Pb 23.450 131.860 37.169 12.454 33.51 5.810 43.510 19.6

Zn 26.880 168.760 52.351 20.745 39.63 2.874 12.265 60.1

a Soil background values for heavy metals in Henan Province of China
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in the commercial and industrial cluster near Chemical

Road, suggesting that Cd pollution was not only related to

traffic emissions, but also influenced by commercial

activities and industrial discharges (Ma et al. 2016).

3.2 Potential ecological risk of heavy metals

The Igeo and Ps were calculated to evaluation pollution

degree of soils in study area, and the results are represented

in Fig. 2a and b. As shown in Fig. 2a, the contamination

levels of As, Co, Cu, Mn, Ni and Zn were found negligible

on the basis of Igeo categories. The average Igeo for Cd and

Pb ranged from 0 to 1, and the 75% data points are below 2.

Therefore, the levels for Cd and Pb were in the range of

uncontaminated and moderately contaminated. As

demonstrating in Fig. 2b, the Ps values ranged from 0.96 to

7.27. According to the classification of Ps values men-

tioned before, sample sites in the class of slightly polluted,

moderately polluted and seriously polluted domain were 51

(65% of total sites), 15(19% of total sites), 11(14% of total

sites), respectively. The results of Nemerow index method

indicated that heavy metal pollution in some locations were

depressing.

The potential ecological risk indices at different sam-

pling sites assessed according to Eq. (4) was depicted in

Fig. 2c. Referring to the RI category aforementioned, the

ecological risks were between low risk (RI\ 150) and

considerable risk (300 B RI\ 600). The RI of heavy

metals at 63 sample points were within 150, demonstrating

a low ecological risk for most sample sites. However, 15

sample sites (approximately 20% of total sites) with

150 B RI\ 300 were perceived as moderate risk, and 2

sites with RI C 300 were categorized as considerable risk.

The Cd contributed the maximum to RI of all elements,

with the exception of sample site 65. The findings of the

ecological risk evaluation suggested that contamination

control in the study area was imminent, especially for Cd.

3.3 Source allocation and uncertainty
assessment

3.3.1 Source allocation of heavy metals

To distinguish the origin and migration of eight elements

effectively, Pearson’s correlation analysis was performed

to ascertain the relationships among the target element

concentrations in soils (Fig. 3c) (Ke et al. 2017). Then, the

possible sources of contaminants were apportioned and

quantified by means of PMF model (Fig. 3a, b). A

stable and minimum Q was introduced in the model to

guarantee the residual matrix and the optimum factor

number was confirmed as four. The Cd with signal-to-noise

(S/N) ratios 0.53 was defined as ‘‘weak’’, and other heavy

metals with S/N ratios above 1 were defined as ‘‘strong’’.

The values of scaled residuals for all heavy metals were

between - 3 and 3, indicating that there were no abnormal

data in the model. The extracted factor loadings and con-

tributions to individual heavy metals by PMF model were

presented in Figs. S4 and S5. Further, spatial distributions

of elements (Fig. S3) were applied to verify the source

identification results.

The results of Pearson’s correlation analysis indicated

As, Co, Cu, Mn, Ni and Pb were found significantly pos-

itively correlated with each other, indicating that they may

Fig. 2 Pollution levels of heavy

metals in urban soil. a Box-plots
of the geo-accumulation index,

b Nemerow index and

c potential ecological risk

indices
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be from a common origin, while Cd, Cu, Pb and Zn were

significantly positively correlated with each other, which

may suggest the same source of them (Han et al. 2006).

More importantly, the significant correlations of Cu and Pb

to other metals indicate multiple sources (Fang et al. 2019).

Contribution percentages of the extracted four Factors to

the aggregate pollution and individual heavy metals were

presented in Fig. 3a and b, respectively.

Factor 1 accounted for 18.73% of total contributions,

was characterized by Ni, Co, Cu, Zn, Pb, Mn, As and Cd in

descending order (Fig. 3a and b,). The Factor profiles were

less than 30% for all elements. Furthermore, the observed

distribution trend of primarily element Ni was gently

without any obvious point source (Fig. S3) and not enri-

ched in any sample site (Fig. S2). Meanwhile, it has been

proved to be available in the soil parent materials and

pedogenic process in previous studies (Ma et al. 2016;

Zhang et al. 2018; Jin et al. 2019; Wang et al. 2019).

Therefore, Factor1 may represent the natural source.

Factor 2 was taken 33.22% of total variance, and Mn

(36.88%) and Cd (30.01%) received higher weighting than

the other elements. Both of the two elements were reported

in numerous literatures to be associated with industrial

activities, such as smelting, coal consumption, metal pro-

cessing, galvanization, batteries and plastic application (Li

et al. 2017, 2020; Zhang et al. 2018; Men et al. 2020). The

proportions of Cd and Mn exceeding background values

were 97.44% and 1.28% (Fig. S2), suggesting that the

presence of Factor 2 did not have a significant effect on Mn

contamination compared to Cd. Two hot-pot areas of Cd

could be observed in Fig.S3, one near the Zijinshan inter-

change and the other in the commercial and industrial

cluster near Chemical Road, suggesting that Cd pollution

was not only related to industrial production, but also

influenced by other sources (Ma et al. 2016). Hence, Factor

2 could be interpreted as industrial production.

Factor 3 was weighted primarily on As (40.79%), Ni

(31.19%) and Co (30.55%) (Fig. 3b), which made up

23.91% of total contribution (Fig. 3a). Although the mean

values of As and Co did not surpass their corresponding

local background values, the percentage of sample sites

with As and Co exceeding background values were 30.77%

and 3.85%, respectively (Fig. S2). Many previous studies

confirmed that they were common elements in pesticides

and fertilizers (Chen et al. 2016; Zhang et al. 2018; Wang

et al. 2019). Pesticides and fertilizers are widely used and

overused in urban afforestation and agricultural production

(Onakpa et al. 2018). Coincidentally, the spatial distribu-

tions of As and Co with high values were in the north

region (Fig. S3), which was a typical farming area and had

a long history of traditional agricultural of Zhengzhou. As

a result, Factor 3 could be assigned to agricultural

activities.

Factor 4 consisted predominantly of Cd (68.19%), Zn

(48.75%), Cu (32.39%) and Pb (29.49%) (Fig. 3b), was

taken 24.14% of total variance (Fig. 3a). Spatial distribu-

tion patterns of Cd, Zn, Cu and Pb were similar with sig-

nificant spatial variability as presented in Fig. S3.

Moreover, the proportion of samples that exceed the local

background values for Cd, Zn, Cu and Pb were 97.44%,

Fig. 3 Source apportionment of heavy metals (HMs) in urban soils of

the study area. a The percentage of contribution for each factor by

PMF model. b Factor profiles of heavy metals in soils derived from

PMF model. c Identify the correlations between heavy metals by

combining Pearson correlation analysis and PMF model
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17.95%, 8.97% and 100%, respectively (Fig. S2). The

results showed that Cd and Pb was significantly enriched in

urban soil and all of them may be associated with anthro-

pogenic activities. All hot-pot areas of Zn, Cu and Pb could

be observed in downtown areas with high traffic volumes

or near outer rings of dense traffic lanes, indicating that

high concentrations of them might be attributed to leaded

petrol, braking, engine wear and other traffic pollution (Du

et al. 2019; Huang et al. 2021). Similarly, one hot-pot area

of Cd appeared near the Zijinshan interchange where traffic

volumes were high, and Cd was described as a component

of tyres and lubricants (Huang et al. 2021). As a conse-

quence, Factor 4 was classified as traffic emissions.

3.3.2 Uncertainty assessment for factor contributions

In this study, fitted coefficients (r2), variability and CV

values were applied to test uncertainties of pollutant source

analysis. The r2 between the observed and predicted con-

centrations were shown in Fig. S6. As illustrated in the

figure, the r2 of all elements were above 0.692, and r2

values of As, Cd, Co, Cu, Mn, Ni and Zn were even higher

than 0.882, which indicated that the PMF model predic-

tions could better explain the values and variation of

observed measured values(Men et al. 2019).

The variability of the contribution of Four sources based

on BS runs in the PMF model were presented in Fig. S7.

Median values in BS runs corresponded to the most

accurate Factor contributions, while interquartile ranges

represented the variability of Factors’ contributions. As

shown in Fig. S7, the correlations could be found between

median contributions of different slope values and

interquartile ranges. The higher R2, the lower variability of

contributions in bootstrap in different species. The deter-

mination coefficient (R2) ranged from 0.984 to 0.997 for all

Factors, indicating lower variations of simulated contri-

butions among different heavy metal species.

Fig. S8 showed the base run concentrations of eight

heavy metals and CV values based on the BS run in every

Factor. Generally, higher CV values indicate significant

deviations. According to the CV values in the line chart, Cd

exhibited higher CV values in Factor 1, Factor 3 and Factor

4, and the CV value of As was higher in Factor 2, indicating

higher deviation degrees. The CV values of Co, Mn and Pb

in Factor 1, Cd, Cu, Pb and Zn in Factor 2, Pb and Ni in

Factor 3, Cu, Pb, Co and Ni in Factor 4 were all less than

30%, indicating lower deviation degrees. Moreover, higher

CV values tended to correlate with lower concentration in

the base run of the Four Factors, which might be related to

the re-sampling process based on BS simulation, or to its

own low determined values (Brown et al. 2015). Despite

the fact that the BS results could not reflect the uncertainty

of rotation normally, they can identify the factors with

poorly reproducible (Xie et al. 2013). In addition, the lower

concentrations of heavy metal were allocated by the PMF

model, the less impact on the results of the PMF base

run(Liu et al. 2018). Therefore, it could be concluded that

all four source Factors allocated by the PMF model were

reliable.

3.4 Probabilistic health risk assessment

3.4.1 Concentration-oriented health risk analysis

In order to further clarify the health effects of pollutants on

the local residents, the non-carcinogenic and carcinogenic

risk base on heavy metal concentrations were evaluated,

and the results were demonstrated in the Figs. 4 and 5.

As presented in Fig. 4, the HI and HQ of individual

element for both children and adult were no more than the

USEPA’s specified value of 1, suggesting that the potential

non-carcinogenic risks could be ignored. The mean HQ

values of heavy metals exhibited a trend of As[ Pb[
Mn[Ni[Co & Cu[Cd[Zn. Among three exposure

routes, the ingestion way was the primary contributor of

potential risk (Table S5). Additionally, compared with

adults, children were more susceptible to non-carcinogenic

risks. Coincidentally, this observation was also previously

reported in studies (Tong et al. 2019; Huang et al. 2021),

which alerted the public to the benefits of personal hygiene,

reducing the frequency of hand-mouth contact and taking

appropriate skin protection measures outdoors, especially

for developing children.

The probability distribution of TCR in Fig. 5 revealed

that the carcinogenic risk of five elements in the studied

area cannot be negligible. As showed in Fig. 5a, the mean

values of TCR caused by heavy metal pollutants for adults

(1.03E-04) and children (1.28E-04) all exceed the upper

acceptable limit of carcinogenic risk (1E-04). Further, the

high exceedance percentage of threshold were found in

Fig. S9, indicating that both adults and children were more

likely to cause cancer and pose an unacceptable risk. The

CR values of heavy metals were different from each other,

and they could be available in decreasing order of Ni, Co,

As, Cd and Pb (Fig. 5b–f). The proportion of risk values

for Ni, Co and As above the threshold of 1E -04 could be

found in Fig. S9. Besides, the mean CR values of Ni, Co

and As were all above the acceptable limit of 1E-06 to the

extent that they were at the 5th percentile (Table S6), and

they were considered to be principal contributor to cancer

risk. Therefore, those elements were considered as priority

pollutants for further risk control.
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3.4.2 Source-oriented health risk analysis

To differentiate the contribution of different heavy metal

pollution sources to health risk, a comprehensive method

on the basis of probabilistic health risk assessment devel-

oped by Huang (Huang et al. 2021) was adopt to identify

source-oriented health risk. As depicted in Fig. 6, the risk

profiles of the four sources showed similar distributional

characteristics between children and adults, and agricul-

tural pollution was considered to be the dominant source of

health risks for the two groups. According to Fig. 4, As

was identified as the dominant element for non-carcino-

genic health risks owing to its highest mean HQ value. The

Fig. 5 showed that Ni, Co and As were the main elements

causing carcinogenic risks. The three elements mentioned

above held relatively high weightings in Factor 3 (Fig. S5),

and they were distributed highly in the north of the city

(Fig. S3). In consequence, reducing emissions of heavy

metals from agricultural activities is an effective step in

decreasing potential risk to the public.

4 Conclusions

The contaminated level, source recognition and risk eval-

uation of eight elements in urban soils from Zhengzhou

city were carried out in the study. Results found that Cd

and Pb were the dominant concentrated contaminants and

presented higher ecological risks compared to the others.

The probability distribution of concentration-oriented

health risk revealed that adverse health effect of heavy

metals for all populations was unlikely, while the car-

cinogenic risk produced by five elements could not be

acceptable. Moreover, the children were more susceptible

to health risks than adults, and the ingestion way was

considered to be the major route of risk exposure. Four

Factors were identified based on the conjunction of PMF

model and correlation analysis. Nevertheless, sampling

locations in this study were mostly close to traffic lanes,

which may interfere with the source analysis results to

some extent. Uncertainty analysis revealed that there were

certain uncertainties in PMF source analysis, but pollution

Fig. 4 Probability distribution of non-carcinogenic hazard index for a HI and HQ of b As, c Cd, d Co, e Cu, f Mn, g Ni, h Pb and i Zn, the
vertical dashed lines with blue or green colour represented the mean values for adults and children, respectively
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Fig. 5 Probability distribution and the percentage surpassed 1E-06 for a TCR and CR of b As, c Cd, d Co, e Ni and f Pb

Fig. 6 Comparison of health

risks caused by different

pollution sources of heavy

metals. a Non-carcinogenic risk

and b Carcinogenic risk for

children, adult, respectively
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source Factors still retained reliable. Subsequently, the

source-oriented health risk was carried out through PMF

model in conjunction with Monte Carlo simulation tech-

nique, and the agricultural source was confirmed to be the

main source of health risks, and As, Co and Ni were

identified as the highlight risky elements, which should be

given special consideration for further risk control.
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