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Abstract
Agricultural droughts are a prime concern for economies worldwide as they negatively impact the productivity of rain-fed

crops, employment, and income per capita. In this study, Standard Precipitation Index (SPI) has been used to evaluate

different drought indices for Rajasthan of India. In agricultural, hydrological, and meteorological applications such as

irrigation scheduling, crop simulation, water budgeting, reservoir operations, and weather forecasting, the accurate esti-

mation of the drought indices such as the Standardized Precipitation Index (SPI) plays an important role. Thus, the present

study was conducted to examine the feasibility and effectiveness of the Random Subspace (RSS) model and its

hybridization with the M5 Pruning tree (M5P), Random Forest (RF), and Random Tree (RT) to estimate the SPI at 3, 6, and

12 droughts during 2000–2019. Performances of RSS and hybridized algorithms were assessed and compared using

performance indicators (i.e., MAE, RMSE, RAE, RRSE, and R2) and various graphical interpretations. Results indicated

that the RSS-M5P provided the most accurate SPI prediction (MAE = 0.497, RMSE = 0.682, RAE = 81.88, RRSE =

87.22, and R2 = 0.507 for SPI-3; MAE = 0.452, RMSE = 0.717, RAE = 69.76, RRSE = 85.24, and R2 = 0.402 for SPI-6.

And MAE = 0.294, RMSE = 0.377, RAE = 55.79, RRSE = 59.57, and R2 = 0.783 for SPI-12) compare to RSS alone,

RSS-RF, and RSS-RT models for study the drought situation in Jaisalmer Rajasthan. The M5P algorithms have improved

the performance of the RSS structure.

Keywords SPI � Random Subspace � Random Tree � Subset regression � Sensitivity analysis

Abbreviations
SPI Standard Precipitation Index

RSS Random Subspace

M5P M5 Pruning tree

RF Random Forest

RT Random Tree

MAE Mean absolute error

RMSE Root mean square error

RAE Relative absolute error

RRSE Root relative squared error

R2 Coefficient of determination

P Precipitation

PET Potential evapotranspiration

�C Degree celsius

mm Millimetre

DrinC Drought Indices Calculator

SDR Standard deviation reduction factor

SE Standard error

ML Machine learning

MPMR Minimum probability machine regression

ELM Extreme learning machine

OSELM Online sequential-ELM

ANNs Artificial neural networks

SVR Support vector regression

WA-ANN Coupled wavelet-anns

MLP Multilayer perceptron

MLP-ICA Imperialistic Competitive Algorithm-MLP

MSPI Multivariate Standardized Precipitation Index

1 Introduction

Drought is a natural occurrence that affects various cli-

matic, hydrological, and environmental systems, which all

have socioeconomic impacts (Vicente-Serrano et al. 2020).

Drought is generally caused by meteorological irregulari-

ties, such as lower rainfall spells that result in water
Extended author information available on the last page of the article
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shortages at particular points of the water cycle or

throughout the cycle (McKee et al. 1993). The world’s

increasing demand for scarce water resources has been

rising rapidly by challenging its availability for food pro-

duction and other vital purposes while putting sustainable

development at risk (Kushwaha et al. 2016; Abd-Elaty

et al. 2022a). As one of the primary water consumers upon

which a growing population depends, agriculture competes

with household, industrial, and environmental uses for

these scarce water resources (Suwal et al. 2020; Kuriqi

et al. 2020b; Kushwaha et al. 2022a). Terrestrial evapo-

transpiration is essential to a wide range of the atmosphere,

hydrosphere, and biosphere processes to connect with the

water, energy, and carbon cycles. These factors play an

important role in the hydrologic cycle, flora and fauna

community dynamics, and many biochemical processes

(Kuriqi et al. 2020a; Abd-Elaty et al. 2022b). Several

aspects of sustainable water resources management depend

upon the precise estimation of terrestrial evapotranspira-

tion. Even though natural environmental change versus

anthropogenic activities differs among regions (Anand

et al. 2018; Elbeltagi et al. 2022a), the role of climate

change impacts on the hydrologic cycle has been charac-

terized and recognized mostly across different global

regions (Kushwaha et al. 2022b). It is widely accepted

among scientific communities and policymakers that cli-

mate change significantly influences water availability,

especially in arid and semi-arid regions (Mao et al. 2015;

Elbeltagi et al. 2020, 2021). Many models have shown that

terrestrial evapotranspiration varies in magnitudes at both

temporal and spatial scales (Chen et al. 1996; Wang and

Dickinson 2012). In general, all satellite-based products

demonstrate a significant increase in terrestrial evapotran-

spiration over the past three decades (Rodell et al. 2009;

Zeng et al. 2018). The empirical-based methods such as the

Penman-Monteith equation are the most commonly applied

in practice mainly due to their application simplicity.

The empirical-based approaches in the same line as the

one mentioned above are, however, inaccurate only when

the vegetation is not water-stressed and the net radiation

and stomatal resistance are available (Tao et al. 2018;

Elbeltagi et al. 2022b). Various other approaches make use

of recent satellite data. Indeed, among many terrestrial

evapotranspiration estimation methods, satellite remote

sensing-based data demonstrate to be one of the most

promising ways of terrestrial evapotranspiration mapping

over larger areas (Yang et al. 2013). However, both

approaches, i.e., empirical and satellite-based methods, fail

to monitor long-term global terrestrial evapotranspiration

(Wang et al. 2010; Anand et al. 2018). Therefore, robust

estimation of the long-term variability of terrestrial evap-

otranspiration requires the use of standard meteorological

data supplemented with high-resolution satellite data (Chen

et al. 1996; Wang et al. 2010). Despite the improvement of

meteorological observation’s spatial resolution, it is worth

exploring methods to estimate terrestrial evapotranspira-

tion not only from remotely sensed information but also

considering data-driven based techniques combined with

remote sensing data (Yang et al. 2013). This approach

would considerably condense the input effort and increase

the robustness of satellite-based terrestrial evapotranspira-

tion models while helping policymakers establish sustain-

able water resources management strategies. Several

studies estimated evapotranspiration applying data-driven

techniques (Chen et al. 1996; Muhammad Adnan et al.

2020; Alizamir et al. 2020). Nevertheless, to the best of the

author’s knowledge, there is a lack of studies that combine

the application of data-driven techniques with satellite-

based observation to estimate terrestrial evapotranspiration

over complex river basins similar to the one considered in

this study. India has a large number of underprivileged

drought-prone and economically backward regions, but no

effective system of monitoring and assessing drought for

the development of better management strategies and

policies, and such studies overstate meteorological trends

spatially, temporally, and over time. An effective adapta-

tion and mitigation strategy to overcome a drought situa-

tion in a country like India will depend on the identification

of a reliable methodology for calculating the drought

index.

SPI may be calculated over any period between one

month and 72 months. A practical range of application of

1–24 months is best based on statistical evidence (Poorn-

ima and Pushpalatha 2019). This 24-month cutoff is based

on Guttman’s recommendation of having around

50–60 years of data available. It is impossible to do sta-

tistical analysis on the tails (both wet and dry extremes)

without having more than 80–100 years of data. A monthly

SPI can be calculated in theory, but doing so in practice is

not recommended. An average period of at least four weeks

is highly recommended for the user. Even in non-arid cli-

mates, one is likely to encounter many dry days (0.00

rainfall even in non-arid climates) that cause the SPI to

behave very erratically (Thomas et al. 2015); therefore, this

approach is not recommended. Nonetheless, updating the

SPI daily or weekly for a 1-month up to a 24-month period

is acceptable. Accordingly, we used 3, 6 and 12 SPI Index

in this study to achieve better results.

In light of the above facts, to the author’s knowledge, no

study has been carried out to utilize the capability of the

Hybrid Random SubSpace model with other machine

learning algorithms for predicting extreme droughts in the

studied area in India. The primary objective of this work

was to develop a new model for predicting extreme

droughts based on the SPI. SPI is used in this study because

it combines meteorological variables [i.e., precipitation

114 Stochastic Environmental Research and Risk Assessment (2023) 37:113–131

123



(P) and potential evapotranspiration (PET)] and shows

drought better than any other index (Ali et al. 2019).

The present study was conducted to examine the feasi-

bility and effectiveness of the Random Subspace (RSS) to

estimate the SPI 3, 6 and 12 months in India, during

2000–2019. In this study, several inputs were constructed

and the best subset regression was applied to select the

most effective variables as inputs to the developed artificial

models. The present study aims to create hybrid data-dri-

ven models coupled with RSS using the stacking

hybridization technique and evaluate their performance.

Consequently, the proposed drought prediction models can

help in agricultural, hydrological, and meteorological

applications such as irrigation scheduling, crop simulation,

water budgeting, reservoir operations, and weather fore-

casting. The remaining sections of the manuscript are

organized as follows: Sect. 2, presents a short introductory

information about the study site, data collection and

methodology; Sect. 3, summarizes the main findings of the

study; Sect. 4, discusses the practical implications of the

main findings; Sect. 5, summarizes the main conclusions of

the study. The main objectives of this study area are as

follows: (1) To develop the machine learning models based

on the 20 years’ datasets of rain gauge. (2) To performance

of ML algorithms in arid climatic condition for prediction

of drought monitoring. (3) Comparison of ML models, and

recommendations for prediction of drought.

2 Materials and methods

2.1 Study area and data acquisition

The study site Jaisalmer is the largest district of Rajasthan

(India) situated at a latitude of 26�5500 N and longitude of

70�5500 E (Fig. 1). The Jaisalmer is also nicknamed ‘‘The

Golden City’’. The study site is situated at the heart of the

‘‘Thar Desert’’ (the Great Indian Desert). It comes under an

arid region and is prone to temperature extremes. The

temperature varies greatly from day to night in both sum-

mer and winter. The maximum summer temperature is

around 49 �C while the minimum is 25 �C. While tem-

perature during winter varies from 23.6 to 5 �C. The

average rainfall was observed to be scanty i.e., 201 mm

with average rainy days as 12 in a year. In the present

study, 20 years (2000–2019) of rainfall data were used for

SPI evaluation. Further, SPI estimation models used 70 per

cent data as training and 30 per cent data as testing the

models.

2.2 Methodology

2.2.1 SPI description and calculation

Various indices may be used to analyses and monitor

droughts across a large area, each with its own set of

strengths and disadvantages. SPI, the most generally used

and acknowledged index, is based on the premise that a

decrease in precipitation relative to normal precipitation is

the major predictor of droughts (McKee et al. 1993). The

SPI is usually calculated monthly, such as 1, 3, 6, 9, and

12 months, and the drought intensity is determined using

the SPI data. 6, 9 and 12 months, and the drought intensity

is defined based on the calculated SPI values.

The probability density function of the total precipita-

tion is used to calculate SPI. For every month and every

location, this is done differently. Then, the probability

functions have been transformed into the standard normal

distribution. The probability function was used to express

the gamma distribution:

gg xð Þ ¼ 1

baC að ÞX
a�1

e�X=b ð1Þ

Here a denotes the appearance of parameters, b repre-

sents the range of the parameter, x denotes the amount of

rainfall, and C að Þ is the gamma function. The value of a
and b parameters[ 0. The Gamma function C að Þ can be

expressed as follows:

C að Þ ¼
Z 1

0

ya�1e�ydy ð2Þ

a and b parameters must be estimated for adjusting the

gamma distribution. Maximum likelihood solutions are

used to accurately obtain a and b as follows:

ba ¼ 1

4A
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4A

3

r !
ð3Þ

bb ¼ X

ba ð4Þ

where

A ¼ ln X
� �

�
P

ln X
� �
n

ð5Þ

The SPI has strengths such as It is flexible: it can be

computed for multiple timescales; Shorter timescale SPIs,

for example 1-, 2- or 3-month SPIs, can provide early

warning of drought and help assess drought severity; It is

spatially consistent: it allows for comparisons between

different locations in different climates and Its probabilistic

nature gives it historical context, which is well suited for

decision-making. There are few limations like it is based

only on precipitation and no soil water-balance component,
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thus no ratios of evapotranspiration/potential evapotran-

spiration (ET/PET) can be calculated.

The present study applied DrinC (Drought Indices Cal-

culator) for the calculation of SPI (3, 6 and 12) and the

calculated SPI used as a reference value for the perfor-

mance assessment of the hybrid metaheuristics algorithms

i.e., Random subspace (RSS), M5P, Random Forest (RF)

and Random Tree (RT). The DrinC model was developed

at the Laboratory of National Technical University, Athens

(Tigkas et al. 2015).

2.2.2 Machine learning models

2.2.2.1 Random subspace The random subspace method

(RSM) is an ensemble learning technique presented by Ho

(1998) to enhance the performance of the weak learners

and improve the accuracy of individual learners (Pham

et al. 2018). Random subspace builds a set of feature

subspaces using random sampling and then trains the basic

classifiers on top of them. The models are trained parallel,

and multiple results are generated before being aggregated

into the final results (Dong et al. 2020). The most important

parameters used in this model include the number of seeds

and the number of iterations. The optimal values of these

parameters are often achieved based on trial and error

(Mosavi et al. 2020). Modification to the training data is

performed in RSM, however this modification is applied in

the feature space. Once there data consists of multiple

redundant features, an improved model can be found in the

random subspaces compared to the original feature space.

The random subspace method is found to be the best per-

forming when there are a large number of features, and

discriminative information is spread across them. On the

other hand, when there are less informative features and

data is noisy, the random subspace method tends to

underperform (Sammut and Webb 2017). Figure 2 shows

the block diagram of the random subspace model.

2.2.2.2 M5P M5P algorithm resulted from the recon-

struction of Quilan’s M5 algorithm (1992). In M5P, linear

regression functions are incorporated into the leaf nodes

along with the functionality of a traditional decision tree.

To construct the tree, the M5P algorithm utilizes the

decision tree induction algorithm, and the splitting condi-

tion minimizes the amounts of intra-subset variation pre-

sent on each branch of the tree. There are four main steps in

the M5P algorithm. M5P splits the input space into mul-

tiple subspaces at the beginning of the process. These

Fig. 1 Location map of the study station
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subspaces are used for building the tree. Using the standard

deviation reduction factor (SDR), we construct the tree by

minimizing the intra-subspace variability and intra-

subspace variability with a splitting criterion. As a result,

the SDR factor will maximize the expected error reduction

at the node (Wang and Witten 1996). In the second stage, a

Fig. 2 Block diagram of random subspace model

Fig. 3 Steps involved in solving a classification/regression problem using random forest

Stochastic Environmental Research and Risk Assessment (2023) 37:113–131 117

123



Table 1 The best subset regression analysis for determining the best input combinations
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linear regression model is developed for each subspace

using the sub-dataset. In the third stage, the developed

tree’s nodes are pruned to avoid overfitting problems, and

the discontinuities induced by the pruning process are

removed using a smoothing procedure in the final stage

(Melesse et al. 2020). The key advantage of using M5P is

that they are efficient in handling large datasets with higher

dimensions. M5P was found to be robust while dealing

with missing data. (Behnood et al. 2017).

2.2.2.3 Random Forest Random forest (RF) is an

ensemble method that uses several decision trees parallel

with the bagging (bootstrapping followed by aggregation)

approach. RF was introduced by Breiman (2001) and used

in numerous studies. Bootstrapping indicates that various

individual decision trees are trained in parallel on different

subsets of the input training dataset. This reduces the

overall variance of the model and produces accurate

results. For making the final decision in RF, the decisions

of individual trees are aggregated, ensuring better gener-

alization (Misra and Li 2020). In general, deep decision

trees suffer from overfitting, and random forest prevents

this by generating random subsets of features and building

smaller trees using those subsets. A random forest’s gen-

eralization error is based on the strength of the individual

trees built and their correlations. Several studies have

demonstrated that random forest models can effectively

predict and estimate small sample sizes and complex data

in both classification and regression problems (Biau and

Scornet 2015). One of the key characteristics of random

forest is resilience towards overfitting. As there are enough

trees in the random forest model, the model gives better

generalization. One major downside of random forest is

that when the number of trees is very high, the algorithm

gets slower. Steps involved in solving a classification/re-

gression problem using the random forest are shown in

Fig. 3.

2.2.2.4 Random Tree Machine learning is primarily

based on random trees (RT), which combine single model

trees and random forests. A random set of data is produced

using a bagging approach through RT to have many indi-

vidual learners and handle regression and classification

problems (Kalmegh 2015). Since RT combines both bag-

ging and RF methods, it generates a final prediction based

on the aggregated prediction of multiple individual trees.

Table 1 continued

The best model for the selected selection criterion is displayed in blue
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The RT algorithm starts by splitting the dataset into sub-

spaces and fitting a constant to each subspace. In the first

step, random tree classification algorithm takes the input

feature vector, and classification is performed at each tree

in the forest. A single tree model tends to perform poorly

but bagging RT shows high performance in terms of

accuracy. RTs have increased flexibility and enhanced

training capability (Nhu et al. 2020) in a number of real-

world problems. Additionally, RT maintains accuracy even

after changing the model complexity. The single leaves on

the trees indicate the linear models can be optimized via

replacement methods or by splitting the attributes at every

node to identify the best means to split a subset during

optimization (Khosravi et al. 2019).

2.3 Hybridization of machine learning
algorithms using stacked generalization

The SPI was predicted using stacking hybrid algorithms in

this study. Wolpert (1992) proposed a stacking hybrid

algorithm technique. During the training period, this

method provides an environment for ensemble algorithms,

which mix two or more algorithms. According to studies

(Healey et al. 2018; Rahman et al. 2021) stacking hybrid

algorithms can improve algorithm predictability. The idea

behind stacking hybrid generalization is to use first-level

learners to train and forecast training data sets. The first

level learners’ projected results were combined to create a

new training dataset for the meta learner. Sikora et al.

(2015) and Zhou (2009) provided more details on stacked

hybrid generalization.

2.4 Best subset regression and sensitivity
analysis

2.4.1 Input selection using best subset model for the SPI 3,
6, and 12 months of a selected station

Best subsets regression is an exploratory model building

regression analysis. It compares all possible models that

can be created based upon an identified set of predictors. It

aims to find a small subset of predictors, so that the

resulting linear model is expected to have the most desir-

able prediction accuracy several statistical criteria have

been used to select the best combination of inputs, i.e.,

MSE, determination coefficients (R2), adjusted R2, Mal-

lows’ Cp, Akaike’s AIC, Schwarz’s SBC, and Amemiya’s

PC. One of the most crucial procedures for developing the

predictive model of multi-step ahead SPI drought index is

to select the best subset combination of input data. Based

on ten inputs, Table 1 shows (a) SPI-3, (b) SPI-6, and

(c) SPI-12 for predicting the lag-time SPI. The seven sta-

tistical criteria have been used to select the best combi-

nation of inputs, i.e., MSE, determination coefficients (R2),

adjusted R2, Mallows’ Cp, Akaike’s AIC, Schwarz’s SBC,

and Amemiya’s PC. The best subset input combination is

displayed in bold blue row due to providing the lowest

values of MSE, Mallows’ Cp, Akaike’s AIC, Schwarz’s

SBC, and Amemiya’s PC, and the highest values of R2 and

Adjusted R2. For SPI-3, the best input combination is of 5

variables, i.e., SPI-1, SPI-3, SPI-4, SPI-8, and SPI-9. It

provides MSE of 0.490, R2 of 0.443, Adjusted R2 of 0.430,

Mallows’ Cp of 1.885, Akaike’s AIC of - 155.168, Sch-

warz’s SBC of 134.645, and Amemiya’s PC of 0.582. For

SPI-6, the best input combination is of 5 variables, i.e.,

SPI-1, SPI-3, SPI-6, SPI-7, and SPI-9. It gives MSE of

0.384, R2 of 0.619, Adjusted R2 of 0.610, Mallows’ Cp of
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Fig. 4 The standardized coefficients of input variable for sensitivity

analysis selected meteorological station for a SPI-3, b SPI-6, and

c SPI-12
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2.557, Akaike’s AIC of - 207.598, Schwarz’s SBC of

- 187.155, and Amemiya’s PC of 0.398. For SPI-12, the

best input combination is of 3 variables, i.e., SPI-1, SPI-2,

and SPI-10. It has MSE of 0.148, R2 of 0.855, Adjusted R2

of 0.853, Mallows’ Cp of - 1.745, Akaike’s AIC of

- 411.117, Schwarz’s SBC of - 397.597, and Amemiya’s

PC of 0.149.

2.4.2 Sensitivity analysis

The combinations of the input variables strongly influence

the models’ performance. Some contribute positively to the

accuracy of the selected model, while others may con-

tribute negatively. Sensitivity analysis was used to choose

the most influential variables to optimize model

performance in predicting the SPI drought index. A

regression analysis was performed at Jaisalmer to identify

the most effective parameter sets. As shown in Fig. 4, the

standardized coefficients of input variables for (a) SPI-3,

(b) SPI-6, and (c) SPI-12 are also plotted. As a result of the

regression analysis, SPI-1, SPI-3, SPI-9, SPI-4, and SPI-8

with standard coefficients of (0.711, - 0.215, 0.093, 0.092,

and - 0.072) have been found to be the main input

parameters that influence SPI drought index estimation for

SPI-3 (Table 2). For SPI-6, the priority of the influential

input parameters was SPI-1, SPI-6, SPI-7, SPI-3, and SPI-9

by providing absolute standard coefficients (0.742,

- 0.242, 0.161, 0.110, and - 0.093), respectively. The

influential input parameters were prioritized as SPI-1, SPI-

Table 2 The regression analysis

for identifying the most

effective parameters at Paithan

station

Source Value Standard error t Pr[|t| Lower bound (95%) Upper bound (95%)

(A) SPI-3

SPI-1 0.711 0.055 12.987 < 0.0001 0.603 0.819

SPI-2 0.000 0.000

SPI-3 - 0.215 0.071 - 3.021 0.003 - 0.355 - 0.075

SPI-4 0.092 0.067 1.372 0.171 - 0.040 0.223

SPI-5 0.000 0.000

SPI-6 0.000 0.000

SPI-7 0.000 0.000

SPI-8 0.072 0.066 1.100 0.273 - 0.057 0.202

SPI-9 - 0.093 0.066 - 1.411 0.160 - 0.222 0.037

SPI-10 0.000 0.000

(B) SPI-6

SPI-1 0.742 0.053 13.996 < 0.0001 0.638 0.847

SPI-2 0.000 0.000

SPI-3 0.110 0.059 1.870 0.063 - 0.006 0.226

SPI-4 0.000 0.000

SPI-5 0.000 0.000

SPI-6 - 0.242 0.070 - 3.458 0.001 - 0.379 - 0.104

SPI-7 0.161 0.072 2.226 0.027 0.018 0.303

SPI-8 0.000 0.000

SPI-9 - 0.093 0.053 - 1.759 0.080 - 0.198 0.011

SPI-10 0.000 0.000

(C) SPI-12

SPI-1 1.062 0.067 15.825 < 0.0001 0.929 1.194

SPI-2 - 0.165 0.067 - 2.453 0.015 - 0.298 - 0.032

SPI-3 0.000 0.000

SPI-4 0.000 0.000

SPI-5 0.000 0.000

SPI-6 0.000 0.000

SPI-7 0.000 0.000

SPI-8 0.000 0.000

SPI-9 0.000 0.000

SPI-10 - 0.104 0.027 - 3.808 0.000 - 0.158 - 0.050
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2, and SPI-10, respectively, using absolute standard coef-

ficients of (1.062, - 0.165, and - 0.104) for SPI-12.

2.5 Performance metrics and evaluation

During the period of this study, actual data was compared

with modeled values. Statistical indicators have been used

in evaluating the accuracy of developed hybrid Random

SubSpace models, e.g., Root mean square error (RMSE),

coefficient of determination (R2), relative absolute error

(RAE), root relative squared error (RRSE) and mean

absolute error (MAE) (Kushwaha et al. 2021; Elbeltagi

et al. 2022b). All statistical indicators are defined as:

1. Root mean square error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ðSPIiA � SPIiPÞ

2

r
ð6Þ

2. Coefficient of determination (R2)

R2 ¼
PN

i¼1ðSPI
i
A � SPIAÞðSPIiP � SPIPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðSPI
i
A � SPIAÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðSPI
i
P � SPIPÞ

2
q

2
64

3
75

2

ð7Þ

3. Mean absolute error (MAE)

MAE ¼ 1

N

XN

i¼1
jSPIiP � SPIiAj ð8Þ

4. Relative absolute error (RAE)

The RAE normalizes the total absolute error by

dividing it by the simple predictor’s total absolute

error.

RAE ¼ SPIiA � SPIiP
SPIiP

����
����� 100 ð9Þ

5. Root relative squared error (RRSE)

The RRSE normalizes the overall squared error by

dividing it by the total SE of the simple predictor. The

error is reduced to the same dimensions as the quantity

being predicted by calculating the square root of the

RSE.

RRSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðSPI

i
P � SPIiAÞ

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðSPI
i
A � SPI�Þ2

q ð10Þ

In which, SPIiA is an observed or actual value, SPIiP is

simulated or forecasted value, SPIA and SPIP are the mean

values of observed and forecasted samples, and N is the

total number of data points.

3 Results

3.1 Evaluation machine learning models based
on the best-selected subset models

Four machine learning methods (i.e., RSS, RSS-M5P, RSS-

RF, and RSS-RT) were used to forecast the SPI at 3, 6, and

12 months at Jaisalmer district, Rajasthan, India. The

Table 3 MAE, RMSE, RAE, RRSE, and R for Machine learning algorithms-based models during the training and testing span

Machine learning algorithm Training Testing

MAE RMSE RAE RRSE R2 MAE RMSE RAE RRSE R2

(A) SPI-3

RSS 0.540 0.685 71.07 71.19 0.756 0.522 0.678 85.99 86.79 0.462

RSS-M5P 0.523 0.679 68.86 70.53 0.714 0.497 0.682 81.88 87.22 0.507

RSS-RF 0.367 0.484 48.34 50.25 0.879 0.618 0.761 101.71 97.29 0.617

RSS-RT 0.505 0.615 66.51 63.89 0.805 0.563 0.726 92.61 92.87 0.353

(B) SPI-6

RSS 0.427 0.567 52.35 55.14 0.870 0.570 0.759 88.04 90.27 0.365

RSS-M5P 0.405 0.559 49.71 54.33 0.840 0.452 0.717 69.76 85.24 0.402

RSS-RF 0.305 0.425 37.36 41.25 0.919 0.571 0.795 88.24 94.54 0.302

RSS-RT 0.353 0.494 43.33 47.98 0.883 0.557 0.781 86.01 92.90 0.290

(C) SPI-12

RSS 0.251 0.386 30.72 36.14 0.937 0.347 0.428 65.87 67.68 0.796

RSS-M5P 0.236 0.371 28.88 34.74 0.938 0.294 0.377 55.79 59.57 0.783

RSS-RF 0.209 0.332 25.59 31.08 0.951 0.376 0.495 71.39 78.35 0.707

RSS-RT 0.261 0.428 31.93 40.13 0.917 0.399 0.473 75.67 74.76 0.757
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employed algorithms’ performances were evaluated and

compared (i.e., MAE, RMSE, RAE, RRSE, and R2). The

model with the lowest MAE, RMSE, RAE, RRSE near

zero, and R2 near one is deemed to have the most accuracy

in estimating the SPI. Table 3 shows the performance

indices for machine learning algorithms-based models

during the training and testing span. The best machine

learning algorithm for each time-scales of SPI (i.e., SPI-3,

SPI-6, and SPI-12) is displayed in blue row.

Results indicated that the RSS-RF model outperformed

other algorithms during the training period for forecasting

the SPI at 3, 6, and 12 months. It provided MAE = 0.367,

RMSE = 0.484, RAE = 48.34, RRSE = 50.25, and

R2 = 0.879 for SPI-3. It gave MAE = 0.305, RMSE =

0.425, RAE = 37.36, RRSE = 41.25, and R2 = 0.919 for

SPI-6. And it has MAE = 0.209, RMSE = 0.332, RAE =

25.59, RRSE = 31.08, and R2 = 0.951 for SPI-12. It was

followed by RSS-RF, RSS-RT, and RSS algorithm,

respectively. Among three months of the SPI predictive

models, SPI-12 has the highest performance, followed by

SPI-6, and SPI-3, respectively, for the training period. The

RSS-M5P algorithm outperformed the other implemented

algorithms during testing. Therefore, it should consider

RSS-M5P the best SPI prediction model. It provided

MAE = 0.497, RMSE = 0.682, RAE = 81.88, RRSE =

87.22, and R2 = 0.507 for SPI-3. It gave MAE = 0.452,

RMSE = 0.717, RAE = 69.76, RRSE = 85.24, and

R2 = 0.402 for SPI-6. And it has MAE = 0.294, RMSE =

0.377, RAE = 55.79, RRSE = 59.57, and R2 = 0.783 for

SPI-12. Again, among three months of the SPI predictive

models, SPI-12 has the highest performance, followed by

SPI-6, and SPI-3, respectively, for the testing period. Fig-

ures 5, 6 and 7 present the predicted and calculated SPI-3,

SPI-6, and SPI-12 values by four machine learning algo-

rithms during testing phases: (a) time series and (b) sce-

nario-scatter plot. Further comparative examination of

models was done using the Taylor diagram (Fig. 8).

According to standard deviation, correlation, and RMSE,
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algorithms during testing phases

a time series, and b scenario-

scatter plot
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the RSS-M5P model matched the observed location the

closest, while RSS, RSS-RF, and RSS-RT models further

matched the location. In this analysis, RSS-M5P was the

most effective model among the chosen models due to

giving more generalized performance than RSS, RSS-RF,

and RSS-RT algorithm. All the developed models could be

observed as underestimating SPI-3 and SPI-6 while pro-

viding overestimation for SPI-12.

4 Discussion

The performance of hybrid meta-heuristics algorithms i.e.

RSS, RSS-M5P, RSS-RF and RSS-RT was assessed for the

multiscale prediction of SPI (i.e. 3, 6 and 12 months). The

obtained results highlighted the potential of hybrid meta-

heuristics algorithms in the prediction of monthly SPI

especially for SPI-12 months. Figures 5, 6 and 7 repre-

sented the temporal variation between predicted and

calculated SPI values and their scatter plots for SPI-3, SPI-

6, and SPI-12 months. In scatter plots, the regression line

provided the high value of coefficient of determination (R2)

in respect of the RSS-M5P additive regression model under

the both scenario for SPI-3, SPI-6, and SPI-12 months. As

seen from the figures, the hybrid meta- heuristics algo-

rithms performed better in longer time scale. Further

comparison between algorithms using MAE and RMSE

(Table 3) showed that M5P algorithms have improved the

performance of the RSS structure as it has lower value of

MAE and RMSE. The Taylor Diagram (Fig. 8) showed the

more comparable depiction of models performance in

prediction of monthly SPI values. The developed RSS-RF

model was located furthest and RSS-M5P model was

located nearest to the observed point based on the standard

deviation, correlation, and RMSE for all monthly SPI

prediction. This showed RSS-M5P algorithm has higher

accuracy in prediction of monthly SPI as compared to RSS

alone and other developed hybrid algorithms.
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Our findings were also compared with other recent

studies conducted across different regions, such as Ban-

gladesh, Ethiopia, India, and Iran. Considering both train-

ing and testing periods, the long-term SPI predictive model

makes more accurate predictions than the short-term SPI

predictive models. This present finding agree with the

study by (Aghelpour and Varshavian 2021; Malik et al.

2021; Yaseen et al. 2021). This reflects that long-term

precipitation patterns vary less than short and medium-term

precipitation patterns (Belayneh and Adamowski 2013).

Furthermore, monsoon months are more vulnerable than

other seasons, with June showing greater susceptibility to

severe drought. September displays greater susceptibility to

extreme droughts. Using the RSS-RF model for each time-

scale of SPI (i.e., SPI-3SPI-6 and SPI-12) gave the best

performance among the selected models during the training

period, while it was not the best for the testing period. It is

in line with the study by Ditthakit et al. (2021), who

applied the RF method for estimating GR2M model

parameters in an ungauged basin. Yaseen et al. (2021)

investigated the capability of machine learning (ML) ran-

dom forest (RF), minimum probability machine regression

(MPMR), M5 Tree (M5tree), extreme learning machine

(ELM), and online sequential-ELM (OSELM) in predicting

(SPI) at four-month horizons (i.e., 1, 3, 6 and 12) in Ban-

gladesh. Study found that ELM was the best model for

predicting 3, 6, and 12-month SPI, while RF showed the

best performance for 1- month SPI prediction. Belayneh

et al. (2016) applied three machine learning techniques,

i.e., artificial neural networks (ANNs), support vector

regression (SVR), and coupled wavelet-ANNs (WA-ANN).

They concluded that WA-ANN gave the best model per-

formance for forecasting SPI 3 (3-month SPI) and SPI 6 (6-

month SPI) in the Awash River Basin in Ethiopia. Aghel-

pour and Varshavian (2021) applied a hybrid model of

MLP Neural Network and the Imperialistic Competitive

Algorithm (MLP-ICA) for forecasting Multivariate Stan-

dardized Precipitation Index (MSPI) in Iran. They pointed
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out the proposed models could forecast MSPI for a longer

time horizon (i.e., 12–24 and 24–48 month MSPI) were

better than the shorter time horizon (i.e., 3–6, 6–12, and

3–12 month MSPI). The present study highlighted the

potential of hybrid meta-heuristics algorithms in the pre-

diction of multi scale SPI droughts. However, uncertainties

related to datasets, methods, scenarios, models with a large

number of algorithms parameters, search space and opti-

mization process becomes more difficult. Therefore, fur-

ther research should focus on minimizing these

uncertainties and improving optimization performance.

Moreover, since only one station was selected in this study,

the applicability of the proposed RSS-based hybrid models

may be validated at different locations varying in agro-

climatic conditions under different sceneros to draw a

generalized conclusion.

5 Conclusion

Assessment of drought is one of the most important tasks in

the present condition as it leads to several adverse effects

on the soil–water-atmosphere cycles of the earth systems

across the different climates of the world. There’s exists

several techniques and machine learning methods in the

literature for quantifying drought, However, based on SPI,

this is one of the unique study that compares and contrast

the relative role of meta-heuristic models such as RSS

alone and it hybridization with other algorithms. Drought is

among the most global costly threats to ecosystems,

especially in regions with diverse climatic patterns.

Drought occurs, as a spatio-temporal phenomenon, as a

result of a decrease in the amounts of precipitation below

average for a specific period sufficient to cause environ-

mental risks. In the present study, four machine learning

models (i.e., RSS, RSS-M5P, RSS-RF, and RSS-RT) are

applied to the SPI (Standard Precipitation Index) evalua-

tion in Rajasthan climate conditions to create a proba-

bilistic framework for drought situations. The maximum

drought periods and the corresponding durations have been

identified in the study location, and the results confirm that

there have been some severe drought events in the past.

The different SPI timescales (SPI-3, SPI-6, and SPI-12)

present distinct drought periods and intensities that are vital

to a seasonal drought analysis. In the training stages of all

the climates, AI models developed using the RSS-M5P

model had the highest efficiency and was followed by RSS,

RSS-RF, and RSS-RT models. According to SPI-3 results,

monsoon months are more vulnerable than other seasons,

with June showing greater susceptibility to severe drought.

September displays greater susceptibility to extreme

droughts. The SPI-12 model exhibited the highest perfor-

mance among models developed for three months,
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during testing span at selected station for a SPI-3, b SPI-6, and c SPI-
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followed by SPI-6 and SPI-3. In general, all the models

provided an underestimation of SPI-3 and SPI-6, while

overestimating SPI-12. Results revealed that RSS-M5P

model performed well in capturing the monthly trend of

SPI and it has high values coefficient of determination

(0.507–0.783) and lower values of MAE (0.294–0.497) and

RMSE (0.377–0.682) for prediction of multi scale SPI (i.e.,

3, 6, and 9 months), under the testing period. The occur-

rence of drought is affected by low precipitation, high

fluctuations in the average rainfall, and climate change,

particularly as a result of regional and global warming. As

such, it is essential to develop drought management poli-

cies and effectively implement these policies with the

assistance and support of the government and private

organizations. We could use the results of our study to

understand the water availability for the entire year in

advance with the help of three months of SPI data, and that

in turn could be used to create an efficient climate-smart

agriculture strategy that has global economic implications.
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