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Abstract
Accurate forecasting of wind speed (WS) data plays a crucial role in planning and operating wind power generation.

Nowadays, the importance of WS predictions overgrows with the increased integration of wind energy into the electricity

market. This work proposes machine learning algorithms to forecast a one-hour ahead short-term WS. Forecasting models

were developed based on past time-series wind speeds to estimate the future values. Adaptive Neuro-Fuzzy Inference

System (ANFIS) with Fuzzy c-means, ANFIS with Grid Partition, ANFIS with Subtractive Clustering and Long Short-

Term Memory (LSTM) neural network were developed for this purpose. Three measurement stations in the Marmara and

Mediterranean Regions of Turkey were selected as the study locations. According to the hourly WS prediction, the LSTM

neural network based on the deep learning approach gave the best result in all stations and among all models applied. Mean

Absolute Error values in the testing process were obtained to be 0.8638, 0.9603 and 0.5977 m/s, and Root Mean Square

Error values were found to be 1.2193, 1.2573 and 0.7531 m/s from the LSTM neural network model for measuring stations

MS1, MS2, and MS3, respectively. In addition, the analyzes revealed that the best correlation coefficient (R) results among

the algorithms in the test processes were obtained to be 0.9498, 0.9147, and 0.8897 for the MS1, MS2, and MS3

measurement stations, respectively. In this regard, it is shown that the LSTM method gave high sensitive results and mainly

provided greater performance than the ANFIS models for one hour-ahead WS estimations.

Keywords Deep learning � Wind speed � One-hour ahead prediction � ANFIS-FCM � ANFIS-GP � ANFIS-SC �
LSTM

1 Introduction

In recent years, renewable energy sources (RESs) have

grown excessively around the world. RESs have significant

spreading potential among the other energy sources, and

they are concentrated in many geographical regions (Bilgili

and Sahin 2009). All countries have at least one large

number of RES power plants, and many countries have a

resource portfolio in this sector. Among whole RESs, wind

energy has become widely used in the World and makes an

essential contribution to renewable energy generation

(Bilgili et al. 2015; Bulut and Muratoglu 2018; Wang and

Wang 2015; Jones and Eiser 2010; Zheng et al. 2016).

Besides, wind power has become a reliable and competitive

electric-producing technology. The progress regarding the

wind power installations continues to be more robust in the

World, and every coming year, this sector involves more

active countries and manufacturers and enhances yearly

installed wind capacity with additional investments (Men-

decka and Lombardi 2019; Kazimierczuk 2019; Köktürk

and Tokuç 2017; Gualtieri 2019; Ahmed 2018; Tagliapi-

etra et al. 2019; Kılıç 2019). While the cumulative installed

wind power capacity in 2008 was 120.7 GW globally, the

total worldwide wind power capacity at the end of 2018

increased to 600.3 GW. A 61.16 GW of global wind energy

capacity has been installed by 2018 (GWEC 2020; EWEA

2020). On the other hand, global wind energy capacity is

expected to increase substantially in the coming years.

However, because of the natural irregular characteristic of
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wind speed, it can be quite challenging to fulfill reliable

and seasonal wind energy management in power genera-

tion systems (Chen et al. 2018). With the high integration

of wind power into electric power, the power system

becomes more unreliable due to wind speed fluctuations’

intermittent and stochastic nature. Therefore, accurate

estimation of wind speed is undoubtedly inevitable to

increase wind energy usage efficiency and reduce the

operating cost of wind speed (Wang and Li 2018).

The literature studies show that deterministic wind

speed and wind power forecasting can be divided into three

parts, including physical, statistical, and artificial intelli-

gence tools (Zhang et al. 2019a, b, c, d; Jung and Broad-

water 2014). Physical information such as atmospheric

temperature, atmospheric pressure, roughness, and obsta-

cles are used in physical models, which are basic methods

(Tascikaraoglu and Uzunoglu 2014). For instance, numer-

ical weather prediction (NWP) processes exploit a series of

mathematical equations and physical information. Physical

approaches are usually by medium to long term wind

power forecasting. On the other hand, they are unfortu-

nately complex in computations and require significant

computing resources. Recently, statistical models have also

been used for wind speed anticipation. In statistical meth-

ods, historical wind speed data is often used in a suit-

able time frame to predict future wind speed. The statistical

approaches mainly include moving average models (MA),

autoregressive models (AR), autoregressive moving aver-

age models (ARMA), an autoregressive integrated moving

average models (ARIMA), as well as seasonal autore-

gressive integrated moving average models (SARIMA).

The statistical models are initially fitted to the historical

data and then employed to generate the predictions. Sta-

tistical models are well applied in the predictions of ultra-

short-term and short-term wind power forecasting. How-

ever, their prediction accuracies are somewhat limited. A

recent model regarding the recursive ARIMA and EMD

(empirical mode decomposition) was proposed by Liu et al.

(2015). In this study, short-term wind speed prediction

applied in the railway strong wind warning system was

implemented. Kavasseri (2009) developed a fraction-

ARIMA and Seetharaman (2009) to predict one day and

two-day ahead of wind speed in the region of North

Dakota.

Finally, wind speed anticipations can be achieved based

on artificial neural networks (ANN). The networks can be

structured using back-propagation, radial basis functions,

multi-layer perceptron neural networks, extreme learning

machines, and Bayesian neural networks. Wang and Li

(2018) suggested a hybrid model depending on optimal

feature extraction, deep learning algorithm, and error cor-

rection strategy for multi-step wind speed forecasting.

Braun et al. (2020) suggested and developed a stochastic

reduced-form model of power time series to prosper the

modeling perspective of complex and large wind power

systems. Zhang et al. (2019a, b, c, d) predicted the wind

turbine power, handling the algorithm of a long short-term

memory network (LSTM). Besides analyzing the error

distribution characteristics considering short-term wind

turbine power predictions, the Gaussian mixture model

(GMM) was utilized in this study. An innovative approach

named Ensem-LSTM is used by Chen et al. (2018). In their

model, the nonlinear-learning ensemble of deep learning

time series forecasting depending on the long short-term

memory neural networks (LSTMs), support vector regres-

sion machine (SVRM), and extremal optimization algo-

rithm (EO) were used. An innovative forecasting outline

involving an RNN (recurrent neural network) structure

model and LSTM (long short-term memory) is provided by

Dong et al. (2018). In the study, an operative prediction

map was adapted to different forecasting horizons. LSTM

method, taking the experimental results into account, was

demonstrated to obtain more sensitive predictions than

conventional neural network methods in the study of Shi

et al. (2018). The multi-task training method is used by Qin

et al. (2019a, b) to predict wind turbine energy. Deep

neural network (DNN) models such as long short-term

memory (LSTM) recurrent neural networks are shown by

Wu et al. (2016) to generate better prediction results when

compared to the conventional methods. Yu et al. (2018)

demonstrated that innovative proposed hybrid models,

including support vector machine (SVM), standard recur-

rent neural network (RNN) and LSTM, and gated recurrent

unit neural network (GRU), generated more accurate pre-

dictions compared to the conventional methods. Han et al.

(2019) suggested a solution to these situations considering

copula function and LSTM. They proposed an effective

origination of the critical meteorological factors affecting

power generation depending on nonlinear influences and

tendencies. K-nearest neighbours regressor (KNNR), ran-

dom forest regressor (RFR), decision tree regressor and

multiple-layer perception regressor (MLPR) are four

machine learning regression methods presented by Mogos

et al. (2022) (DTR). For wind speed forecasts, twenty

minutes of real data of wind speed collected at one-minute

intervals were used. Their proposed approaches were

designed to provide a low-cost and effective solution for

predicting short-term wind speeds.

A hybrid type of model, including the decomposition-

virtual nodes-pruning and LSTM depending on the neigh-

bourhood gates, is recommended by Zhang et al.

(2019a, b, c, d). In the study, they attained wind speed

forecasting of high-precisions. Lopez et al. (2018)

demonstrated a combination of architectural structures,

including long short-term memory (LSTM) and Echo State

Network (ESN), which contained the characteristics of
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both together. Zhang et al. (2019a, b, c, d) proffered a

shared weight long short-term memory network

(SWLSTM) to reduce the number of optimized variables

and the necessary time for the training. In their study, while

high forecasting precision is obtained in the utilization of

LSTM, the training time of the computing process was

observed to be reduced. Liang et al. (2018) used a model of

multi-variable stacked LSTMs (MSLSTM). In the model,

the wind speed values were predicted based on the mete-

orological data, including wind speed, temperature, pres-

sure, humidity, dew point, and solar radiation. Their results

indicated that the suggested MSLSTM structure could

seize and learn the uncertainties and generate competitive

output performance. Liu et al. (2018a, b) presented a multi-

step forecasting model through the combination of varia-

tional mode decomposition (VMD), singular spectrum

analysis (SSA), LSTM, and extreme learning machine

(ELM). The study demonstrated that the combined model

yielded superior performance in predictions compared to

the other tested methods. Xiaoyun et al. (2016) demon-

strated that the LSTM forecasting model has higher fore-

casting precision when compared to the back-propagation

(BP) algorithm and the support vector machine (SVM)

model. They also indicated that its application in wind

energy forecasting is obtained more suitable. So, it was

concluded that the method might find more applications for

wind engineering. Balluff et al. (2015) conducted the pre-

diction of wind speed and pressure using recurrent neural

networks (RNN). Zaytar and Amrani (2016) used the deep

neural network structure to perform weather prediction by

time series. They handled multi-stacked LSTMs for the

map sequences of weather values having the same length in

this regard. Their results based on LSTM computations

were shown to be competitive with the conventional

methods, and they presented a good alternative in the

predictions of general weather conditions.

Liu et al. (2018a, b) suggested a model which included

empirical wavelet transform (EWT), LSTM, and Elman

neural network (ENN) had a good performance in the

forecasting of wind speed with high precision. Yuan et al.

(2019) performed a prediction of wind power by a hybrid

model of LSTM neural network and beta distribution

function-based particle swarm optimization (Beta-PSO).

The study demonstrated that the reliability of the hybrid

model could be applied safely and stably for the operation

of power systems. Ding et al. (2022) introduced a new

hybrid prediction system that includes a fuzzy entropy-

based double decomposition strategy, piecewise error

correction, Elman neural network, and ARIMA model. The

proposed hybrid model was used to solve issues with both

linear and nonlinear wind speed series. Huang et al. (2018)

utilized a hybrid model of the combination, including

ensemble empirical mode decomposition (EEMD) and

Gaussian process regression (GPR), as well as the LSTM

neural network. According to the experimental measure-

ments obtained from China, it was revealed that these cited

prediction methods gave better results compared to the

other prediction methods. Hu and Chen (2018) conducted a

nonlinear hybrid model to obtain forecasting using LSTM

neural network, differential evolution algorithm (DE), and

hysteretic extreme learning machine (HELM), where the

advantage of this suggested model compared based on the

others in terms of performance was shown in their study.

Chen et al. (2019a, b) performed wind speed prediction by

proposing a convolutional neural network and LSTM

neural network. They showed that their proposed model

gave better results than the other conventional methods of

high forecasting precision. Chen et al. (2019a, b) proposed

the EEL-ELM method involving an extreme learning

machine (ELM), Elman neural network (ENN), and long

short term memory neural network (LSTM), in which they

demonstrated this hybrid method generated successful

forecasting performance. Ozen et al. (2019) studied wind

speed predictions of İstanbul, İzmir, Muğla, Tekirdağ, and

Eskişehir provinces of Turkey. The wind speed data of

these provinces were used in performing the forecasting

based on long short-term memory (LSTM) neural network.

Ehsan et al. (2020) indicated the LSTM approach exceeded

the other twelve models in terms of the accuracy of pre-

dictions by 97.8%. Three local recurrent neural network

types were used by Barbounis et al. (2006), including the

infinite impulse response multi-layer perceptron (IIR-

MLP), and the diagonal recurrent neural network (RNN),

and the local activation feedback multi-layer network

(LAF-MLN). In this study, simulation outcomes indicated

that the RNN models outperform the other models. The

predictions were performed by Zhang et al. (2019a, b, c, d)

utilizing LSTM, auto-regressive moving average (ARMA),

and kernel density estimation (KDE). This study con-

tributed to the construction of the smart grid. Prabha et al.

(2019) proposed LSTM wind speed forecasting using one

hour ahead of clustering. In their study, they considered

four different sites for wind speed predictions.

Qin et al. (2019a, b) used ensemble empirical mode

decomposition (EEMD), fuzzy entropy (FuzzyEn), and

long short-term memory neural network (LSTMNN) for

the decomposition of the original wind speed series into a

series of components. Their computations indicated that the

forecasting accuracy of the model referred to as EEMD-

FuzzyEn-LSTMNN was shown to be better than the other

three models applied alone, including back-propagation

neural network (BPNN), support vector machines (SVM),

and long short-term memory neural network (LSTMNN).

Based on the selection of essential input variables, Yaxue

et al. (2022) suggested an interval type-2 (IT2) wind speed

forecasting model. They also used the recursive least
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squares (RLS) approach to get the conclusion parameters

for wind speed prediction in real time. Using their proposed

algorithm, they were able to improve forecast accuracy.

Liu et al. (2019) suggested a hybrid model composed of a

discrete wavelet transform (DWT) and LSTM networks.

The LSTM and DWT networks were studied to exhibit the

wind power time series dynamic behaviour and decompose

wind power time series into non-stationary components. In

their study, it was presented that this proposed method

applied to three different wind farms improved the pre-

diction accuracy. Cali and Sharma (2019) presented the

numerical prediction of wind power and weather using the

long short-term memory based on a recurrent neural net-

work (LSTM-RNN). They used wind power data and data

of numerical weather prediction, which both were obtained

from a wind farm in Spain. Qian et al. (2019) proposed a

recent technique for wind turbines depending on the

algorithms of the LSTM neural network, in which this

suggested method was shown to increase the reliability and

the economic benefits of the wind farms. Marndi et al.

(2020) suggested a prediction methodology for analyzing

the wind time series data of New Delhi in North India and

Bengaluru in South India meteorological stations. In their

study, the LSTM model was utilized. The forecasting

results of the LSTM were compared with the predictions

obtained from support vector machine (SVM), and extreme

learning machine (ELM) analyses and the LSTM model in

their study was demonstrated to improve the short-term

wind speed forecasting ability at the station level. Bilgili

and Sahin (2010) came up with a model for determining

wind speed using some meteorological data. These data

included wind speed, atmospheric pressure, ambient tem-

perature, rainfall, and relative humidity. They considered

the methods of linear regression (LR), nonlinear regression

(NLR), and artificial neural network (ANN). Besides, it

was shown that the provided artificial neural network

(ANN) method is superior to linear regression (LR) and

nonlinear regression (NLR) methods. Yang et al. (2018)

proposed an ultra-short-term multi-step wind power fore-

casting model considering the usual unit method. The least-

squares support vector machine (LSSVM) model was uti-

lized as a prediction model based on the measured power

data of wind farms. They demonstrated that the suggested

model could effectively improve forecasting accuracy.

Yang et al. (2022) proposed a data-decomposition-based

ultra-short-term/short-term wind speed prediction approach

based on improved singular spectrum analysis (ISSA).

They compared the outcomes of numerous data prepro-

cessing decomposition methods, including EMD, EEMD,

and CEEMD, against the results of the prediction without

data preprocessing. Their findings revealed that ISSA can

significantly increase prediction accuracy. Table 1 gives a

summary of the typical studies on wind forecasting avail-

able in the literature.

2 Research significance and novelty
of the work

In this study, machine learning algorithms were applied to

forecast one-hour ahead of WS. Forecasting models were

developed based on past time-series WS values to estimate

the future values. For this purpose, ANFIS with Fuzzy

c-means (FCM), ANFIS with Grid Partitioning (GP),

ANFIS with Subtractive Clustering (SC) and long short-

term memory (LSTM) neural network models were used.

The novelty of the study is to present the superiority of the

LSTM neural network algorithm compared to the con-

ventional ANFIS approaches. In this manner, the LSTM

algorithm has been compared with the ANFIS-FCM,

ANFIS-GP and ANFIS-SC. So, these four algorithms were

initially trained according to the observed real wind speed

data of three wind farms operating in Turkey. As soon as

the training of the algorithms was completed, the testing

processes were conducted to demonstrate the supremacy of

the LSTM algorithm over three conventional ANFIS

approaches.

3 Material and methods

3.1 Adaptive network fuzzy inference system
(ANFIS)

ANFIS is known as a kind of ANN method based on the

Takagi–Sugeno fuzzy inference system. It was developed

by Jang in the early 1990s and has been used for modeling

nonlinear functions and estimating chaotic time series. The

generated ANFIS model commonly utilizes a hybrid

learning algorithm. ANFIS takes advantage of both con-

structs as it integrates both neural networks and fuzzy logic

inference methods. To use the ANFIS technique, a dataset

based on input–output is generally needed. The model,

which is established depending on the type and number of

membership functions (MFs) selected, is created using a

learning algorithm. The method uses the set of fuzzy if–

then rules it creates. The ANFIS structure is constructed by

parameterizing the difference between the output of the

entire network and the target value that is, minimizing the

error. Theoretically, ANFIS can satisfactorily approximate

any continuous function (Abyaneh et al. 2011). General

details concerning the ANFIS architecture are available in

the literature (Jang 1993; Karakuş et al. 2017; Tabari et al.

2012; Mathworks 2020).
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Fuzzy c-means (FCM) is a clustering method of ANFIS,

allowing each data point to have multiple clusters and

belong to different membership degrees. The basis of the

FCM algorithm involves minimizing the objective func-

tion. Similarly, the concept of FCM is available in the

literature (Mathworks 2020). Subtractive Clustering Algo-

rithm (SC) is also an algorithm of ANFIS that considers

each data point as a candidate cluster center, and the

potential of each data point is calculated by measuring the

density of the data point surrounding the cluster center. The

algorithm uses an iterative process, assuming each point is

potentially a cluster center considering its location for other

data points. Studies regarding the SC model can also be

found in the literature (Benmouiza and Cheknane 2019).

The grid partitioning (GP) algorithm divides the input data

space into a rectangular subspace with the help of an axis-

paralleled partition. Each input is partitioned into identi-

cally shaped membership functions. The number of the

fuzzy if–then rules is the same as Mn. Here, the input

dimension is shown by n, and the number of partitioned

fuzzy subsets for each input variable is denoted by

M (Abyaneh et al. 2011). This approach to solving a

problem is simply referred to as functional decomposition.

This phenomenon is as well extensively explained in the

literature (Chandy 1992).

3.2 Long short term memory (LSTM) neural
network

LSTM neural network, presented by Hochreiter and Sch-

midhuber (1997), is an RNN architecture utilized in deep

learning approaches. Unlike traditional feed-forward neural

networks, LSTM has memory cells with constant errors or

feedback connections. An ordinary LSTM unit consists of a

cell and three different gates. The cell remembers values in

variable-length time intervals, and these three gates

Table 1 Some studies on wind estimation available in the literature

Refs Approach Estimation

type

Input variables Wind data

Chen et al.

(2018)

EnsemLSTM Wind

speed

Past data Ten-minute data 23.11.2012–28.11.2012

Wang and Li

(2018)

LSTMN Wind

speed

Past data Hourly data of 5 years

Liu et al. (2015) EMD and

RARIMA

Wind

speed

Past data Minutely measured 400 data

Kavasseri and

Seetharaman

(2009)

Fractional-

ARIMA and

f-ARIMA

Wind

speed

Past data 10-min average data to predict one day or two

days ahead

Dong et al.

(2018)

RNN and LSTM Wind

power

Past data Hourly wind data was measured between July

2009 to June 2012

Shi et al. (2018) R (recursive),

VMD, and

LSTM

Wind

power

Past data Hourly data was measured between 1–31.08.2017

and 1–31.03.2017

Wu et al. (2016) DNN, LSTM,

and RNN

Wind

power

Past data 15-min data for 1 the year 2014

Lopez et al.

(2018)

LSTM and ESN Wind

power

Past data Hourly data between 14.01.2002 to 25.08.2002

Liang et al.

(2018)

MSLSTM Wind

speed

Temperature, solar radiation, dew

point, wind speed, humidity and

pressure

5-min data of February 2016

Xiaoyun et al.

(2016)

LSTM Wind

power

Past data 5-min data of 01.05.2010 to 31.05.2011

Huang et al.

(2018)

EEMD, GPR,

and LSTM

Wind

speed

Past data 5 min data between 01.01.2014 to 04.01.2014 and

60 min data between 01.07.2014 to 25.07.2014

Chen et al.

(2019a, b)

ELM, ENN, and

LSTM

Wind

speed

Past data 10 min and 1-h data

Prabha et al.

(2019)

LSTM Wind

speed

Past data 1-h data of 2009–2013, 2011–2015, 2013–2016,

and 2009–2014

Marndi et al.

(2020)

LSTM, SVM,

and ELM

Wind

speed

wind speed, temperature, pressure and

humidity

30 min data measured between 2010–2014
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regulate the flow of information into and out of the cell. An

input gate teaches to protect the fixed error stream in the

memory cell from irrelevant inputs, while an output gate

teaches to protect other units from unrelated memory

content reserved in the memory cell. On the other hand, the

forget gate learns how long the value is in the memory cell

(Zahroh et al. 2019; Salman et al. 2018).

An LSTM layer architecture is presented in Fig. 1. In

the graph, ht and ct are the output and the cell state at time

step t, respectively. To compute the first output and the

updated cell state, the first LSTM element is used for the

first state of the neural network and the early time step of

the series. At time step t, this block utilizes the current state

of the network (ct-1, ht-1) and the next time step of the

sequence to calculate the output and the updated cell state

ct.

The flow of data at a time step, t is presented in Fig. 2.

In this flow, input gate (i) and output gate (o) check the

level of cell state update and the level of cell state added to

the hidden state, respectively. Forget gate (f) controls the

level of cell state reset. Moreover, cell candidate (g) adds

the information to the cell state.

The learnable weights of an LSTM layer are the bias b,

the recurrent weights R, and the input weights W. They are

expressed as follows:

W ¼

Wi

Wf

Wg

Wo

2
664

3
775;R ¼

Ri

Rf

Rg

Ro

2
664

3
775; b ¼

bi
bf
bg
bo

2
664

3
775 ð1Þ

where i, f, g and o are the input gate, forget gate, the cell

candidate and output gate, respectively. The cell state at a

time step of t is indicated as,

ct ¼ f t � ct�1 þ it � gt ð2Þ

where � is the Hadamard product (element-wise

multiplication of vectors). The hidden state at a time ste-

p of t is defined as,

ht ¼ ot � rc ctð Þ ð3Þ

where rc presents the state activation function. The

hyperbolic tangent function is utilized to calculate the state

activation function for the LSTM layer function by default.

The components at time step t are defined as follows (Liu

and Liu, 2019):

it ¼ rg Wixt þ Riht�1 þ bið Þ ð4Þ

f t ¼ rg Wf xt þ Rf ht�1 þ bf
� �

ð5Þ

gt ¼ rc Wgxt þ Rght�1 þ bg
� �

ð6Þ

ot ¼ rg Woxt þ Roht�1 þ boð Þ ð7Þ

where, rg presents the gate activation function. An LSTM

layer function utilizes the sigmoid function to calculate the

gate activation function, and it is defined as,

r xð Þ ¼ 1þ e�xð Þ�1 ð8Þ

Figure 3 illustrates the basic steps of the proposed

LSTM neural network model for WS prediction. After

supplying WS data from the wind turbine, simulation

parameters were set. The original data were trained, vali-

dated, tested, and then normalized, respectively.

Fig. 1 LSTM layer architecture

Fig. 2 The flow of data at a time step, t
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3.3 Study area

Interested area locations for the current study are plotted on

the map of Turkey, as shown in Fig. 4. In this regard, three

wind power plants were chosen from the south and the

northwest of Turkey. Namely, two wind power plants were

chosen from the Hatay province of Turkey. It is a city

located in the south of Turkey, and the measurement sta-

tions for wind power plants are named MS1 and MS3, as

shown in Fig. 4. On the other hand, one wind power plant

was chosen from the Tekirdag province of Turkey. It is a

city neighbour to Istanbul province, and the measurement

station is named MS2 for this province. The data of these

three measurement stations in the wind power plants were

used for the current study.

3.4 Data analysis and model structure

In the current study, the WS forecasting was actualized

according to the measured data of three installed wind

farms located in Turkey. In this regard, the WS predictions

have been carried out using a time-series analysis-based,

ANFIS-FCM, ANFIS-GP, ANFIS-SC and LSTM neural

network. In the whole of these proposed simulations, the

measurement data were split down into two datasets

composed of training and testing clusters. While the

training cluster was used in model training for the whole of

the suggested methods, the testing dataset was utilized for

over-fitting the model validation. Besides, the power of

these proposed forecasting methods was evaluated in terms

of the mean absolute error (MAE), root means square error

(RMSE), and the correlation coefficient (R). In LSTM

applications, the total number of hidden layers was con-

sidered between 5 and 150. The epoch number was kept

constant at 300. In ANFIS structures, Sugeno’s fuzzy

approach was used to derive the output values obtained

from the input variables. In this way, a variety of ANFIS

structures were tested, and the optimal model structures,

the number of membership functions (MFs), and the total

number of iterations (i.e., epoch number) were adjusted by

the trial and error method. Then, the utilized ANFIS

models were analyzed based on the comparisons of the

given statistical parameters. Ultimately, in the ANFIS-

FCM model, the amount of MFs was set in a range of 2 to

10 increased one by one. However, the input number and

the max epoch number were adjusted to correspond to

values 5 and 100, respectively.

Similarly, in the ANFIS-SC model, the input number

and the max epoch number were set at 5 and 100,

respectively. The influence of the radius in this method was

analyzed in a range of 0.2 to 0.9. In the ANFIS-GP model,

the input number and the max epoch number were tried, as

in ANFIS-SC and ANFIS-FCM models. The number of the

MFs was set to 2 and 3 in this model.

Figure 5 presents the WS data used for MS1, MS2, and

MS3, respectively. Wind speed values for these wind farms

include the measured dataset considering the year ranges

between 01.01.2015 and 30.04.2017, 05.05.2018 and

Fig. 3 Wind speed prediction

flow chart based on the LSTM

model
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08.07.2018 01.06.2016 and 31.07.2016 for the wind farms

of MS1, MS2, and MS3, respectively. Wind speed data in

these wind farms were measured mechanically with a cup

anemometer with a vane. Besides, the wind blowing speeds

in the cited wind farms were observed to be in the ranges of

0:01�WS� 23:80 m/s, 0:47�WS� 17:23 m/s, and

4:23�WS� 14:20 m/s, for MS1, MS2, and MS3, respec-

tively. On the other hand, 20,424, 1,531, and 743 samples

of hours were respectively used considering MS1, MS2,

and MS3 measuring stations. In this regard, these samples

were discretized into two pieces for 70% and 30%,

respectively, corresponding to the training and testing data

clusters. The prediction models were initially trained to

utilize the training data cluster, then secondly validated

using the testing data cluster. The other features of the

measured data for these wind power plants are summarized

in Table 2, including the arithmetic mean values of the

measured data, standard deviation values, and the cumu-

lative values for the training and testing data clusters.

3.5 Error analysis for the proposed methods

In our study, three statistical error criteria comprising mean

absolute error (MAE), root mean square error (RMSE), and

correlation coefficient (R) are utilized for the evaluation of

the goodness of a model. These error criteria are applied to

control the accuracy of the estimations according to the

observed variables (Bilgili et al. 2013). The mathematical

expressions of these error criteria are provided in Eqs. (9),

(10), and (11), respectively.

MAE ¼ 1

N

XN
i¼1

p ið Þ � oðiÞj j ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

p ið Þ � oðiÞ½ �2
vuut ð10Þ

R ¼
XN
i¼1

p ið Þ � p½ � o ið Þ � o½ �
 !

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

p ið Þ � p½ �2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

o ið Þ � o½ �2
vuut

0
@

1
A

ð11Þ

where p(i) and o(i) are the predicted value and observed

value at the time i, respectively. Also, p and o present mean

values of the predicted data and the actual data, respec-

tively. The total number of data is represented by N.

Fig. 4 The map locations of MS1, MS2, and MS3
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Fig. 5 Time series of the hourly

observed WS data for MS1,

MS2 and MS3

Table 2 Information on the

original observed data of the

measurement stations

Data MS1 MS2 MS3

Minimum value (m/s) 0.01 0.47 4.23

Maximum value (m/s) 23.80 17.23 14.20

Arithmetic mean value (m/s) 7.89 6.99 9.58

Standard deviation (m/s) 3.6682 3.5207 1.8247

Data date range 01.01.2015 and

30.04.2017

05.05.2018 and

08.07.2018

01.06.2016 and

31.07.2016

Number of cumulative data (100%) 20,424 1531 743

Number of training data (70%) 14,299 1074 521

Number of testing data (30%) 6125 457 222
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4 Results and discussions

4.1 Results of the LSTM neural network

Table 3 provides special accuracy measures of the LSTM

results. The best results are shown in bold. The assessment

criteria in Table 3 were conducted based on the prediction

values obtained from the test process results. A cumulative of

8 LSTM neural network models, including a range of hidden

layer numbers between 5 to 150 for three measuring stations,

were tried and then tested. As seen in this table, the best results

were obtained in the hidden layer numbers corresponding to

10, 5, and 5 for MS1, MS2, and MS3, respectively.

The MAE, the RMSE, and the R results were respectively

obtained as 0.8638 m/s, 1.2193 m/s, and 0.9498 for MS1.

Similarly, for MS2, the same statistical parameters were

obtained as 0.9603 m/s, 1.2573 m/s, and 0.9147, respectively.

Finally, for MS3, the values of 0.5977 m/s MAE, 0.7531 m/s

RMSE, and 0.8897 R were computed after the simulations of

the testing cluster. These obtained results indicated that the

proposed LSTMmodel got a satisfactory performance in WS

forecasting of installed wind farms in Turkey.

On the other hand, Fig. 6 demonstrates the LSTM net-

work testing time series, including the observed and fore-

casted wind speed data clusters, respectively, for MS1,

MS2, and MS3. The number of the hourly samples and the

wind speed pile were respectively located on X-axis and

Y-axis. The significant fluctuation in the hourly measured

samples can be seen in the WS time series plot. The WS

forecasting technique reveals that the predictions of the

tested WS time series functions almost overlap with the

actual values when three measuring stations are considered.

These overlapping incidents were also proved regarding

the statistical calculations, as also demonstrated in Table 2.

It is glad to report that the utilization of the LSTM neural

network generated satisfactory results in such a sinusoidal

data cluster. The forecasting outcomes can be analyzed in

more detail to bring forward that Fig. 6 presented initially

close looks to the hourly testing samples provided in

Fig. 5, respectively, for measuring stations of MS1, MS2,

and MS3, as well as provided LSTM prediction results for

these wind farms. Intercalary to the LSTM neural network

predictions shown in Fig. 6. Figure 7 demonstrates the

LSTM histogram and regression plots of the observed

actual values for the WS’s forecasted values. In this regard,

Table 3 Optimal parameter

determination for WS prediction

using the LSTM model

Station Hidden layer number Epoch number MAE

(m/s)

RMSE (m/s) R

MS1 5 300 0.8691 1.2289 0.9491

10 300 0.8638 1.2193 0.9498

25 300 0.8636 1.2227 0.9495

50 300 0.8662 1.2263 0.9492

75 300 0.8656 1.2278 0.9490

100 300 0.8674 1.2305 0.9488

125 300 0.8736 1.2348 0.9483

150 300 0.8822 1.2469 0.9474

MS2 5 300 0.9603 1.2573 0.9147

10 300 0.9727 1.2658 0.9133

25 300 1.0493 1.3593 0.9016

50 300 0.9753 1.2742 0.9126

75 300 1.2996 1.5912 0.8774

100 300 1.7896 2.2146 0.7870

125 300 1.2861 1.6145 0.8583

150 300 1.4604 1.8173 0.8352

MS3 5 300 0.5977 0.7531 0.8897

10 300 0.6355 0.8048 0.8750

25 300 0.6163 0.7876 0.8801

50 300 0.6947 0.8789 0.8356

75 300 0.6616 0.8343 0.8648

100 300 0.8747 1.1568 0.7224

125 300 0.9022 1.1467 0.7384

150 300 1.3313 1.7018 0.4883

The best results are shown in bold
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Fig. 7 stands for the histogram and regression plots of

MS1, MS2, and MS3. The histogram part of this fig-

ure demonstrates the frequency distribution of differences

between actual and predicted WS values for the LSTM

method. The results in all stations obtained from this model

appear to be skewed to the positive. As can be seen from

this figure, while more than 93% of the model predictions

have an error B ± 2 m/s for MS1 and MS2; 100% of the

model predictions have the same error for MS3. Regression

part of this figure, the X-axis and Y-axis respectively

denote the observed real and forecasted values of the WS

data in the m/s unit. The correlation coefficient results of

0.9498, 0.9147, and 0.8897 for three measuring stations

also accompany the actual and predicted value distributions

in Fig. 7. So, it gives rise to understanding how precisely

the applied model’s forecasting outcomes fit the actual

observed data.

4.2 Results of the ANFIS-FCM model

Table 4 gives different evaluation criteria of the ANFIS-

FCM model. A cumulative of 9 different models were tried

and tested for the measuring stations in this suggested

model. These models involved the number of MFs in the

range between 2 and 10 with an increment of 1. In this

model, the best forecasting results were obtained at the

number of MFs corresponding to 6, 2, and 3 for MS1, MS2,

and MS3 measuring stations. As observed in this table, the

number of membership functions less than six did not

generate good results for MS1, since the low number of

membership functions in amount causes not-well parti-

tioning of inputs. Additionally, membership functions

greater than six did not also give good outcomes for this

station. In this case, many nodes and fuzzy rules were used,

which enhance the computation time, consequently

Fig. 6 The hourly forecasted

time series for WS data cluster

with proposed LSTM; the

predictions for MS1, MS2 and

MS3
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resulting in relatively poor estimations. These situations are

similar for MS2 and MS3 measuring stations. On the other

hand, based on the testing process results in three mea-

suring stations, at MFs numbers corresponding to 6, 2, and

3, respectively; the best performance statistical results were

reported to be 0.8669 m/s MAE, 1.2260 m/s RMSE, and

0.9492 R for MS1, 0.9634 m/s MAE, 1.2606 m/s RMSE,

and 0.9129 R for MS2, and 0.6182 m/s MAE, 0.7709 m/s

RMSE, and 0.8848 R for MS3.

The testing time series containing the actual observed

and predicted WS data clusters obtained by the suggested

ANFIS-FCM model are shown in Fig. 8 for three mea-

suring stations. As revealed in this figure, considering the

testing part, it is reported that the forecasting of the wind

speed time series matches well with the actual observed

data cluster values. Besides, at this stage, the forecasting

results should be analyzed in more detail; i.e., Fig. 8 ini-

tially provides a close look at the testing results of hourly

WS samples for the measuring stations, and it demon-

strated ANFIS-FCM forecasting outcomes. Histogram and

regression plots are indicated in Fig. 9, considering the

observed actual values demonstrated according to the

predictions obtained by the ANFIS-FCM on the WS val-

ues. The histogram results in MS1 and MS3 appear to be

skewed to the positive, while the result in MS2 appears to

be skewed to the negative. The histogram results in MS1

and MS3 appear to be skewed to the positive, while the

result in MS2 appears to be skewed to the negative. While

more than 92% of the model predictions have an error

B ± 2 m/s for MS1 and MS2; more than 99.5% of the

model predictions have the same error for MS3. The R

results of 0.9492, 0.9129, and 0.8848 for MS1, MS2, and

MS3 indicate a correlation between the actual and fore-

casted value distributions. Also, the results lead to under-

standing how accurately the prediction values of the

applied model match with the data of the actual observed

values.

4.3 Results of the ANFIS-SC model

The values of different evaluation criteria regarding the

ANFIS-SC model are given in Table 5. In this regard, the

Fig. 7 Histogram and statistical regression graphs regarding the predicted vs the actual values of the WS data cluster concerning the suggested

LSTM neural network model; the results presented for MS1, MS2 and MS3
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applied forecasting methodology using this method was

studied under variant cluster radius sets, including ranges

of 0.2 B R B 0.8 for MS1 and 0.2 B R B 0.9 for MS2 and

MS3. Table 4 presented the forecasting outcomes obtained

from the testing process of the ANFIS-SC model. As seen

from the table, all the tried ANFIS-SC models presented

more or less similar results in respect of the precision

measures. Nevertheless, the radius of 0.3 for MS1

demonstrated a little better MAE, RMSE, and R statistics.

Similarly, considering the measuring station MS2, radius

0.9 provided better results again in MAE, RMSE, and R

statistics. Finally, for MS3, again, the radius of 0.9 came

off with better results in terms of all the statistical

parameters. For the whole measuring stations, at these radii

values, the MAE, RMSE, and R statistics were reported as

0.8644 m/s, 1.2250 m/s, and 0.9494, respectively for MS1,

whereas, 0.9925 m/s, 1.2838 m/s, and 0.9098, respectively

for MS2, and finally, 0.6123 m/s, 0.7683 m/s, and 0.8848

for MS3. These results presented that low values of the

cluster radii for MS2 and MS3 did not permit the excellent

mapping of the model. On the other hand, high values of

the cluster radii for MS1 caused some difficulties in the

training and caused over-fitting or undesirable input

memorization.

Figure 10 exhibits the tested time series regarding

forecasted WS hourly data obtained by the ANFIS-SC

model for the observed actual values. The proposed

ANFIS-SC model performed the prediction results for three

measuring stations are shown in this figure. As seen in this

figure, the ANFIS-SC estimations of the WS time series for

three wind farms coincide well with the values of the actual

observed data cluster. Additionally, to obtain a detailed

analysis of the three measuring stations, it is important to

mention that Fig. 10 shows a close look at the hourly wind

speed samples used in the testing stage and demonstrated in

Fig. 5. So, Fig. 10 indicates the ANFIS-SC prediction

results of these test data for these wind farms. Besides,

Fig. 11 displays the histogram and regressions of the

Table 4 Optimal parameter

determination for WS prediction

using ANFIS-FCM model

Station Number of MFs Input number Max

epoch

MAE

(m/s)

RMSE (m/s) R

MS1 2 5 100 0.8682 1.2294 0.9489

3 5 100 0.8697 1.2324 0.9486

4 5 100 0.8673 1.2291 0.9489

5 5 100 0.8669 1.2273 0.9490

6 5 100 0.8669 1.2260 0.9492

7 5 100 0.8719 1.2340 0.9486

8 5 100 0.8701 1.2341 0.9486

9 5 100 0.8697 1.2620 0.9484

10 5 100 0.8680 1.2318 0.9488

MS2 2 5 100 0.9634 1.2606 0.9129

3 5 100 0.9762 1.2692 0.9118

4 5 100 0.9962 1.3054 0.9066

5 5 100 0.9699 1.2895 0.9091

6 5 100 0.9906 1.2841 0.9101

7 5 100 0.9799 1.2997 0.9079

8 5 100 1.0104 1.3428 0.9019

9 5 100 0.9986 1.3312 0.9032

10 5 100 1.0219 1.3607 0.8994

MS3 2 5 100 0.6176 0.7741 0.8836

3 5 100 0.6182 0.7709 0.8848

4 5 100 0.6328 0.7950 0.8785

5 5 100 0.6365 0.8085 0.8747

6 5 100 0.6315 0.7968 0.8782

7 5 100 0.6785 0.8507 0.8628

8 5 100 0.6764 0.8426 0.8635

9 5 100 0.6801 0.8491 0.8660

10 5 100 0.6748 0.8420 0.8635

The best results are shown in bold
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ANFIS-SC model according to the WS forecasted values

shown considering the measured values. The histogram

results in MS1 and MS3 appear to be skewed to the posi-

tive and, results obtained for MS2 tend to show the closest

thing to a normal distribution, with an almost symmetrical

distribution of about zero. In the MS2 station, the error

distribution follows a Gaussian curve. The histogram part

of this figure states that, while more than 93% of the model

predictions have an error B ± 2 m/s for MS1 and MS2;

more than 99.5% of the model predictions have the same

error for MS3. The R results of the ANFIS model,

including the values of 0.9494, 0.9098, and 0.8848 for

three stations, have been also presented in Fig. 11. These R

results represent the actual and corresponding forecasted

data distributions and indicate the high precision of the

forecasting model concerning the real measured data.

4.4 Results of the ANFIS-GP model

The forecasting methodology was also applied to the model

of ANFIS-GP. In this ANFIS model, Gaussian membership

and linear membership functions were used regarding input

and output data. The trials were executed at the number of

MFs corresponding to 2 for MS1, 2, and 3 for MS2 and 2

and 3 for MS3. The input number and the maximum epoch

number for those trials were set to 5 and 100, respectively,

as shown in Table 6.

The testing time series, including the measured actual

and forecasted hourly WS data obtained by the ANFIS-GP

model, are shown in Fig. 12 for three measuring stations.

As observed in subparts of the figure, in the testing part of

the ANFIS-GP model, it is observed that the guesses of the

WS time series coincide well with the actual measured

values. To analyze the ANFIS-GP forecasting results in

Fig. 8 The hourly time series

wind speed data cluster with

actual values and forecasted

values for the suggested ANFIS-

FCM model, at the testing stage

of the WS data with the usage of

the testing data cluster; the

predicting operation conducted

for the stations
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more detail, Fig. 12 is presented to display a closer look at

the testing part of Fig. 5. Figure 12 also involves the pre-

dicted samples of the method concerning the observed time

series considering three measuring stations at the testing

stage. The histogram and regression plots on actual and

predicted data of WS with the utilization of the ANFIS-GP

model are exhibited in Fig. 13. The results in all stations

obtained from this model appear to be skewed to the pos-

itive. More than 93% of the model predictions have an

error B ± 2 m/s for MS1 and MS2 and more than 99.5%

of the model predictions have the same error for MS3 as

can be seen from this figure. As demonstrated in Table 6,

the MAE, RMSE, and R statistical values were computed

as 0.8821 m/s, 1.3186 m/s, and 0.9411, respectively, at

MS1. The results were obtained much better when the

number of MFs was set to 2 instead of 3 at MS2 and MS3.

The comparisons based on the statistical results of MAE,

RMSE, and R demonstrate this situation. The statistical

results indicated that the values of 1.1097 m/s MAE,

1.5461 m/s RMSE, and 0.8758 R were obtained when the

number of MFs was set 2 for MS2. Similarly, at MS3,

0.8518 m/s MAE, 1.1419 m/s RMSE, and 0.7748 R were

obtained when the number of MFs was set 2.

4.5 Comparison of the results

Table 7 represents the statistical accuracy results of the WS

predictions for each method and different stations. This

table presents that the best WS predictions have been

obtained with the ANFIS-FCM method. This method can

be a helpful tool in the forecasting of WS with high

accuracy.

To evaluate and analyze the accuracy and performance

of the results of all models, statistical data were compared

with test data of WS models in the literature. All models

were found to be highly reliable and predictive in the study.

However, the proposed LSTM model provided the best

results in predictive performance. Figure 14 depicts a

comparison of actual and predicted daily WS values for

2-day time periods for this purpose.

Figure 15 illustrates the Taylor diagrams (Taylor 2001)

of the proposed model’s errors for the test data. A Taylor

Fig. 9 Histogram and statistical regression graphs regarding the predicted vs the actual values of the WS data cluster concerning the proposed

ANFIS-FCM model; the results presented for the stations

Stochastic Environmental Research and Risk Assessment (2022) 36:4311–4335 4325

123



diagram, as is well known, can be used to assess the

accuracy of suggested models in a variety of ways. The

overall similarity of the models to the measured values is

inversely proportional to the distance between the points

representing the models and the point representing the

observed (actual) value. In comparison to the models for all

stations, Fig. 15 clearly shows that the LSTM model pre-

dictions are closer to the observations. The lowest RMSE

values were obtained as 1.2193 m/s, 1.2573 m/s and

0.7531 m/s in MS1, MS2 and MS3, respectively when the

LSTM method was used as can be seen from Table 7.

5 Conclusions

In this study, WS forecasting was performed using ANFIS-

(FCM, GP, SC) and long short-term memory (LSTM)

methods. A total of 20,424, 1531, and 743 hourly data were

used in MS1, MS2, and MS3, respectively. The testing

process of the methods was compared according to the

statistical parameters, including the MAE (m/s), RMSE (m/

s), and R parameters. Generally, high WS prediction

accuracies were obtained in the used methods. Considering

the measuring stations MS1, MS2, and MS3, the error

analyses indicated that the LSTM structure provided the

best results in three statistical error results. If to summarize

statistical data regarding LSTM, this method provided

0.8638 m/s MAE, 1.2193 m/s RMSE, and 0.9498 R for

MS1. Whereas considering MS2, the values of 0.9603 m/s,

1.2573 m/s, and 0.9147 were obtained for MAE, RMSE,

and R, respectively. Finally, for MS3, the best results

regarding the statistical parameters were computed to be

0.5977 m/s for MAE, 0.7531 m/s for RMSE, and 0.8897

for R, respectively.

The time-series approach based on the LSTM neural

network estimates is made by considering the hidden

periodicity in the data. This approach has the significant

advantage of using univariate modeling as an independent

variable of the data obtained in the past. Future work can

be focused on using hybrid deep learning functions and

architectures to improve the precision and accuracy of

predictive results. More accurate estimation of the WS can

reduce costs and risks and increase the power system’s

security can help managers develop a program of action

and optimal management of the electricity grid. Thus, its

economic and social benefits can be increased.

Table 5 Optimal parameter

determination for WS prediction

using ANFIS-SC model

Station Influence radius Input number Max

epoch

MAE

(m/s)

RMSE (m/s) R

MS1 0.2 5 100 0.8674 1.2310 0.9488

0.3 5 100 0.8644 1.2250 0.9494

0.4 5 100 0.8647 1.2270 0.9492

0.5 5 100 0.8656 1.2279 0.9491

0.6 5 100 0.8656 1.2277 0.9491

0.7 5 100 0.8688 1.2309 0.9489

0.8 5 100 0.8711 1.2341 0.9486

MS2 0.2 5 100 1.0351 1.3546 0.9007

0.3 5 100 1.0235 1.3385 0.9027

0.4 5 100 1.0007 1.2920 0.9086

0.5 5 100 1.0036 1.3013 0.9073

0.6 5 100 1.0026 1.2983 0.9077

0.7 5 100 0.9942 1.2862 0.9095

0.8 5 100 0.9950 1.2868 0.9094

0.9 5 100 0.9925 1.2838 0.9098

MS3 0.2 5 100 0.7847 1.0278 0.8133

0.3 5 100 0.6805 0.8572 0.8611

0.4 5 100 0.6486 0.8141 0.8729

0.5 5 100 0.6363 0.7910 0.8793

0.6 5 100 0.6296 0.7821 0.8817

0.7 5 100 0.6213 0.7753 0.8838

0.8 5 100 0.6196 0.7746 0.8842

0.9 5 100 0.6123 0.7683 0.8848

The best results are shown in bold
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Fig. 10 The hourly time series

WS data cluster with actual

values and forecasted values for

the proposed ANFIS-SC model,

at the testing stage of the WS

data with the testing data cluster

utilization; the estimation

operation conducted for the

stations
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Fig. 11 Histogram and statistical regression graphs regarding the predicted vs the actual values of the WS data cluster into account and using the

recommended ANFIS-SC model; the model outputs presented for the stations

Table 6 Optimal parameter

determination for WS prediction

using ANFIS-GP model

Station Number of MFs Input number Max

epoch

MAE (m/s) RMSE (m/s) R

MS1 2 5 100 0.8821 1.3186 0.9411

MS2 2 5 100 1.1097 1.5461 0.8758

3 5 100 2.4987 8.6798 0.2730

MS3 2 5 100 0.8518 1.1419 0.7748

3 5 100 1.9331 3.1643 0.4700

The best results are shown in bold
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Fig. 12 The hourly time series

WS data cluster with observed

values and guessed values for

the proffered ANFIS-GP model,

at the testing step of the WS

data with the employment of the

testing data cluster; the

approximation operation

conducted for the stations
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Fig. 13 Histogram and statistical regression graphs regarding the predicted vs the actual values of the WS data cluster and using the

recommended ANFIS-GP model; the model outcomes presented for the stations

Table 7 Statistical accuracy results of the WS prediction

Station Forecasting Method MAE

(m/s)

RMSE

(m/s)

R

MS1 LSTM 0.8638 1.2193 0.9498

ANFIS FCM 0.8669 1.2260 0.9486

ANFIS SC 0.8644 1.2250 0.9494

ANFIS GP 0.8821 1.3186 0.9411

MS2 LSTM 0.9603 1.2573 0.9147

ANFIS FCM 0.9634 1.2606 0.9129

ANFIS SC 0.9925 1.2838 0.9098

ANFIS GP 1.1097 1.5461 0.8758

MS3 LSTM 0.5977 0.7531 0.8897

ANFIS FCM 0.6182 0.7709 0.8848

ANFIS SC 0.6123 0.7683 0.8848

ANFIS GP 0.8518 1.1419 0.7748

The best results are shown in bold
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Fig. 14 Comparison of the

models for the stations
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Fig. 15 Taylor diagrams of the proposed model’s errors for the test data
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Appendix

Some parts of the software/code used for imple-

menting the machine learning algorithm:

dataTrain = data(1:numTimeStepsTrain+1);
dataTest = data(numTimeStepsTrain+1:end);
mu = mean(dataTrain);
sig = std(dataTrain);
dataTrainStandardized = (dataTrain - mu) / sig;
XTrain = dataTrainStandardized(1:end-1);
YTrain = dataTrainStandardized(2:end);
numFeatures = 1;
numResponses = 1;
numHiddenUnits = 10;
layers = [ ...

sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer];

options = trainingOptions('adam', ...
'MaxEpochs',300, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.005, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',125, ...
'LearnRateDropFactor',0.2, ...
'Verbose',0, ...
'Plots','training-progress');

net = trainNetwork(XTrain,YTrain,layers,options);
dataTestStandardized = (dataTest - mu) / sig;
XTest = dataTestStandardized(1:end-1);
net = predictAndUpdateState(net,XTrain);
[net,YPred] = predictAndUpdateState(net,YTrain(end));
numTimeStepsTest = numel(XTest);
for i = 2:numTimeStepsTest

[net,YPred(:,i)] = predictAndUpdateState(net,YPred(:,i-1),'ExecutionEnvironment','cpu');
end
YPred = sig*YPred + mu;
YTest = dataTest(2:end);
rmse = sqrt(mean((YPred-YTest).^2))
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