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Abstract
We propose a covariance specification for modeling spatially continuous multivariate data. This model is based on a

reformulation of Kronecker’s product of covariance matrices for Gaussian random fields. The structure holds for different

choices of covariance functions with parameters varying in their usual domains. In comparison with classical models from

the literature, we used the Matérn correlation function to specify the marginal covariances. We also assess the repar-

ametrized generalized Wendland model as an option for efficient calculation of the Cholesky decomposition, improving the

model’s ability to deal with large data sets. The reduced computational time and flexible generalization for increasing

number of variables, make it an attractive alternative for modelling spatially continuous data. The proposed model is fitted

to a soil chemistry properties dataset, and adequacy measures, forecast errors and estimation times are compared with the

ones obtained based on classical models. In addition, the model is fitted to a North African temperature dataset to illustrate

the model’s flexibility in dealing with large data. A simulation study is performed considering different parametric

scenarios to evaluate the properties of the maximum likelihood estimators. The simple structure and reduced estimation

time make the proposed model a candidate approach for multivariate analysis of spatial data.

Keywords Gaussian random fields � Covariance functions � Geostatistics � Matérn correlation model � Multivariate spatial

data

1 Introduction

Multivariate random fields have been of interest from the

very early days of the geostatistical literature, with an

increasing number of proposed approaches as data sets

became richer and the ever-increasing computational

power. The specification of the covariance structure is

central in the estimation and prediction process. Recent

contributions include asymmetric models (Qadir et al.

2021; Alegrı́a et al. 2018), modeling on spheres (Bevilac-

qua et al. 2020; Emery et al. 2019; Alegrı́a et al. 2019;

Emery and Porcu 2019), on mapping disease (Martinez-

Beneito 2020; MacNab 2018, 2016), on multinary prob-

lems (Teichmann et al. 2021), to name a few.

We are interested in multivariate random fields analysis,

in the specific context of spatially continuous data. Possible

applications cover a wide range of disciplines, such as

climatology, meteorology, geophysics, among others,

where spatially referenced data is usually of interest. We

consider two illustrative examples, one on chemical soil

properties relevant for agriculture and another on North

African temperatures, important for climatology and

environmental sciences.

Let YðsÞ ¼ fY1ðsÞ; . . .; YpðsÞg>, on Rd , d � 1, a p-di-

mensional multivariate Gaussian random field with mean
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Curitiba, Paraná 81530-000, Brazil

3 Post-Graduate Program in Numerical Methods in

Engineering, Federal University of Paraná, Curitiba,
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vector lðsÞ ¼ E½YðsÞ� and matrix-valued covariance

function:

RðhÞ ¼ covfYðs1Þ;Yðs2Þg ¼ ½RijðhÞ�pi;j¼1; ð1Þ

where h ¼ s1 � s2 2 Rd is the spatial separation vector.

We consider a stationary and isotropic process (Chilès and

Delfiner 2012; Diggle and Ribeiro Jr 2007; Gneiting 1999)

where i ¼ j, the functions RiiðhÞ in Eq. (1) describe the

spatial variability of the ith process YiðsÞ, for i ¼ 1; . . .; p,

and are referred as the direct- or marginal-covariance

functions (Genton and Kleiber 2015) and, if i 6¼ j, the

functions RijðhÞ in Eq. (1) describe the spatial variability

between the process YiðsÞ and YjðsÞ and are called as cross-

covariance functions. An important condition for (1) is that

it must meet the positive definite condition, that is,

a>Ra[ 0, for any vector a 6¼ 0.

The main goal is to propose a valid covariance specifi-

cation for (1) in the case of spatially continuous multi-

variate data. The model, presented in Sect. 2, is based on

the Kronecker products and it is quite flexible to handle

with two or more variables. Furthermore, we present the

conditions for positive definiteness of the proposed model,

perform comparisons in terms of computational times and

adequacy measures with classical models, and consider

compactly supported covariance functions as an efficient

approach to compute the Cholesky decomposition.

The literature on covariance functions for multivariate

random fields is extensive. A careful review of the main

works in the area can be found in Genton and Kleiber

(2015) and Salvaña and Genton (2020). An intuitive early

proposal and possibly the most traditional model is the

linear model of corregionalization (LMC) (Goulard and

Voltz 1992; Bourgault and Marcotte 1991; Wackernagel

2003). The key idea for the LMC is the overlap of spatial

processes in order to induce a multivariate field. This

approach is widely explored, including under the Bayesian

approach for inference and prediction. Finley et al. (2015),

Banerjee et al. (2003), Gelfand et al. (2004), Schmidt and

Gelfand (2003) and Cecconi et al. (2016) are examples

where the LMC structure underlies the models.

Another popular structure considers the class of Matérn

correlation functions (Matérn 1986; Guttorp and Gneiting

2006). For the univariate case, the Matérn class covariance

model is defined as r2Mðhjm;/Þ, where

Mðhjm;/Þ ¼ 21�m

CðmÞ jhj=/ð ÞmKm jhj=/ð Þ, is the Matérn spatial

correlation at distance jhj, Km is the modified Bessel

function, r2; m;/[ 0 are the variance, smoothness and

scale parameters, respectively. When m ¼ 0:5, the Matérn

model reduces to the exponential covariance function.

Gneiting et al. (2010) elegantly extended this class for

multivariate case considering the Matérn family for the

marginal and cross-covariance functions. The authors

present conditions for the parameters that lead to a valid

covariance structure, the full bivariate Matérn model. For

more than two variables the authors presented the parsi-

monious multivariate Matérn model, which considers

common scale and constrained smoothness parameters.

Another important specification are the separable models,

which considers that the components of the multivariate

random field share the same correlation structure

(Bevilacqua et al. 2016a; Vallejos et al. 2020) and appears

as a parsimonious modeling alternative because it allows a

simplification of the more complex models. Bevilacqua and

Morales-Oñate (2018) and Vallejos et al. (2020) present

two simplified structures with Matérn correlation function

for bivariate data, the bivariate separable Matérn model

and the bivariate Matérn model with constraints. Both

models can be estimated by the Geomodels package

(Bevilacqua and Morales-Oñate 2018).

The aforementioned models are widely assessed in the

geostatistical literature. Cressie (1993), Gneiting et al.

(2010), Goovaerts et al. (1997), Porcu et al. (2013),

Bevilacqua et al. (2016b) noticed some difficulties to

handling with the LMC due, for example, to its lack of

flexibility and difficulty in recovering the smoothness of

latent processes. Separable models are not capable to

Table 8 Elapsed estimation time (Elps.Time), number of iterations

required (N.Iter) and average time per iteration (Time.by.Iter) for

each model, considering simulated data from the MatConstr model for

different sample sizes

Models Size Elps.Time N.Iter Time.by.Iter

MatSimpler 100 5.356 770 0.007

225 29.018 768 0.038

400 74.989 564 0.133

625 380.968 912 0.418

900 684.169 634 1.079

MatConstr 100 90.341 7826 0.012

225 130.974 1830 0.072

400 1112.987 4328 0.257

625 2937.484 4130 0.711

900 5700.465 3050 1.869

MatSep 100 6.386 446 0.014

225 57.690 806 0.072

400 215.376 754 0.286

625 496.981 624 0.796

900 998.202 470 2.124

LMC 100 4.271 755 0.006

225 27.107 827 0.033

400 141.529 1035 0.137

625 481.601 1067 0.451

900 1939.578 1539 1.260
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capture the different scales and smoothness for the vari-

ables under study (Bevilacqua et al. 2016a, 2015). The

bivariate Matérn model presents some restrictions in the

parametric space. Vallejos et al. (2020) note that variation

of the colocated correlation parameter is constrained by the

values of the scale and smoothness parameters, resulting in

difficulties for the estimation process and parameter

interpretation.

The covariance specification presented here emerges as

an additional modeling alternative for multivariate random

fields that can be more flexible to deal with two or more

variables, as it allows the model parameters to vary freely

in their usual parametric domains. With a simple con-

struction, the computational implementation has no major

difficulties for a number of variables and sampling location

points, with a parsimonious estimation computational time.

Furthermore, unlike the separable models, our proposal

allows different marginal correlation structures, making it

able to capture the structure of each variable.

The article is organized as follows. In Sect. 2 we present

our covariance specification for multivariate spatial data

and discuss some results. Section 3 provides an efficient

approach for calculating the Cholesky decomposition using

compactly supported covariance functions. The dataset

analyses are presented in Sect. 4. In Sect. 5, through a

simulation study, we evaluate the properties of the pro-

posed model estimators. Finally, the main conclusions are

summarized in Sect. 6. The model implementation and

reported analysis are performed using the computational

statistical software R (R Core Team 2021).

2 Model specification

This section presents our proposed covariance specification

for multivariate Gaussian random fields, which is based

upon Martinez-Beneito (2013).We present the proof of its

validity and discuss how to obtain the maximum likelihood

estimates of the model parameters. We also present com-

putational time estimation results comparing it with clas-

sical approaches.

In Martinez’s proposal, the results are presented for

modeling multivariate mapping diseases problems based

on Gaussian Markov random fields (GMRF), which are

discretely indexed, following a Gaussian multivariate dis-

tribution with the additional restriction of conditional

independence (Rue and Held 2005).

Our proposal extends Martinez’s approach to construct a

covariance function for Gaussian random fields that are

continuously indexed, with several applications in geosta-

tistical problems.

We present a simple construction that allows its gener-

alization to larger dimensions more easily. The idea is to

write the cross-covariance matrix as a product of matrices

that induce variability within processes and between pro-

cesses, and it is built upon the Kronecker products refor-

mulation of covariance matrices. The resulting construction

will be always positive definite for any parameter values in

their usual domains.

Consider a symmetric correlation matrix Rb, with

dimension p � p, induces a correlation between spatial

processes, while the marginal-covariance functions Rii, for

i ¼ 1; . . .; p, model the variability within each process. We

specify the covariance matrix for the Y process considering

the generalized Kronecker product, presented in Martinez-

Beneito (2013). Thus, for the Gaussian random fields

continuously indexed, the matrix-valued covariance func-

tion is defined by:

RðhÞ ¼ Bdiag ~R11; ~R22; . . .; ~Rpp

� �
Rb � Ið Þ

Bdiag ~R>
11;

~R>
22; . . .;

~R>
pp

� �
;

ð2Þ

where, ~Rii is the lower triangular matrix of the Cholesky

decomposition of the matrix Rii, Bdiag represents the

matrix in diagonal blocks of the matrices ~R11, ~R22, ..., ~Rpp

and I is the identity matrix. The structure defined in (2) is

very flexible, allowing different marginal-covariance

functions for Rii and different correlation structures for Rb.

Without loss of generality, we will consider that the

correlation between the processes will be induced by the

matrix:

Rb ¼

1 q12 . . . q1p

q12 1 . . . q2p

. . . . . . . . . . . .

q1p q2p . . . 1

0

BBB@

1

CCCA
; ð3Þ

where qij, ij ¼ 1; . . .; p, is the correlation parameter

between the variables i and j.

To quantify the variability within each process, different

marginal-covariance structures could be used in (2). In a

general way, we can write:

RiiðhÞ ¼ r2i RðhjWiÞ; ð4Þ

where RðhjWiÞ is a valid correlation function, with Wi

denoting the parameters vector that model the spatial

dependence structure of the i-th component, for

i ¼ 1; . . .; p. For simplification and without loss of gener-

ality, we can consider for RðhjWiÞ, the Matérn correlation

function. Thus, the marginal covariance function takes the

form:

RiiðhÞ ¼ r2i Mðhjmi;/iÞ; for i ¼ 1; 2; . . .; p: ð5Þ

The structure specified by (2), (3) and (5) will be called as

simpler multivariate Matérn (MatSimpler) model. It

accepts different marginal behaviors and it is able to handle
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with different smoothness and scale parameters for each

variable. The simpler multivariate exponential (ExpSim-

pler) model is a particular case when the exponential cor-

relation function is used. (Ribeiro et al. 2021) illustrates

the ExpSimpler model in bivariate analysis of meteoro-

logical data.

In Theorem 2.1, below, we prove the validity of our

covariance specification for modeling multivariate spatial

data.

Theorem 2.1 Let Rii, for i ¼ 1; . . .; p, the marginal

covariance functions of dimension n � n, Rb a valid spatial

correlation function of dimension p � p and I the identity

matrix of dimension n � n, then the covariance function

defined in (2) is a valid and full rank np specification for

multivariate spatial data modeling.

Proof Since the marginal covariance functions, Rii, for

i ¼ 1; . . .; p, are symmetric positive definite matrix, the

matrices ~Rii, resulting from the Cholesky decomposition,

are lower triangular with positive diagonal elements and

therefore, full rank (Banerjee and Roy 2014). Thus,

rankð ~RiiÞ ¼ n, for all i, and from the rank properties of

block-diagonal matrix, the rank of any block-diagonal

matrix is the sum of the ranks of its diagonal blocks

(Banerjee and Roy 2014), that is:

rank Bdiag ~R>
11;

~R>
22; . . .;

~R>
pp

� �h i
¼

Xp

i¼1

rankð ~RiiÞ ¼ np;

therefore, Bdiag ~R>
11;

~R>
22; :::;

~R>
pp

� �
is a full np rank matrix.

On the other hand, since Rb and I are positive definite

matrices, it follows by the kronecker product properties

that Rb � Ið Þ is also a positive definite matrix (Hardy and

Steeb 2019). With Rb of dimension p and I of dimension n,

the resulting kronecker product between them will be a

positive definite matrix of dimension np.

Now, for simplicity of notation, let’s denote by A and B

the respective Rb � Ið Þ and Bdiag ~R>
11;

~R>
22; . . .;

~R>
pp

� �

matrices. Since A is a positive definite matrix and B is a

full rank matrix, follows that B>AB preserves not only the

rank but also the positive definiteness (Gentle 2017;

Petersen et al. 2008).

To visualize this, let a 6¼ 0, any vector of dimension np,

and let z ¼ Ba, where z 6¼ 0, because B is a full rank

matrix. Using the positive definite matrix definition,

follows:

a> B>AB
� �

a ¼ aBð Þ>A Bað Þ
¼ z>Az

[ 0

h

The result holds if variables are observed in different

numbers of sample locations, since the incomplete data can

be treated as missing information and this does not imply

any additional complexity and the proof of theorem 2.1

remains valid.

The dimensions of the resulting covariance matrix will

depend on the number of sample locations for each variable

considered in the analysis. If we consider marginal

covariance functions with dimension ni, for i ¼ 1; . . .; p,

the resulting covariance matrix will have dimension

N ¼
Pp

i¼1 ni.

Considering that R is a valid covariance specification for

any valid choice of marginal-covariance and correlation

functions, the proposed model allows its parameters to vary

in their usual domains, favoring the inferential process and

allowing the model parameters to be more easily

interpreted.

In our covariance specification, considering the corre-

lation structure defined in (3), the matrix-valued covari-

ance function RðhÞ, can be written in a more compact form,

in terms of the cross-covariance matrices between the

process. Thus, for the ij-th component, with 1� i 6¼ j� p,

the cross-covariance function takes the form:

RijðhÞ ¼ qij
~RiiðhÞ ~RjjðhÞ>: ð6Þ

Clearly, when i ¼ j, qii ¼ 1 and we achieve

qii
~RiiðhÞ ~RiiðhÞ> ¼ RiiðhÞ, the spatial covariance matrix of

the i-th component.

The Theorem 2.2 shows that the separable model

(Vallejos et al. 2020; Bevilacqua et al. 2016a) is a partic-

ular case of the simpler covariance model class.

Theorem 2.2 Let Y1ðsÞ; Y2ðsÞ; . . .; YpðsÞ a p-dimensional

random field with the same spatial dependence structure

for all YiðsÞ, i ¼ 1; . . .; p, then the simpler covariance

model specified by (2), (3) and (4) is reduced to the class of

separable models.

Proof By (6) and considering the general structure of the

marginal covariance matrices, defined in (4), we see that in

the particular case where the process components share the

same spatial dependency structure, that is, Wi ¼ Wj ¼ W,

for all i; j ¼ 1; . . .; p, the simpler covariance specification

reduces to the class of separable models, ie,

RijðhÞ¼qij
~RiiðhÞ ~RjjðhÞ>

¼qijri
~RðhjWÞrj

~RðhjWÞ>

¼qijrirj
~RðhjWÞ ~RðhjWÞ>

¼qijrirjRðhjWÞ; for i;j¼1; . . .;p and qii ¼1:

Here, ~RðhjWÞ is the lower triangular Cholesky decompo-

sition of the correlation matrix, RðhjWÞ. h
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2.1 Estimation and inference

For the estimation process, let N ¼ np and Y ¼
fY>

1 ; . . .;Y
>
p g

>
, be the N � 1 stacked vector of response

variables, with N � 1 mean-vector l ¼ fl>1 ; . . .; l>p g
>
,

where li ¼ Xibi denotes the n � 1 vector of expected

values for the response variable Yi, i ¼ 1; . . .; p, with Xi

being a n � ki design matrix composed of ki covariates and,

consequently, bi denotes a ki � 1 regression parameter

vector. We suppress the spatial indexes for convenience.

We will denote the set of parameters to be estimated by

h ¼ ðb>; k>Þ>, where b ¼ ðb>1 ; . . .; b
>
p Þ

>
denotes the

regression parameters vector and k ¼ ðq1; . . .; qpðp�1Þ=2;

r1; . . .; rp; m1; . . .; mp;/1; . . .;/pÞ> is the covariance speci-

fication parameters vector. Considering y the stacked

vector of observed values, the log-likelihood function for h
is given by:

Lðh; yÞ ¼ � 1

2
N lnð2pÞ þ ln jRðkÞj½

þðy� lðbÞÞ>RðkÞ�1ðy� lðbÞÞ
i
:

ð7Þ

The covariance matrix proposed in (2) involves block-di-

agonal matrices and a Kronecker product. Thereby, the

calculation of its determinant and inverse can be expressed,

respectively, by jRj ¼
Qp

i¼1 j ~Riij
� �2jRbjn and

R�1 ¼ Q> R�1
b � I

� �
Q, where Q ¼ Bdiag ~R�1

11 ; . . .;
~R�1

pp

� �
.

It is worth mentioning that the calculation of the inverse of

the covariance matrix in the log-likelihood function will

not involve the complete matrix but only the Cholesky

decompositions of the marginal covariance matrices, which

allows computational advantages and reduction of the

estimation time. Therefore, the log-likelihood function

at (7) can be rewritten as,

Lðh; yÞ ¼ � 1

2
N lnð2pÞ þ 2

Xp

i¼1

Xn

j¼1

ln k
ðiÞ
jj

� �
þ n ln jRbj

" #

� 1

2
ðy� lðbÞÞ>Q> R�1

b � I
� �

Qðy� lðbÞ
h i

;

ð8Þ

where k
ðiÞ
jj is the jth diagonal element of ~Rii.

The vector of expected values, lðbÞ, depends on the

regression parameters while the covariance specification

RðkÞ depends on the covariance parameters vector, k. We

obtain the maximum likelihood estimators by maximizing

the function in (8) with respect to the h parameter vector.

The proposed covariance specification, in addition to its

flexibility and interpretability of its parameters, also redu-

ces the number of parameters to be estimated when com-

pared to the multivariate Matérn model (Gneiting et al.

2010), which is quite useful from the point of view of the

estimation process. Considering the Matérn correlation

function, the number of parameters involved in the

MatSimpler model is pðp þ 1Þ=2þ 2p, where p is the

number of variables. In contrast, the number of parameters

for the multivariate Matérn model is pðp þ 1Þ=2þ
2ðpðp þ 1Þ=2Þ. Table 1 summarizes how the proposed

covariance specification reduces the number of parameters

as p increases. For p[ 7, the number of parameters for

multivariate Matérn model is more than twice the number

of parameters for the MatSimpler model.

In Sect. 5 through a simulation study we evaluate some

properties of the maximum likelihood estimators. In

Appendix A we describe the score function, the Newton

scoring iterative algorithm and we find the Fisher infor-

mation matrix associated with the proposed model.

2.2 Prediction

For the case of multivariate spatial data, spatial prediction

is a generalization of the univariate case that consists of

predicting Y at some unknown location, s0, based on other

sample information, si, for i ¼ 1; . . .; n (Ver Hoef and

Cressie 1993; Bivand et al. 2008; Pebesma 2004).

Let RY1
be the covariance matrix of Y1 ¼ YðsiÞ, for

i ¼ 1; . . .; n, RY0
be the covariance matrix of Y0 ¼ Yðs0Þ,

RY1Y0
be the covariance matrix between Y1 and Y0 and

d0 ¼ Bdiagðx1ðs0Þ; . . .; xpðs0ÞÞ. Then, the best linear unbi-

ased predictor for Y0 is:

EðY0jY1Þ ¼ EðY0Þ þ R>
Y1Y0

R�1
Y1
ðY1 � EðY1ÞÞ;

with prediction covariance matrix:

CovðY0jY1Þ ¼ RY0
� R>

Y1Y0
R�1
Y1
RY1Y0

:

We can replace the unknown parameters of the model by

their respective maximum likelihood estimators (Martins

et al. 2016) and, with this, we obtain the stacked vector

prediction for the p variables in the s0 unobserved

locations.

Table 1 Number of parameters involved in the specification of the

covariance function, when the number of variables p increases, for the

MatSimpler and the multivariate Matérn models

Models p

2 3 4 5 6 7 8 9 10

MatSimpler 7 12 18 25 33 42 52 63 75

Multivariate

Matérn

9 18 30 45 63 84 108 135 165
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2.3 Computational resources

In our computational implementation, we used the R sta-

tistical software (R Core Team 2021) for the estimation,

simulation and prediction procedures. For the implemen-

tation of the proposed covariance matrix specification, we

used the kronecker function, basic to R, which enables

the calculation of the kronecker product between the

matrices Rb and I. We use the Matrix (Bates and

Maechler 2021) package to perform matrix operations

more efficiently, such as the Cholesky decomposition of

the marginal-covariance matrices, through the chol

function, and the construction of the diagonal block matrix

Bdiag ~R11; ~R22; . . .; ~Rpp

� �
, through the bdiag function.

Furthermore, the crossprod and tcrossprod func-

tions allowed a more efficient calculation of products

between matrices. When working with the Matérn corre-

lation function we use the matern function from geoR

(Ribeiro Jr et al. 2020) package. For the efficient calcula-

tion of the Cholesky factor, when working with sparse

correlation functions, we use functions from the spam

package (Furrer and Sain 2010).

For simulations we use the rmvn function from mvn-

fast package (Fasiolo 2016) that provides computation-

ally efficient methods related to the multivariate normal

distribution. For the log-likelihood function optimization,

we use optim function. R codes are available in on-line

supplementary material.

2.4 Computational results

As already mentioned, the Simpler covariance model can

be extended for more than two variables with relative ease.

The computational time estimation will depend on the

number of variables and sample locations considered in the

analysis. To illustrate the computational time spent on

estimation, we implement the generic model for p variables

and n sample locations and simulate scenarios of the

MatSimpler model considering different sample sizes and

variable numbers. To make the simulation process easier,

we set /i ¼ 0:2, mi ¼ 0:5, ri ¼ 0:3, for all i ¼ 1; . . .; p. The

correlation parameters were chosen between -0.7 to 0.7

such that the resulting Rb was a valid structure. We con-

sider the number of variables, p, ranging from 2 to 6 and

the number of sample locations, n ¼ ð100; 225; 400;
625; 900Þ, taken in a unit square grid.

The results, presented inAppendix B (Fig. 7) shows that the

estimation computational time increases with the number of

variables and sample locations, which is due to the Cholesky

decompositions of the marginal-covariance matrices. In the

Sect. 3 we present an approach to make the Cholesky decom-

position calculation more efficient, especially for large data.

We also compare the estimation computational times for

the bivariate case of the MatSimpler model with three other

literature models, the bivariate Matérn model with con-

straints (MatConstr), the bivariate separable Matérn model

(MatSep) and the LMC model. The data were simulated

from the MatConstr model. We set /i ¼ 0:2, mi ¼ 0:5,

ri ¼ 0:3, for i ¼ 1; 2, and q12 ¼ 0:8. The MatConstr,

MatSep and LMC models were estimated by GeoModels

package, in which we consider the standard likelihood

function. For all models we used the Nelder-Mead opti-

mizer and convergence was successful in all scenarios.

The Table 8 in Appendix B presents the results for all

models with respect to the elapsed estimation time (Elp-

s.Time), number of iterations required (N.Iter) and average

time per iteration (Time.by.Iter) and Fig. 8 illustrates the

Time.by.Iter of each model. The Elps.Time was calculated

using the function system.time of the R software.

Based on the simulations performed, we see that the

MatSimpler model, with 7 parameters, presents lower

Time.by.Iter values compared to the other models with the

Matérn correlation function for all sample sizes. Compared

to the LMC, the MatSimpler model presents lower

Time.by.Iter values for sample sizes greater than 400. The

model also presents a much lower Elps.Time and N.Iter

when compared to the MatConstr model which have the

same number of parameters. The R codes and the simula-

tion results presented in Figs. 7 and 8 are available in the

supplementary material.

3 An efficient way to calculate the Cholesky
factor

The Matérn covariance model is a globally supported model

that has been widely used in spatial statistics due to its

flexibility and for its well-discussed theoretical justifications

in the area of spatial statistics. It has interesting particular

cases, such as the exponential and Gaussian models. How-

ever, from a computational point of view, thismodel presents

the restriction of generating dense matrices and in this case,

the calculation of the Cholesky decomposition becomes

impractical when the sample size n increases.

Recent approaches (Bevilacqua et al. 2019, 2022) sug-

gest that working with compactly supported covariance

matrices has a computational advantage over globally

supported covariance models, such as the Matérn model,

for example, since they favor the use of algorithms for

sparse matrices, reducing the computational complexity

and consequently the estimation time.

As previously described, our Simpler model specifica-

tion has the flexibility to accommodate different marginal

covariance structures, unlike the multivariate Matérn

model and its simplifications, which consider only the
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Matérn correlation function in its marginal specifications.

Therefore, in this section, we will show how the use of

compactly supported covariance functions can be used to

reduce the computational complexity, and consequently the

estimation time for large samples. In particular, we will

work with the Generalized Wendland model.

The Generalized Wendland family represents a class of

isotropic correlation functions defined by:

GWm;l;/ðhÞ ¼
1

Bð2m; lþ 1Þ

Z 1

h
/

xðx2 � ðh=/Þ2Þm�1ð1� xÞldx; 0�h�/

0; h�/

8
><

>:

ð9Þ

where B(.) denotes the beta function. The function in (9) is

positive definite in Rd for l�ðd þ 1Þ=2þ m, m� 0 and / is

a positive compact support (Zastavnyi and Trigub 2002).

Bevilacqua et al. (2022) showed that:

wm;l;/ðhÞ ¼ GWm;l; ~/m;l;/
ðhÞ; ð10Þ

where ~/m;l;/ ¼ /
Cðlþ 2mþ 1Þ

CðlÞ

� � 1
1þ2m

, is a positive defi-

nite reparametrization of the Generalized Wendland family

for l�ðd þ 1Þ=2þ m, m� 0 and /[ 0, whose compact

support is jointly specified by the parameters m; l and /.
This reparametrization allows considering, from the same

point of view, correlation functions of compact and global

support. In particular, the Matérn model, Mðhjmþ 1
2
;/Þ, is

a special limit case of the model wm;l;/ðhÞ (when l ! 1).

To illustrate the reparameterized Wendland compactly

supported model in reducing computational complexity

and estimating time, we simulate a zero-mean Gaussian

random process with MatSimpler covariance model. We

set r1 ¼ r2 ¼ 0:3 and /1 ¼ /2 ¼ 0:1, so the practical

range is approximately 0.3. We estimate the parameters

considering the MatSimpler and the RGW-Simpler models,

where the notation RGW-Simpler will be used to denote

the model specified by the equations by (2), (3) and (4),

considering the reparametrized Generalized Wendland

model, in (10), for the correlation function, RðhjWiÞ.
Regarding the RGW-Simpler model estimation, we set

l ¼ 1:5, resulting in a sparse covariance matrix with per-

centage of null entries around 85%. The vector of param-

eters to be estimated is h ¼ ð/1;/2; r1; r2; q12Þ>.
The Table 2, presents the Elps.Time, N.Iter and the

Time.by.Iter (in seconds). In addition, it provides infor-

mation about the log-likelihood value and parameter

estimates.

Although the log-likelihood values were smaller for the

RGW-Simpler model, the reduction in estimation compu-

tational time is notable when considering large sample

sizes. This shows that considering compactly supported

marginal-covariance structures can additionally reduce the

computational complexity of the model.

4 Data analysis

This section illustrates the application of the proposedmodel

in two datasets. The first one, the soil dataset, aims to model

the relationship between hydrogen content and the catium

Table 2 Elapsed estimation

time (Elps.Time), number of

iterations required (N.Iter),

average time per iteration

(Time.by.Iter), log-likelihood

value (LL) and parameters

estimates for each model,

considering simulated data from

the MatSimpler model for

different sample sizes

Models

Size Elps.Time N.Iter Time.by.Iter LL /̂1 /̂2
r̂1 r̂2 q̂12

MatSimpler

900 494.96 436 1.13 835.02 0.085 0.121 0.282 0.336 0.727

(0.009) (0.018) (0.015) (0.024) (0.016)

1600 2222.48 400 5.55 1929.64 0.103 0.099 0.309 0.295 0.706

(0.013) (0.012) (0.019) (0.017) (0.012)

2500 6354.83 350 18.15 3590.12 0.105 0.110 0.305 0.311 0.702

(0.013) (0.015) (0.019) (0.020) (0.010)

3600 21197.48 398 53.25 5765.22 0.115 0.095 0.319 0.295 0.707

(0.016) (0.010) (0.022) (0.016) (0.008)

RGW-Simpler

900 265.28 490 0.54 779.35 0.112 0.112 0.326 0.333 0.723

(0.001) (0.001) (0.007) (0.008) (0.016)

1600 1099.18 494 2.22 1872.65 0.117 0.117 0.337 0.326 0.707

(0.0008) (0.0007) (0.006) (0.005) (0.012)

2500 2863.52 456 6.28 3439.73 0.095 0.094 0.302 0.299 0.699

(0.0003) (0.0004) (0.004) (0.004) (0.010)

3600 5782.80 341 16.96 5529.29 0.100 0.099 0.312 0.317 0.706

(0.0003) (0.0003) (0.003) (0.003) (0.008)

Stochastic Environmental Research and Risk Assessment (2022) 36:4087–4102 4093

123



(A) (B)Fig. 1 Circle plot of the

a Hydrogen content and b CTC

for soil250 data

(A) (B)Fig. 2 Histogram of a Hydrogen
content and b CTC for soil250

data

(A)

(B)

Fig. 3 Scatterplots of

a Hydrogen content and b CTC

against the coordinates for

soil250 data
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exchange capability (CTC). We compare results obtained

fitting the MatSimpler and other models. The second one, a

North African temperature data is used to illustrate the

model’s flexibility in dealing with large datasets.

4.1 Example 1: Soil data

The soil250 dataset from geoR package (Ribeiro Jr et al.

2020) contains some soil chemistry properties measured on

a regular grid with 10x25 points spaced by 5 meters. We

study the relation between the hydrogen content and the

catium exchange capability (CTC). These data illustrate a

scenario with strong correlation between the variables

under study. Figure 1 shows circle plots of the hydrogen

(left panel) and CTC (right panel) data separately. The

coordinates are divided by a constant to easy the

visualizations.

Figure 2 shows the histograms of each variable. Scat-

terplots of each variable against each spatial coordinate in

Fig. 3 are used to check for spatial trends. We proceed with

the residuals of a linear regression with constant trend as a

realization of a zero-mean bivariate isotropic stationary

Gaussian random field. The sample correlation between the

variables was 0.68. Standard deviations are 0.60 for

hydrogen content and 0.77 for the CTC.

The models considered in the estimation step are the

MatSimpler, LMC, MatConstr, MatInd and MatSep. For

MatSimpler and MatConstr the vector of parameters to be

estimated is k ¼ ð/1;/2; m1; m2; r1; r2; q12Þ, for the sepa-

rable model, MatSep, we have /1 ¼ /2 and m1 ¼ m2 and for
the independent model we have q12 ¼ 0. The LMC model

is parameterized by k ¼ ða11; a12; a22; a21;/1;/2Þ, where
a11; a12; a22 and a21 are elements of the corregionalization

matrix and /1 and /2 are parameters of the exponential

correlation model. Table 3 presents the parameter esti-

mates, the maximized log-likelihood (LL), the Akaike

information criterion (AIC) and Bayesian information cri-

terion (BIC) values. The standard errors for all models (in

parentheses) were calculated using the Hessian matrix

approximation. The MatConstr, MatInd, LMC and MatSep

models are estimated using the GeoFit function from the

GeoModels package (Bevilacqua and Morales-Oñate

2018) for which the standard likelihood function and the

Euclidean distance were considered. The Nelder-Mead

optimizer is the algorithm of choice for all model fits.

Table 4 presents the Elps.Time, N.Iter and the Time.by.Iter

(in seconds), considering each model. The R codes are

available in the supplementary material.

The predictive behavior was assessed by a random

training selection of 200 locations (80% of the data), from

which we estimate the models under study and compute the

mean absolute error (MAE), the root mean square error

(RMSE) and the normalized mean square error (NMSE) for

each model using cokriging predictor for the 50 remaining

locations (20% of the data). These measures are defined as,

Table 3 Parameter estimates of

each model for soil250 data
Estimates Models

MatSimpler MatConstr MatInd LMC MatSep

â11 – – – 0.615 (0.072) –

â12 – – – - 0.067 (0.236) –

â22 – – – 0.544 (0.263) –

â21 – – – 0.608 (0.119) –

/̂1
1.077 (0.315) 1.415 (0.460) 1.849 (1.339) 1.156 (0.308) 1.978 (0.818)

/̂2
1.994 (0.689) 1.483 (0.472) 2.340 (1.877) 2.816 (1.287)

m̂1 0.543 (0.095) 0.509 (0.082) 0.398 (0.102) – 0.495 (0.070)

m̂2 0.513 (0.070) 0.562 (0.087) 0.422 (0.102) –

r̂1 0.627 (0.054) 0.671 (0.006) 0.648 (0.015) – 0.774 (0.016)

r̂2 0.920 (0.115) 0.850 (0.014) 0.848 (0.051) – 0.891 (0.024)

q̂12 0.823 (0.021) 0.811 (0.022) – – 0.816 (0.021)

LL - 161.551 - 166.143 - 301.813 - 164.688 - 166.298

AIC 337.103 346.285 615.626 341.376 342.595

BIC 361.753 375.787 640.914 366.663 363.668

Table 4 Elapsed estimation time (Elps.Time), number of iterations

required (N.Iter) and average time per iteration (Time.by.Iter) for each

model for soil250 data

Estimates Models

MatSimpler MatConstr MatInd LMC MatSep

Elps.Time 39.387 420.807 176.267 93.72 110.315

N.Iter 822 4842 2013 2685 1264

Time.by.Iter 0.0479 0.0869 0.0875 0.0349 0.0872

N. Param 7 7 6 6 5
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MAEi ¼
1

50

X50

k¼1

jYiðskÞ � Ŷ iðskÞj;

RMSEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

50

X50

k¼1

ðYiðskÞ � Ŷ iðskÞÞ2
vuut ;

NMSEi ¼
RMSEi

maxðŶ iðskÞÞ �min ðŶ iðskÞÞ
;

where Ŷ iðskÞ is the cokriging predictor of the variable

YiðskÞ, with i ¼ H;CTC, representing hydrogen content

and CTC, respectively. We repeated the same process 150

times, calculating the values of the MAEi, RMSEi and

NMSEi, for each variable each time. Table 5 presents the

summary of this measures. In general, all models presented

equivalent results in terms of predictive capacity.

The MatSimpler model showed a better fit when com-

pared to the other models in terms of log-likelihood, AIC and

BIC values. TheElps.Time and theN.Iter for theMatSimpler

model were much lower than the other models. Thus, we

observe that the proposed MatSimpler model is a competi-

tive model with the classical models in the literature.

4.2 Example 2: North Africa’s minimum
and maximum temperature

In this section we illustrate the application of the proposed

model to a large dataset. We considered data of minimum

and maximum average temperatures for the years

1970-2000. In particular, a region of North Africa in the

period of September observed at 3061 locations. Data were

obtained from WorldClim (www.worldclim.org), a high

spatial resolution climate database (Fick and Hijmans 2017).

Figure 4 shows the spatial locations of the temperatures

along the region under study. We detrend the data to

remove patterns along the coordinates and consider the

resulting residuals as a realization of a bivariate zero-mean

Gaussian random field. We transform the coordinate sys-

tem to UTM using the spTransform function from the

sp package (Pebesma and Bivand 2005) and divide the

coordinates by a constant to facilitate the estimation pro-

cess. We consider the Euclidean distance. The empirical

variograms of the residuals are presented in Fig. 5.

In the estimation step, aiming to demonstrate the com-

putational efficiency of our proposal for large data sets, we

consider the RGW-Simpler model and the MatConstr clas-

sical model. To make the estimation process more agile we

set m1 ¼ m2 at 0.5, for the Mátern model, and at 0, for the

RGWmodel. Regarding the RGWmodelwe also set l ¼ 1:5

in order to obtain sparse matrices. The parameters vector to

be estimated is h ¼ ð/1;/2;r1; r2; q12Þ>, where the indexes
1 and 2 represent the minimum and maximum temperature

parameters, respectively. The N.Iter, Time.by.Iter (in sec-

onds), log-likelihood value and parameter estimates are

presented in Table 6.

Table 5 Mean and standard

deviation (sd) for prediction

errors considering 150 splits of

data into training (80%) and test

(20%) for each model and each

variable for soil250 data

Models MAEH RMSEH NMSEH MAECTC RMSECTC NMSECTC

MatSimpler Mean 0.277 0.367 0.215 0.314 0.416 0.151

SD 0.032 0.045 0.032 0.032 0.049 0.023

MatConstr Mean 0.271 0.364 0.204 0.307 0.410 0.150

SD 0.032 0.046 0.030 0.034 0.052 0.024

MatInd Mean 0.271 0.363 0.210 0.308 0.411 0.156

SD 0.032 0.045 0.029 0.034 0.051 0.024

LMC Mean 0.271 0.363 0.208 0.307 0.409 0.153

SD 0.032 0.046 0.030 0.034 0.051 0.025

MatSep Mean 0.270 0.363 0.202 0.307 0.409 0.152

SD 0.033 0.047 0.030 0.034 0.052 0.024
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Fig. 4 Spatial locations for a minimum and b maximum temperatures, considering a region of North Africa in the period of September
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For the MatConstr model, the convergence was not suc-

cessful, so it was not able to estimate the standard errors of

the estimators. In contrast, for the RGW model, the con-

vergencewas successful and the standard errors are shown in

parentheses in Table 6. The number of iterations required for

estimation and the average time per iteration were also

notably lower considering our covariance specification. The

RGW-Simpler model proved to be more advantageous in

terms of estimation time and computational complexity,

when compared to the MatConstr model.

5 Simulation study

This section presents a simulation study to evaluate the

behavior of the maximum likelihood estimators. We con-

sider the MatSimpler model and explored a bivariate ran-

dom field in three different scenarios to illustrate different

situations that could occur in practice, exemplifying the

flexibility of the proposed model in each case. Table 7

summarizes the simulated scenarios.

Scenario 1 considers the variables have smaller vari-

ability, for which we consider relatively small values for the

variance parameters: r21 ¼ 0:25 and r22 ¼ 1:0. Also in this

scenario, we consider smaller smoothness for the variables,

with values equal to m1 ¼ 0:3 and m2 ¼ 0:4. When m ¼ 0:5

the Matérn correlation function reduces to the exponential

correlation function. Thus, this scenario represents lesser

smoothness marginal behavior for the variables when com-

pared to the exponential correlation model.

Scenario 2 keeps m1 ¼ 0:3 and m2 ¼ 0:4, and considers a

greater variability with variances values equal to r21 ¼ 2:25

and r22 ¼ 4:00.

Scenario 3 considers a situation of smaller variability,

with variance values fixed at r21 ¼ 0:25 and r22 ¼ 1:0, and

considers higher smoothness values for variables: m1 ¼ 0:7

and m2 ¼ 1:0. In this scenario, we have marginal behaviors

that are smoother in comparison with the exponential

correlation model.

In all scenarios, we set the scale parameters values in

/1 ¼ 0:05 and /2 ¼ 0:1. For the correlation parameter

between the variables the values considered are

q12 ¼ ð�0:7;�0:4; 0:0; 0:4; 0:7Þ, aiming to illustrate dif-

ferent correlation structures that could occur in practice

between the variables, with values ranging from a strong

negative correlation (q12 ¼ �0:7) to a strong positive

correlation (q12 ¼ 0:7) and including the no correlation

case where q12 ¼ 0.

For each scenario, 500 samples of a bivariate stationary

isotropic Gaussian random field, of sizes 100, 225, 400 and

625, were simulated in a regular unit grid. Fig. 6 illustrates

the results of the simulated scenarios showing the expected
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Fig. 5 Empirical semivariogram of residuals for (a) minimum and (b) maximum temperature after removing tendencies, considering a region of

North Africa in the period of September

Table 6 Number of iterations

required (N.Iter), average time

per iteration (Time.by.Iter), log-

likelihood value (LL) and

parameters estimates for each

model, considering a region of

North Africa in the period of

September

Models Estimates

N.Iter Time.by.Iter LL /̂1 /̂2
r̂1 r̂2 q̂12

RGW-Simpler 906 24.409 3799.687 2.538 9.119 2.264 6.609 0.584

(2.915) (10.652) (1.300) (3.859) (0.012)

MatConstr 2244 44.303 3799.950 2.895 19.593 2.418 9.688 0.872

– – – – –
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bias plus and minus the expected standard error for esti-

mators of the model for each scenario.

To facilitate the visualization we follow Bonat and

Jørgensen (2016) and Petterle et al. (2019), considering,

for each parameter, standardized scales with respect to the

standard error of the sample size 100, that is, for each

parameter, the expected bias and the limits of the confi-

dence intervals are divided by the standard error obtained

on the sample of size 100. Standard errors and biases gets

closer to zero as the sample size increases for the

Table 7 Parameter values for

each simulated scenario
Scenarios Parameters

Situation /1 /2 m1 m2 r1 r2 q12

1 Less smoothness and less variability 0.05 0.1 0.3 0.4 0.5 1.0 - 0.7

-0.4

2 Less smoothness and greater variability 0.05 0.1 0.3 0.4 1.5 2.0 0.0

0.4

3 Greater smoothness and less variability 0.05 0.1 0.7 1.0 0.5 1.0 0.7

Standardized scale
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Fig. 6 Expected bias and

confidence interval on a

standardized scale for each

scenario and sample size Open
circle, 100; Triangle, 225;
Square, 400; Black circle, 625;

for the parameters of the

MatSimpler model
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considered scenarios. In all scenarios, there appears to be a

small overestimate for the smoothness and scale parame-

ters, especially for smaller samples.

6 Discussion

We presented a covariance specification for multivariate

Gaussian random fields given by the product of matrices

for continuously indexed data. The model is simple whilst

flexible, allowing for different correlation structures and

marginal-covariance functions. Its structure facilitates the

specification, estimation, computation and generalization

for more than two variables.

As it is a flexible structure allowing different marginal-

covariance specifications, we considered the Matérn cor-

relation function, for being flexible, widely discussed in the

geostatistical literature and for having a closer relationship

with the traditionally discussed models. We also consider

the reparameterized Generalized Wendland model to

illustrate the flexibility of our specification in allowing

compactly supported covariance structures that bring

computational advantages for large datasets.

We illustrate the computational time growth for the

MatSimpler model for up to six response variables and 900

sample locations. In this scenario, the estimate time was

approximately two hours (Fig. 7). Precise times will be

hardware dependent. However, comparing it with some

literature models for the bivariate case (Fig. 8), our pro-

posal was competitive, presenting a lower average time per

iteration and number of iterations required, specially when

compared to the MatConstr model, which has the same

number of parameters.

The analysis of two data-sets illustrate the ability to deal

with different covariance structures. The use of compactly

supported covariance functions made it possible to deal

with large data sets due to the efficient calculation of

Cholesky factors for sparse matrices, showing that the

proposed model has a good balance between flexibility and

computational complexity, with reduced computational

estimation times when compared to other competing clas-

sical approaches.

Future directions include the organization and con-

struction of an R package that involves the proposed

approach. Furthermore, the presented proposal opens

options for future research in the context of non-Gaussian

modeling and asymmetric data for multivariate spatial

problems.

Appendix: Derivatives of the covariance
matrix

Based on matrix properties (Wand 2002; Bonat et al.

2020), the score functions with respect to the b and k
parameters, are given, respectively, by:

Ub ¼ D>RðkÞ�1rðbÞ;

Uk ¼ � 1

2
RðkÞ�1 � RðkÞ�1rðbÞrðbÞ>RðkÞ�1

n o oRðkÞ
ok

;

ð11Þ

with rðbÞ ¼ ðy� lðbÞÞ, D ¼ olðbÞ
ob ¼ BdiagðX1; . . .;XpÞ

and the inverse calculation was described earlier.

We achieve the maximum likelihood estimator of b by

solving Ub, which results in:

b̂ ¼ D>RðkÞ�1D
� ��1

D>RðkÞ�1y
� �

:

Making similar calculations, we find the Fisher information

matrix which, for b, is given by:

F b ¼ D>RðkÞ�1D:

For k, the ði; jÞth
entry of the Fisher information matrix, is

given by:

½F k�ij ¼
1

2
tr Wki

RðkÞWkj
RðkÞ

	 

;

where Wki
¼ �oRðkÞ�1=oki.

Considering ĥ ¼ ðb̂>; k̂>Þ> the maximum likelihood

estimator of h parameter, the asymptotic distribution of ĥ is

ĥ	Nðh;F�1
h Þ, where F h ¼

F b 0
0 F k

� �
denotes the

Fisher information matrix of h. This result is compatible

with the increasing domain regime (Cressie 1993).

The maximum likelihood estimates of k can be found

through Newton’s scoring iterative algorithm (Bonat et al.

2020):

kiþ1 ¼ ki � aF�1
k Ukð~h; yÞ;

where ~h ¼ ðb̂>; k>Þ> and a controls the step length.

Now, let qr, for r ¼ 1; . . .; pðp � 1Þ=2, denoting the

correlation parameters of Rb, r2i , /i and mi, denoting the

variance, scale and smoothness parameters of the marginal-

covariance matrix, Rii, for i ¼ 1; . . .; p.

The partial derivative of the matrix-valued covariance

function R, with respect to each correlation parameter, qr,

is given by:
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oR
oqr

¼Bdiag ~R11; ~R22; . . .; ~Rpp

� � oRb

oqr

� I

� �

Bdiag ~R>
11;

~R>
22; . . .;

~R>
pp

� �
:

To obtain the partial derivative with respect to variance

parameter, r2i , we will use matrix properties, that is,

oR
or2i

¼Bdiag 0; . . .;
o ~Rii

or2i
; . . .; 0

� �
Rb � Ið Þ

Bdiag ~R>
11;

~R>
22; . . .;

~R>
pp

� �

þ Bdiag ~R11; ~R22; . . .; ~Rpp

� �
Rb � Ið Þ

Bdiag 0; . . .;
o ~R>

ii

or2i
; . . .; 0

� �
:

ð12Þ

An analogous procedure to the Eq. (12) can be used to

obtain the derivatives with respect to /i and mi. Thus, to

obtain the derivatives of R with respect to each parameter,

we must calculate the parcial derivatives in (12). Using the

result of partial derivatives of Cholesky’s factorization

(Särkkä 2013; Bonat and Jørgensen 2016), follows:

o ~Rii

or2i
¼ ~RiiU ~R�1

ii

oRii

or2i
~R�1

ii

� �
;

o ~Rii

o/i

¼ ~RiiU ~R�1
ii

oRii

o/i

~R�1
ii

� �
;

o ~Rii

omi
¼ ~RiiU ~R�1

ii

oRii

omi

~R�1
ii

� �
;

where Uð:Þ is the strictly lower triangular part of the

argument and half of its diagonal.

Appendix: Computational results
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Fig. 7 Estimation time for MatSimpler model considering different sample sizes and number of variables
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