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Abstract
Global warming has increased the spatio-temporal variations of Extreme Precipitation (EP), causing floods, in turn leading

to losses of life and economic damage across the globe. It is found that EP variability strongly correlates with large-scale

climate teleconnection resulting from ocean–atmosphere oscillations. In this study, the Non-Stationary Generalized

Extreme Value (NSGEV) framework is used to model EP for high resolution daily gridded (0.5� latitude �0.5� longitude)
APHRODITE dataset over Monsoon Asian Region (MAR) using climate indices as covariates. The proposed framework

has three major components (i) Selection of non-uniform time-lag climate indices as covariates, (ii) Regionalization of

NSGEV model parameters, and (iii) Estimation of zone-wise EP changes. According to Akaike Information Criterion

(AICc), results reveal that the NSGEV model is prevalent in 92% of the grid locations across MAR compared to

Stationary(S) GEV models. The Gaussian Mixture Model (GMM) clustering algorithm has identified six zones for MAR. It

is observed that the derived zonal parameters of NSGEV model is able to mimic the EP characteristics. Further, zone-wise

estimation of EP changes for selected return periods shows that the relative percentage change in intensity ranges between

4 and 11% across the six zones. The change in EP is significantly higher in the monsoonal windward and coastal regions

when compared to the other parts of MAR. Overall, the intensities of the EP across MAR are increasing, and return periods

are decreasing, which can majorly impact on planning, design and operations of the water infrastructure in the region.
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1 Introduction

Recent studies indicate that global warming and its con-

sequences substantially impact the world’s socio-economic

development. It is reported that the available moisture in

the atmosphere will increase at a rate of * 7% per kelvin

of temperature rise, potentially increasing the magnitude

and frequencies of extreme precipitation (EP) events

(Trenberth et al. 2003; Donat et al. 2013; O’Gorman 2015;

Trenberth 2012). Most of the water infrastructure designs

are based on the assumption that EP over time remains

stationary. However, due to the effects of the warming

climate, the stationarity assumption is not valid. Therefore,

non-stationary modelling approaches are developed to

address the changes in EP over time. Coles (2001) pro-

posed the non-stationary generalized extreme value

(NSGEV) modelling framework based on the Extreme

Value Theory (EVT). It provides a robust mathematical

framework and has been widely used for modelling of EP

(Cheng et al. 2014; Zhang et al. 2010).

The NSGEV models are fitted by assuming the distri-

bution parameters as a function of dependent variables

(also known as covariates) (Coles 2001). Most of the

studies considered the location or scale or both the

parameters of the NSGEV model as a function of time

(Cheng and Aghakouchak 2014; El Adlouni et al. 2007;

Sarhadi and Soulis 2017; Yilmaz and Perera 2014). How-

ever, large-scale climate teleconnections resulting from the

variations in the atmosphere–ocean oscillations show
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strong correlations with EP and have improved the per-

formance of the NSGEV model. Zhang et al. (2010) used

covariates such as Pacific Decadal Oscillation (PDO),

Southern Oscillation Index (SOI), and North Atlantic

Oscillation (NAO) to model the EP over North America.

The results showed that the SOI and PDO strongly influ-

ence EP. Agilan and Umamahesh (2016) developed the

NSGEV model by selecting five covariates, i.e., land-use

changes, local and global temperature (annual mean), El

Nino Southern Oscillation (ENSO) (averaged Nov-Mar),

Indian Ocean Dipole (IOD) (averaged Jun-Nov), and time.

They found that the teleconnections as a covariate are

appropriate for the study area. Thiombiano et al. (2018)

found that Arctic Oscillation (AO) and Pacific North

American (PNA) patterns significantly influence the

extreme daily precipitation over South-Eastern Canada.

Ouarda et al. (2019) modeled NSGEV for three stations in

Canada and California, USA with AMO, Western Hemi-

sphere Warm Pool, SOI, and PDO covariates and showed

that the NSGEV is a better fit than the stationary. Jha et al.

(2021) assessed the influence of ENSO, IOD, and Atlantic

Multidecadal Oscillation (AMO) indices (averaged over

Jun-Sep) on EP using the NSGEV model for 24 river basins

of India, assuming a simultaneous relationship between

changes in SST and precipitation and found that NSGEV

models perform better than the SGEV models.

The climate index series considered are usually aver-

aged over a few months/seasons or annually, depending on

the spatio-temporal effects of teleconnections on the EP.

These uniform time-lag climate index series were used as

covariates in the non-stationary models (Gao et al. 2016;

Jha et al. 2021; Zhang et al. 2010). However, the variations

in teleconnection patterns and their effect on extreme

precipitation occur non-uniformly in space and time. He

and Guan (2013) observed that the time-lags between

precipitation and teleconnections better interpret precipi-

tation’s temporal variability. Kim et al. (2018) showed that

the non-uniform climate indices could account for the

delayed effect of changes in atmospheric circulations on

precipitation. It was observed that the ENSO indices with

four- and ten-month lags strongly represented periodic

oscillations in monthly precipitation. Armal et al. (2018)

investigated the frequency of precipitation across the

United States, and they suggested examining the time-

lagged dependence of the climate variables and precipita-

tion spatially. Most of these works focused on using uni-

form time-lag covariates with hydroclimatic series but not

for non-stationary modelling of EP. Therefore, it is envis-

aged that non-uniform time lag climate indices as covari-

ates may improve the performance of the NSGEV models.

Many studies were carried out to understand the effect

of teleconnections on EP over a large-scale region. Mondal

and Mujumdar (2015) modelled non-stationary extreme

rainfall over India using covariates such as Nino 3.4 SST

anomalies, global temperature, and local temperature.

Significant spatial variability was observed in EP charac-

teristics with the teleconnections. Tan and Gan (2017)

considered teleconnections ENSO, NAO, PDO, North

Pacific Oscillations (NPO) for analyzing the frequency and

intensity of EP under non-stationary conditions over

Canada. They found that the ENSO’s effect on EP was

consistent at all stations across the region. Also, the PDO,

NAO, and NPO significantly influence EP variability at a

few stations across Canada. Vu and Mishra (2019) studied

non-stationary EP events over the United States using time,

an annual average maximum, and mean temperature and

ENSO as covariates. It was observed that the different

combinations of covariates influence EP variability over

the US under non-stationary conditions. One of the possi-

ble ways to overcome this variability in large-scale study

areas is to cluster the regions of EP. The identification of

zones helps in reducing the prediction uncertainties. The

regionalization of precipitation in a stationary framework is

well studied (Irwin et al. 2017; Roushangar et al. 2018;

Roushangar and Alizadeh 2018). However, the regional-

ization in a non-stationary framework accounting for the

influence of teleconnection indices on EP has not been well

explored, especially for Monsoon Asia Region (MAR).

The proposed study addresses three key issues: i)

Selection of non-uniform time-lag climate indices: most of

the studies in the NSGEV framework have used uniform

time-lagged covariates, i.e., irrespective of their EP month

of occurrence, the covariate is averaged over particular

months (uniform). However, the maximum correlation

between EP and climate indices will vary in space and time

and hence the covariates series should be non-uniformly

lagged. It is envisaged in this study that identifying the

non-uniform lag structure between precipitation and the

multiple climatic indices would improve the prediction of

EP and contribute to a better understanding/representation

of the mechanics underlying these large-scale EP responses

to teleconnection patterns; ii) Regionalization of NSGEV

model parameters: identification of coherent regional spa-

tial patterns and the uncertainty associated with non-sta-

tionary extreme precipitation across large study domains

need to be addressed. This is achieved by regionalizing

NSGEV model parameters by grouping similar EP sites

into coherent zones. The zones will reduce the uncertain-

ties in the prediction of EP. The performance of the

regional NSGEV model needs to be evaluated to the

individual sites within the zone; and (iii) Estimation of

Zonal EPs’: the regional NSGEV model is used to estimate

the intensity of extreme precipitation for the selected return

periods in each zone, and compared with the estimates

from the SGEV model. The EP intensity for various return

periods is investigated and presented for each cluster. In
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addition, the efficacy of the proposed modelling framework

is also compared with traditional NSGEV models using

corrected Akaike Information Criteria (AICc) for MAR.

The paper comprises the following sections: Sect. 2

describes the MAR study area, precipitation data, and

teleconnections. Following this, Sect. 3 presents a detailed

methodology explaining (i) NSGEV model framework, (ii)

Selection of non-uniform climate indices, (iii) Clustering of

EP zones. In Sect. 4, the results and discussions showing

the efficacy of the non-uniform climate index time series

and regional parameters are presented. Further, the section

presents the variations and changes in EP characteristics

for stationary and non-stationary. Finally, the conclusion

and future scope of the proposed study are presented in

Sect. 5.

2 Case study

In the present study, the Asian Precipitation-Highly

Resolved Observational Data Integration Towards Evalu-

ation (APHRODITE) gridded precipitation dataset for

1951–2007 with a 0.5 9 0.5-degree spatial resolution for

the Monsoon Asia Region (MAR) is used as illustrated in

Fig. 1 (Yatagai et al. 2009, 2012) (http://www.chikyu.ac.

jp/precip/index.html). It is developed by the Research

Institute for Humanity and Nature (RIHN) and the JMA

(Japan Meteorological Agency). The region includes

mainly South Asia (India, Nepal, Pakistan, Bangladesh),

South-East Asia (SEA), and Northern Australia. The 180�
140 grid locations cover 60� � 150�E; 15� � 55�N region.

There are 25,200 grid locations, of which 13,672 and

11,528 are ocean and land grids. The Annual Maximum

Precipitation (AMP) series is extracted for each grid

location and used in the study, referred to as EP. Aphrodite

data are extensively used for various applications such as

(i) Study of seasonal variations of the summer monsoon

events (Befort et al. 2016); (ii) Climate change’s effect on

non-monsoonal precipitation in the Western Himalayas

(Krishnan et al. 2019); (iii) Simulating the response of East

Asia’s rainfall to ENSO (Ng et al. 2019); (iv) Under-

standing dry spell characteristics over India (Sushama et al.

2014); (v) Understand the El Nino and Non-El Nino effects

on droughts (Varikoden et al. 2015).

2.1 Climate indices

Climate patterns and circulation processes are influenced

by global atmospheric circulation at multiple scales. The

low-frequency oscillations that reflect large-scale atmo-

spheric circulation patterns are called ‘‘teleconnections

patterns’’ and arise from internal atmospheric dynamics.

Many planetary-scale teleconnection patterns have wide-

scale effects, cover large areas, and contribute to changes

in the earth’s temperature, precipitation, and storm tracks.

These are responsible for severe weather conditions,

including extreme precipitation and flooding (Barnston and

Livezey 1987; Mo and Livezey 1986). The climate centers

Fig. 1 Map with APHRODITE grids representing Monsoon Asia Region (MAR)
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worldwide monitor and tabulate the teleconnection pat-

terns, also known as ‘‘climate indices,’’ based on geopo-

tential height, sea level pressure, and sea surface

temperature. Several observations indicate that extreme

precipitation variability has a strong correlation with tele-

connections. For example, ENSO is reported as the most

significant climate index affecting global extreme precipi-

tation variability (Dai and Wigley 2000; Krishnaswamy

et al. 2015; Sun et al. 2015; Wang 2002). Krishnaswamy

et al. (2015) showed ENSO and IOD as significant drivers

for Indian Monsoon variability and increased extreme

precipitation events. Wei et al. (2017) found that extreme

precipitation changes are mainly induced by teleconnec-

tions like ENSO, PDO, and, East Asian summer monsoon

over China. Few studies over Australia reported that the

ENSO phases (Verdon et al. 2004), SAM (Meneghini et al.

2007), and IOD (Ashok et al. 2003) have a high impact on

precipitation changes. Ng et al. (2019) observed that the

extreme precipitation varies during ENSO phases (El Nino

and La Nino) over East Asia. Duan et al. (2015) found that

climate indices like SOI have significant associations with

the increasing extreme precipitation over Japan. Rathi-

nasamy et al. (2019) confirmed a strong correlation

between the IOD, PDO, and NAO and precipitation

extremes across India. In the present study, 15 climate

indices are used for the NSGEV model as covariates to

analyze the extreme precipitation over MAR. Table 1

shows the list of climate indices with a brief description.

3 Methodology

The proposed methodology has five main modules: (1)

Selection of uniform and non-uniform time-lag climate

indices; (2) NSGEV model; (3) Model selection using

AICc; (4) Zone formation using clustering algorithm; (5)

Performance evaluation of the model. The proposed

methodology is schematically represented in Fig. 2. The

details for each of the modules are explained in the fol-

lowing subsections.

3.1 Selection of uniform and non-uniform time-
lag climate indices

This study identifies the time-lags between precipitation

and climate indices based on the cross-correlation tech-

nique. The lag corresponding to the maximum correlation

coefficient is the offset or strong dependence between

precipitation and the corresponding climate index. The

advantage of cross-correlation is that it is simple to com-

pute and identify the covarying pattern between precipi-

tation and climate indices in space and time

instantaneously. It is to be noted that the cross-correlation

analysis addresses:(i) The identification of the time-lags

with each climate indices at each grid location and (ii)

Extraction of the non-uniform climate index series corre-

sponding to Annual Maximum Precipitation (AMP)/EP at

each grid location. The hypothetical example of extracting

the uniform and non-uniform climate index series corre-

sponding to a grid location in MAR is shown in Fig. 3 and

are presented below:

(i) Extraction of Month Index: Consider AMP series of

’n’ years at a grid location. The shaded boxes in Fig. 3a

represent the month-index of EP. For example, in year-1,

EP is observed in the month-7, i.e., the month index is 7

for year 1; for year-2, AMP’s month-index- 8 and so on.

(ii) Uniform time-lag climate index series is selected

based on the average over a season or few months

irrespective of EP occurrence in any month/time of a

year. Figure 3b shows that the climate index series

selection is constant. In this hypothetical example, the

index value is obtained by taking an average over the

three-month window as shown in Fig. 3b, i.e., months

6–8, and remains uniform throughout the study region.

(iii) Non-uniform time-lag climate index series

Step 1: The cross-correlation between monthly precipi-

tation and climate index is carried out. A time lag

corresponding to the maximum correlation

coefficient is selected at each grid location. In

this example, a time lag of 5 months is assumed.

Step 2: The climate index series is selected correspond-

ing to the time-lag for each year’s EP series, as

shown in Figure 3c. From Figure 3a, c, the AMP

of year-1 occurs in the month-7, the climate

index value averaged over three months windows

(i.e., month-2 with time-lag of 5 as the center of

the time-window) for year-1 is obtained as

shown in Figure 3c. Similarly, for the subsequent

years, the non-uniform time-lag climate index

series will be derived for MAR.

3.2 NSGEV model

The GEV model is extensively used for analyzing EP based

on Extreme Value Theory (EVT) (Coles 2001). The loca-

tion lð Þ, scale rð Þ, and shape nð Þ are the three parameters

of the GEV distribution. Consider x ¼ x1; x2; . . .. . .. . .:xn
to be independent and identically distributed AMP series.

The Probability Density Function (PDF), f is given by

Eq. 1 and the Cumulative Distribution Function (CDF), F

of the GEV is shown in Eq. 2
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The PDF; f : f xð Þ

¼ 1

r
1þ n x� lð Þ

r

� � �1
nð Þ�1

exp½� 1þ n x� lð Þ
r

� ��1
n

ð1Þ

The CDF; F : F xð Þ

¼ expf� 1þ n x� lð Þ
r

� ��1
n

; 1

þ n x� lð Þ
r

[ 0

ð2Þ

Non-stationarity is included by considering one or more

GEV distribution parameters as a function of time-varying

covariates (Coles 2001; Katz 2002). In the present study,

covariates are introduced as a function of only location

parameters (Eq. 3) and substituted in CDF of GEV (Eq. 4).

The scale parameter is not considered for computational

simplicity (Ouarda and Charron 2018), and the shape

parameter is kept constant due to its uncertainty and dif-

ficulty to estimate with precision (Coles 2001).

l Cð Þ ¼ l0 þ l1C ð3Þ
r Cð Þ ¼ r ð4Þ
n Cð Þ ¼ n ð5Þ

Table 1 Selected climate indices and their description

Sl.

No.

Climate indices Description Download link

1 North Atlantic oscillation

(NAO)

The sea level pressure difference between the stations at Azores

and Iceland in the Atlantic Ocean

https://psl.noaa.gov/gcos_wgsp/

Timeseries/NAO/

2 Southern oscillation index

(SOI)

The normalized sea level pressure difference between the stations

at Tahiti and Darwin in the Pacific Ocean

https://psl.noaa.gov/gcos_wgsp/

Timeseries/SOI/

3 Arctic oscillation (AO) Average of 10–1000 Mb geopotential height anomalies (30 N

poleward)

https://psl.noaa.gov/gcos_wgsp/

Timeseries/AO/

4 Pacific Decadal oscillation

(PDO)

sea surface temperature anomalies calculated from empirical

orthogonal function analyses poleward of 20 N in the Pacific

Ocean

https://psl.noaa.gov/gcos_wgsp/

Timeseries/PDO/

5 Southern annular mode

(SAM)

The difference of mean sea level pressure measured between 40

and 65�S. it is also known as Antarctic Oscillation

https://psl.noaa.gov/data/20thC_Rean/

timeseries/monthly/SAM/sam.

20crv2c.long.data

6 Trans

polar index (TPI)

The normalized sea level pressure difference between Hobart and

Stanley

https://psl.noaa.gov/gcos_wgsp/

Timeseries/TPI/

7 Dipole mode index (DMI) sea surface temperature anomalies between the western equatorial

Indian Ocean and the southeastern Indian Ocean. It represents the

Indian Ocean Dipole (IOD)

https://psl.noaa.gov/gcos_wgsp/

Timeseries/DMI/

8 Pacific North American

pattern (PNA)

The low-frequency variability modes in the Northern Hemisphere

extratropic reflect a quadrupole pattern of 500 millibar height

anomalies

https://www.ncdc.noaa.gov/

teleconnections/pna/

9 North Pacific (NP) The sea level pressure from 30 N-65 N to 160E-140 W (area-

weighted)

https://psl.noaa.gov/gcos_wgsp/

Timeseries/NP/

10 Nino 4 The area-averaged sea surface temperature over the area 5S-5 N

and 160E-150 W in the Pacific Ocean

https://psl.noaa.gov/gcos_wgsp/

Timeseries/Nino4/

11 Nino 1 ? 2 The area-averaged sea surface temperature over the area 0–10S

and 90–80 W in the Pacific Ocean

https://psl.noaa.gov/gcos_wgsp/

Timeseries/Nino12/

12 Atlantic multidecadal

oscillations (AMO)

The sea surface temperature measured in the North Atlantic Ocean

(0–70 N)

https://psl.noaa.gov/gcos_wgsp/

Timeseries/AMO/

13 Global Average

Temperature & SST

anomalies (GLBT)

Average surface and sea surface temperature measured over the

global scale

https://psl.noaa.gov/gcos_wgsp/

Timeseries/GLBTSSST/

14 Multivariate ENSO

indices (MEI)

The first principal component was obtained from five variables:

pressure, the surface wind (zonal and meridional), sea surface

temperature, and outgoing longwave radiation

https://psl.noaa.gov/enso/mei/data/

meiv2.data

15 East Pacific-North Pacific

(EPNP)

The pattern is measured over three anomaly centers located over

Alaska/ Western Canada, central North Pacific, and eastern North

America

https://www.cpc.ncep.noaa.gov/data/

teledoc/ep.shtml
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Fig. 2 Schematic representation of the proposed methodology for the NSGEV framework

Fig. 3 Hypothetical example of extracting the climate index series at a grid location a annual maximum precipitation series b uniform climate

index series c non-uniform climate index series assuming cross-correlation lag of 5
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The climate Indices described in Table 1 are considered

covariates for the NSGEV model and are represented as

‘‘C’’. There will be 15 NSGEV models corresponding to 15

climate indices and an SGEV model at each grid location

over MAR. The maximum likelihood estimation is used to

estimate the model parameters. The log-likelihood for the

cumulative distribution function for both stationary (Eq. 6)

and non-stationary (Eq. 7) GEV model is given below:

logL l; r; njXð Þ ¼ �n log r� 1þ 1

n

� �

X
log 1þ n x� lð Þ

r

� ��1
n

�
X

1þ n x� lð Þ
r

� ��1
n

ð6Þ

logL l Cð Þ; r; njXð Þ ¼ �n log r 1þ 1

n

� �

X
log 1þ n x� l Cð Þð Þ

r

� ��1
n

�
X

1þ n x� l Cð Þð Þ
r

� ��1
n

ð7Þ

The parameters for the SGEV and NSGEV model are

obtained by maximizing the negative log-likelihood

(Eqs. 6 and 7). The ’ismev’ R package estimates the

models’ parameters (Coles 2001; Heffernan 2018).

The extreme precipitation is estimated for various return

periods under stationary and non-stationary conditions

using the low-risk approach (Coles 2001). In this study, the

ninety-fifth percentile of the location parameter values

(Eq. 8) is estimated and used to calculate the precipitation

intensity for selected return periods for the stationary ðZrsÞ
and non-stationary ðZrnsÞ conditions are given below

(Eqs. 9 and 10):

l95 ¼ Q95 lt1; lt2; . . .. . .. . .. . .. . .. . .. . .ltmð Þ ð8Þ

Zrs ¼ lþ r
n

� log 1� pð Þð Þn�1
h i

ð9Þ

Zrns ¼ l95ð Þ þ r
n

� log 1� pð Þð Þn�1
h i

ð10Þ

where p = 1/T, the probability of occurrence and T is the

return period. l95 is the 95th percentile of the location

parameter. The Relative Percentage Change (RPC) in

extreme precipitation intensity between non-stationary and

stationary are computed using Eq. 11

RPC ¼ Zrns � Zrs
Zrs

� 100 %ð Þ ð11Þ

where Zrns and Zrs are precipitation intensities for non-

stationary and stationary models.

3.3 Selection of the model

In this study, the corrected Akaike Information Criterion

(AICc) is adopted to choose a model from a set of alter-

native models arising from the 15 covariates. The negative

log-likelihood function (- logL) is penalized according to

the number of estimated parameters (p) for each model.

The AICc helps prevent the bias of over-fitting the data and

is recommended when n/p[ 40, where n is the sample size

and p is the number of parameters (Burnham and Anderson

2004; Hurvich and Tsai 1989). The AICc for the fitted

model is expressed as (Eq. 12)

AICc ¼ �2logLþ 2pþ 2p pþ 1ð Þ
n� p� 1

ð12Þ

where - log L is the negative log-likelihood value, the first

two terms of Eq. 12 represent the classic AIC. Second-

order bias correction is added in AICc by the last term. It is

worth noting that as n increases, AICc converges to AIC.

Each model is evaluated for its AICc, and the one with the

lowest AICc is chosen as the best model.

3.4 Clustering using gaussian mixture model
(GMM)

The GMM based clustering algorithm is applied to identify

an adequate number of EP zones over MAR. This method

is very flexible and has advantages over traditional

heuristic methods such as k-means and hierarchical clus-

tering, in which the grouping of coherent regions is based

on measured distances (Euclidean distance). The number of

clusters and initial cluster center must specify a priori.

These limitations can be overcome using model-based

methods such as GMM in a probability framework

involving multiple mixtures (clusters), each defined by a

Gaussian distribution. The Bayesian Information Criterion

(BIC) is used as an objective metric to determine the best

model and an optimal number of clusters. It uses soft

clustering, where probability is assigned to each data

location in a cluster. The probability value indicates the

degree of association between the cluster and the data

locations. The mathematical expression of the Gaussian

model representing each cluster is given in Eq. 13

;k zjlk;Rkð Þ ¼ 2pð Þ�
1
2� Rkj j�

1
2

� exp � 1

2
zi � lkð ÞT�R�1

k zi � lkð Þ
� �

ð13Þ

where zi is the attribute data for ith location, lk is the centre
of the distribution for kth cluster, and Rk is the variance

matrix. The Expectation–Maximization (EM) algorithm is

used to estimate the maximum likelihood for the
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parameters (mean and variance) of the Gaussian clusters

initialized by hierarchical model-based agglomerative

clustering. EM proceeds with an ’E’-step in which a matrix

z is computed such that zik is a conditional probability

estimate that ith location is in kth cluster for the parameters

lk and Rk. Following ’M-step’ estimates the parameters, l
and

P
converges to the maximum log-likelihood values

(Eq. 14) of the model (Dempster et al. 1977).

log L zjlk;Rkð Þ ¼
Xn
i¼1

log
XK
k¼1

pkNðxi; lk;RkÞ
" #

ð14Þ

The BIC determines the adequate number of clusters. It

penalizes log-likelihood with increment in sample size by

introducing a second component for the parameter size.

The BIC is typically used in association with GMMs and

takes the following form (Eq. 15)

BICM;K = 2 x log LM;G�px log nð Þ ð15Þ

where log LM,G is the log-likelihood for model M, K is the

number of clusters, n is the sample size, and p is the

number of parameters. The paired {M, K} which optimizes

BICM,K is found by varying K between a range of clusters.

In this study, K is varied between 1 and 20 to find the

optimal clusters. The GMM clustering analysis is carried

out using the ’mclust’ R package (Scrucca et al. 2016).

3.5 Performance evaluation of models

The quality of the fitted NSGEV models must be evaluated

to ensure the selected model fits the data well. The

Quantile–Quantile (QQ) plots are used to check the quality

of the selected model based on model and empirical

quantiles. The AMP data of n- years (Zi) used to fit the

NSGEV model is not identically distributed and has to be

transformed into residuals (eÞ (Eq. 16) (Coles 2001; Katz

2002). Model quantiles ðMiÞ are the ordered values of

residuals and Empirical quantile (Ei) is given by Eq. 17. In

this study, the Root Mean Square Error (RMSE) based on

quantile plots are calculated using the model and empirical

quantiles given in Eq. 18. It measures the model’s efficacy

while quantifying its quality.

ei ¼
1

nt
log 1þ nt

Zi � lt
rt

� �� �
ð16Þ

EI ¼ � log � log
i

nþ 1

� �� �
; i ¼ 1; . . .. . .n ð17Þ

RMSE ¼ 1

n

Xn
i¼1

Ei �Mið Þ2
 !0:5

ð18Þ

4 Results and discussions

4.1 Extreme precipitation

The EP (annual daily maximum precipitation) is extracted

from daily precipitation data for each grid location from

1951 to 2007. The statistics of EP such as mean and

standard deviation are extracted for each grid location and

are presented in Fig. 4a, b. It is observed that the mean and

standard deviation vary spatially across MAR. The range of

mean EP varies from 3 to 189 mm, and the standard

deviation is between 0.92 mm and 86 mm. The variations

show high EPs in the coastal and monsoon windward

regions. The Western Ghats, Himalayan foothills, a few

parts of Southeast Asia, and most eastern coastal areas

show the highest EP. One of the primary reasons for high

EP in these regions could be the elevated terrain, windward

parts of mountains, and ocean proximity (Saini et al. 2020;

Shige et al. 2017; Khouakhi and Villarini 2017; Zhang and

Zhou 2019). On the other hand, the EP gradually decreases

to inland areas where there is not much moisture left for

precipitation and are far from large water bodies. In addi-

tion, it is worth to be noted that the number of EPs (i.e.,

frequency) is more prevalent in coastal regions and gen-

erally decreasing towards inland areas. The number of grid

locations having mean and the standard deviation of EPs is

shown in Fig. 4c, d, respectively. It is observed that the

maximum number of grids locations are of EP less than

20 mm and 10 mm, respectively.

The percentage of EP’s per month occurring over the

57 years for MAR is shown in Fig. 5. It is observed that the

maximum number of EP’s in the MAR occur during

summer monsoon or the Southwest monsoon months (i.e.,

June–September), i.e., about 68% of grids (June—13.72%,

July—23.3%, August—20.64%, and September—10.48).

Following this, about 9% of EP occurs during the Northeast

monsoon months (October–December), mainly in the Bay

of Bengal coastal (Southern India), a few East Asian

countries, and Sri Lanka. It is worth to be noted that

although a few months have a higher occurrence of EP,

there is a considerable variation within the months of the

year and spatially across MAR. It is evident from the

results that the selection of constant lag time series of

covariates for the NSGEV model may not represent the

plausible delayed-effect of the teleconnections. Thus the

effect of variations in the EP occurrence has to be

accounted for extracting the covariates.

To understand the temporal variations in the EP, 50 grid

locations across MAR is selected (10 regions containing

five grids each, as shown in Figure S1). It is observed from

Fig. 6 that sites closer to each other have similar patterns of

occurrences. Two significant observations are: (i) the grid
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Fig. 4 Map illustrating the spatial distribution a mean and b standard deviation of EP; Distribution of grid locations over MAR c mean and

d standard deviations, i.e., how many grids are in each bin (precipitation interval)

Fig. 5 Month-wise number of EP occurrence (in %) over MAR (color bar represents the number of EP occurrences in percentage)
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location sampled from a similar EP characteristics region

shows relatively similar patterns; and (ii) EP varies in

space and time and is not uniform throughout the MAR.

Therefore, since the month index of EP varies over the

study domain, the corresponding effect of teleconnection

time-lag should also vary in space and time. Consequently,

it is anticipated that using non-uniform time-lagged climate

indices will capture the dynamics of EP variability better

than the uniform/constant lagged climate indices.

4.2 Time-lagged climate indices

The uniform time-lagged (UTL) series for a covariate is

selected based on the MAR region’s averaged months. For

example, ENSO is averaged over Nov-Mar (Agilan and

Umamahesh 2016; Mondal and Mujumdar 2015), DMI is

averaged over Jun–Nov (Agilan and Umamahesh 2016),

PNA is averaged over Dec–Mar, and AO is averaged over

Jan–Dec (Thiombiano et al. 2018), AMO is averaged over

Jun–Aug (Ouarda and Charron 2018), PDO is averaged

over Nov–Mar (Gao et al. 2016), global temperature is the

annual mean (Mondal and Mujumdar 2015) and NAO is

averaged over Dec–Feb (Hao et al. 2019). It is to be noted

that the UTL series for a climate index will be identical

irrespective of the grid location over MAR. On the other

hand, the non-uniform time-lagged (NUTL) climate indices

are selected based on the maximum cross-correlation

between monthly precipitation and climate index at each

grid location. For brevity, NAO results only are presented

in this section (and for other indices, refer to supplemen-

tary material—Figure S2, S3 and S4). For the NUTL series,

the time-lag corresponding to the maximum correlation for

the NAO climate index of all grid locations is shown in

Fig. 7. It is observed that the time-lags obtained are spa-

tially non-uniform over the region. These lags represent the

possible time-delayed relationship between precipitation

and NAO teleconnection. It is also worth to be noted that

the NUTL are randomly clustered into smaller regions,

which might have similar localized or geographic condi-

tions. NUTL-NAO series are extracted at each grid location

based on these identified time-lags.

The performance comparison of UTL- and NUTL based

NSGEV models is presented in Fig. 8a. It is observed that

in about 94.7% of grid locations, the performance of the

NUTL based NSGEV model is better (lower AICc values)

when compared to UTL. For brevity, the difference in the

AICc values at three grid locations are highlighted in

Fig. 8a. In addition, the boxplot (Fig. 8b) of the deviance

statistics (difference in AICc) shows that NUTL has the

lower AICc for all the grid locations. It is also observed

that the deviance statistics for most of the grid locations is

greater than two, i.e., the selected NUTL has shown sig-

nificant improvements in the NSGEV model performance

compared to UTL.

Fig. 6 Spatial variation of month index of EPs at selected 50 grid locations over MAR (color bar represents the month index)
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4.3 NSGEV versus SGEV models

The total number of models at each grid location is 16, i.e.,

15 NSGEV models and 1 SGEV model. The spatial dis-

tribution of selected best models based on AICc over MAR

is shown in Fig. 9. It is observed that about 92% of grid

locations over MAR, the NSGEV models perform better

than SGEV models. However, the spatial pattern of grid-

wise selected models (Figs. 10 and 11) shows that no

single/group of climate index/covariate-based NSGEV

models are chosen over the entire MAR. Similar results

were observed by Mondal and Mujumdar (2015) over

India; they found that the significant covariates differed

from one grid location to another showing a non-uniform

pattern. The results indicate that among all the indices, the

GLBT and AMO are majorly influencing MAR. The reason

could be that the GLBT represents the global warming

phenomenon and directly affects the EP changes through

the warming of oceans, transporting moist air to land and

into the weather systems (Groisman et al. 2005; IPCC

2007; Res and Trenberth 2011). Similarly, the SSTs in the

tropical Atlantic (AMO) strongly influence Monsoon pre-

cipitation (Azad and Rajeevan 2016; Kucharski et al.

2007). Overall, the use of NULT based climate indices for

Fig. 7 Time lag corresponding

to the maximum correlation for

NAO at each grid over MAR

(color bar represents the time-

lag in months)
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Fig. 8 Comparison of Uniform (UTL) and Non-Uniform Time-

Lagged (NUTL) NSGEV models a AICc (X and Y represent data

label corresponding to the x-axis and y-axis respectively at three

randomly selected points (lower the AICc value better the model));

b deviance statistics (difference in AICc between UTL and NUTL

NSGEV)
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NSGEV has significantly improved the modelling of EP

compared to SGEV. However, it is evident from Fig. 11

that there is a considerable variation in the selected

NSGEV model, covariates and NULT depending on the

effect of the teleconnections over the MAR region. The

uncertainty in the prediction of the EP will vary signifi-

cantly over MAR. Therefore, it is proposed to investigate

the variability of NSGEV model parameters by grouping

the grid locations having similar magnitude EP into

coherent zones. In a large-scale domain, the grid locations

closer to each other are expected to have identical EP

behaviour, as discussed earlier.

Fig. 9 Performance of SGEV

and NSGEV (includes 15

covariates) models at each grid

over MAR
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4.4 Clustering of EP zones

The analysis over MAR suggests that the within-year dis-

tribution of the EPs (Fig. 6) for the grids in a region are

almost similar, indicating the NSGEV model parameters

can be grouped over an area. Regionalization of model

parameters reduces the model and parametric uncertainties

in simulating the EP. In the present study, the EP zones are

derived based on the magnitude of AMPs using the GMM

probability-based clustering algorithm. An optimal number

of six EP zones are identified over MAR, as shown in

Fig. 12. The percentage of grid locations covered by each

zone and their descriptive statistics are presented in

Table 2. Zone-5 is the largest zone enclosing 30.95% of

gird locations, mainly representing precipitation from the

Southwest monsoon, which has an EP range from 35.95 to

78.74 mm and mean of 53.05 mm with a variation of

11.07 mm. Zone-6 is the smallest zone with a 5.95 per-

centage of grid locations having EP range between 78.76 to

189.99 mm with a mean of 101.06 mm and variation of

20.98 mm and lies on the windward side of the Western

ghats (wettest peninsular India) and grids closer to coast-

lines such as parts of Tamil Nadu, Vietnam, Japan, and

receives Northeast and East Asian monsoons. The

remaining zone-1, zone-2, zone-3, and zone-4 each cover

14–16 percentage of the study area with EP mean and

variation in the range of 3–35 mm and 1.6 -3.5 mm,

respectively. The zones (1–3) cover the lee-ward portions

of the Himalayas or Hindu-Kush, and the Arakan Moun-

tains, Tibetan Plateau, and Tarim Basins, primarily arid

and semi-arid regions receiving low precipitation, and

zone-4 is mainly confined to the Northern Australia,

Southeast countries, and leeward sides of Western ghats.

The zone-wise distribution of the number of grid loca-

tions for the selected NSGEV model (each climate index)

is represented as a stacked column in Fig. 13a. It is

observed that the GLBT and AMO are dominant among all

climate indices in each of the zone, which is similar to the

earlier results. The zone-wise observations show that the

NSGEV models are the best alternative in all the EP zones

Fig. 11 Selected best covariate

based NSGEV and SGEV

models at each grid over MAR

Fig. 12 Six EP zones obtained over MAR from GMM based

clustering (color bar represents the zone number)
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compared to the SGEV model (Fig. 13b). However, the

grids within each zone have different covariate-based

NSGEV models. The selected best NSGEV models’

parameters at each grid location within each zone are

pooled up to obtain the regional NSGEV parameters.

Table 3 provides descriptive statistics of Zone-wise (Z-)

NSGEV parameters across MAR. It is observed that the

location parameter is lower for zone-1 ranging between

3.24 and 12.44, and a mean of 7.64, and parameter values

increase across the zones, with zone-6 having the highest

values in a range of 59.95–191.17 and mean of 98.64. The

following sections present the evaluation of Z-NSGEV

models’ performance and zone-wise EP changes for vari-

ous return periods compared to SGEV.

4.5 Z-NSGEV model performance

The efficacy of the model’s performance is brought out in

two steps. In step one, an intra-comparison of the

Z-NSGEV model with an NSGEV model within a zone is

carried out. The Z-NSGEV models within the area are

compared to the individual grid NSGEV models. Figure 14

shows the intra-comparison of models in each zone (grid

location (G) and zone-wise (Z)). It is observed that the

RMSE for Z-NSGEV models is comparable to the grid

NSGEV models in the respective zones over MAR, indi-

cating that the former can capture the EP dynamics of the

respective zones. In step two, an inter-comparison of

Z-NSGEV models across the zones is carried out to vali-

date the performance of the regional models. It is to be

Fig. 13 a Selected covariate based NSGEV models at a number of grids within each zone; b Performance comparison of the NSGEV and SGEV

models across the zones

Table 3 Descriptive statistics of

the zone-wise parameters of

NSGEV models for six zones

Zone Location parameter Scale parameter Shape parameter

Min Max Mean Min Max Mean Min Max Mean

1 3.24 12.44 7.64 0.73 4.05 2.18 - 0.57 0.72 0.075

2 7.27 19.45 13.14 1.26 6.49 3.29 - 0.60 0.75 0.038

3 12.15 34.47 19.31 1.74 11.04 4.65 - 0.73 0.58 0.026

4 14.32 52.71 29.15 3.31 14.73 6.81 - 0.54 0.66 0.03

5 27.67 89.77 50.50 4.80 36.33 12.08 - 0.64 0.71 0.094

6 59.95 191.17 98.54 12.93 58.51 25.32 - 0.56 0.57 0.046

Table 2 Percentage of grid locations and descriptive statistics of AMP for identified zones over MAR

Zone no. Percentage of grid locations Minimum (mm) Maximum

(mm)

Mean (mm) Standard deviation (mm)

1 16.52 3.88 10.65 8.05 1.66

2 16.05 10.65 16.49 13.57 1.66

3 14.48 16.50 23.59 19.77 1.98

4 16.05 23.60 35.91 29.75 3.45

5 30.95 35.95 78.74 53.05 11.07

6 5.95 78.76 189.99 101.06 20.98
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noted that since EP is used for the formation of the region,

it cannot be used for homogeneity/validation of model

performance. Alternatively, a simplified approach is pro-

posed to validate the zone model’s performance by

assuming that the model derived for a particular zone will

underperform in other zones. A heat map representing the

performance of the Z-NSGEV models across the zones is

shown in Fig. 15. The non-diagonal RMSE values show

the zone model parameters used to predict EP in other

zones, whereas the diagonal values show the zone-wise

model performance. All the non-diagonal RMSE values are

higher than the diagonal, indicating that the estimated

regional parameters for all the six zones can capture the

dynamics of the EP within the cluster grids better when

compared to the other zones.
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Fig. 14 Intra-comparison of the

Z-NSGEV model with an

NSGEV model at all the grids

within a zone (G represents the

grids within the zone and Z

represents the zone-wise model

i.e., 1-G and 1-Z refer to zone-

1)

Fig. 15 Validation of

Z-NSGEV models across the

zones (Diagonal elements

represent the within-zone

performance and non-diagonal

elements represent the model

performance with other zones)
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4.6 Zone-wise: estimation of EP

The zone-wise EP is estimated for various return periods of

5-, 10-, 25- 50-, and 100- years for SGEV and Z-NSGEV

models. The relative percentage change in intensity of EP

(NSGEV vs. SGEV) is shown in Fig. 16. It is observed that

the percentage change ranges between 7 -10%, 5 –8%,

4–8%, and 4–10% for 5-, 10-, 50- and 100- year return

periods, respectively, across the six zones. For each zone,

the percentage change ranges between 6.8–9.8%,

7.11–9.24%, 6.4–8.9%, 4.4–7.6%, 8.4–10.85% and

7.4–10.5% for various return periods. Percentage change is

observed higher in zone-5 and -6, which lie in monsoonal

windward and coastal regions (prone to high tropical

cyclones). The EP in other zones (1–4), mainly arid and

semi-arid regions (inland of MAR), show a moderate

increase in the EP intensities. It is observed that for all the

six zones of MAR, the intensities of the EP are increasing,

and return periods are decreasing, i.e., high-intensity EP

will occur more frequently. The revised return periods

based on the SGEV and Z-NSGEV models are provided in

Table 4. The results show that the return periods have

reduced on an average from 5- to 3.4-year, 10- to 6.7-year,

25- to 16.6-year, 50- to 32.2-year, and 100- to 61.64- year

in six zones, respectively. In addition, the relative per-

centage change in zone-wise return periods (Fig. 17) shows

that the percentage change in return periods ranges from 26

to 47% across all the zones. Overall, the results indicate an

increase in extreme precipitation and reduction in the

return periods across all zones over MAR compared to

SGEV models.

5 Summary and conclusions

This study presents an NSGEV framework for modelling

EP over Monsoon Asia Region (MAR). The non-uniform

time-lag climate indices are used as covariates for the

NSGEV models and have improved the model’s perfor-

mance compared to uniform time-lag climate indices. It is

observed that the NSGEV models selected at about 92% of

the grid locations over MAR outperform the SGEV model.

The MAR region is divided into six zones using the GMM

clustering algorithm. The Z-NSGEV models are derived by

regionalizing the model parameters for analyzing the EPs.

The results show that the Z-NSGEV models can mimic the

EP characteristics in all the zones. Finally, the zone-wise

EPs are investigated for various return periods for

Z-NSGEV and SGEV models. It is observed that there is an

increase in intensity and reduction in return periods across

all zones, especially in zone 5 and 6 there is a relatively
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Fig. 16 Zone-wise relative percentage change in EP (NSGEV vs.

SGEV) for various return periods
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Fig. 17 Zone-wise relative percentage change in various Return

Period (RP) across the six zones over MAR

Table 4 Revised return periods based on the SGEV and Z-NSGEV

models across the zones

Return period (year)

5 10 25 50 100

Z-1 3.48 6.95 17.24 33.83 65.55

Z-2 3.40 6.69 16.27 31.39 59.65

Z-3 3.38 6.72 16.51 32.10 61.46

Z-4 3.54 7.27 18.48 36.55 70.77

Z-5 3.46 6.69 15.60 28.89 52.44

Z-6 3.27 6.43 15.81 30.97 60.02

Average 3.42 6.79 16.65 32.29 61.65
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higher increase in intensity, which lies in monsoonal

windward regions and coastal, respectively. Due to climate

variability, these regions are highly receptive to EP and are

expected to intensify (in both magnitude and frequency).

The Z-NSGEV model outcomes will help in the reliable

design and rehabilitation of water infrastructure, risk

assessment, and to develop adaptation and mitigation

strategies over MAR.

5.1 Limitations and extensions

1. In the NSGEV model, only the location parameter as a

function of covariate is varied to address the non-sta-

tionarity. The effect of scale and shape parameters is

not considered in this study. The work can be extended

to understand other parameters’ role on the NSGEV

model’s performance in MAR.

2. The Peak Over Threshold (POT) series can be consid-

ered instead of the AMP series in the proposed

framework. POT has advantages over AMP as more

maximums can be extracted for a set threshold value

(Cheng and Aghakouchak 2014).

3. In this study, the location parameter for the NSGEV

model is only a function of a single climate index

(covariate). However, the association between EP and

one teleconnection pattern is most likely modulated by

other teleconnections or may include other effects of

teleconnections. The framework can be extended to

include the distribution parameters as a function of

various combinations of covariates. Further, the study

analyzes only the influence of teleconnections repre-

senting the global processes on EP variability over

MAR. Other covariates, such as local temperature,

topography, and land cover changes, can also be

included to understand their effect on EP.

4. The NSGEV models consider linear functions to relate

covariates and parameters. However, the linear

assumption may not be able to capture the complex

and nonlinear EP processes. The work is in progress to

develop a nonlinear functional relationship to capture/

mimic the processes between teleconnections and EP.

5. The regional homogeneity of the clusters requires the

formation of the zones based on independent hydro-

climatic datasets. However, in this study, EP was

directly used as an attribute to cluster the MAR region,

and hence homogeneity of the region is not carried out.

Instead, a simplified approach is adopted for validating

the zones, i.e., inter-comparison Z-NSGEV models.

Alternatively, the homogeneous zones of EP can be

formed using other hydro-climatic data influencing EP

such as temperature, pressure, location parameters,

geopotential height derived using reanalysis datasets

(NCAR–NCEP) as attributes to cluster the zones. In

addition, geographic characteristics such as elevation,

topographic features, and location variables can also be

considered.

Appendix

Cross-correlation

Cross-correlation analysis determines the degree of simi-

larity between two time-series over a time-lag range. The

cross-correlation coefficient ðrkÞ indicates the strength of

the association between two different time series. A strong

negative or positive association is determined by the cor-

relation coefficient’s proximity to - 1 or 1. Equation (19)

defines the correlation coefficient between two-time series

Y1 and ss Y2. with a time lag (K). (Coles 2001)

rk ¼
PT�K

t¼1 Y1 tð Þ � Y1 tð Þ
� 	

Y2 tþ Kð Þ � Y2 tð Þ
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 Y1 tð Þ � Y1 tð Þ
� 	2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼1 Y2 tð Þ � Y2 tð Þ
� 	2q

ð19Þ

where Y1 tð Þ and Y2 tð Þ are the mean for each time series.
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