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Abstract
This paper presents an application of the L-moments and L-moment ratio diagrams (LMRD) to the analysis of hydrological

data at regional (country) scale. Existing research focuses on two main areas of the analysis: statistical analysis using

LMRD and regression analysis. Further research mixes both approaches applying regression analysis to L-moments.

Another direction of the research is clustering of the climatic and physiographic catchment properties and its validation

using LMRD. However, LMRD plots can be separately used as the clustering domain. It is proposed to decompose the

features into some classes, and than present these results on the LMRD. Such plots constitute the source for the clustering.

Obtained clusters are then validated against k-means clustering performed in the LMRD diagram domain. Results show

that statistical L-moments analysis can be improved with data mining clustering algorithms. Such combination delivers a

new perspective for the interpretation of the results. It is shown that clustering in the LMRD domain is consistent with the

K-means clustering. It is anther argument showing that L-moments diagrams can be considered as a very powerful and

informative tool for hydrologists enabling the comparison on the regional basis with respect to various catchment prop-

erties. The method is validated on data consisting of daily river flow data from 290 gauges covering entire Poland.

Keywords Hydrology � Extremes � L-moments � Kappa distribution � Clustering � River flow � Catchment properties

1 Introduction

Investigating the effects of catchment properties related to

climate and physiography on river flow characteristics is a

frequent area of research in hydrology. Such an analysis is

mostly based on statistical approaches (Helliwell et al.

2007; Calver et al. 2009; Merz and Blöschl 2009; Salinas

et al. 2014; Singh 2017). Actually, the analysis can be

conducted on the single gauge basis (Popat et al. 2020;

Negi et al. 2021) or on the higher regional level (Smith

et al. 2015; Kar et al. 2017). Regional analysis uses dif-

ferent approaches. Generally, there are two leading

methodologies. Application of the method of L-moments in

the regional frequency analysis of extreme events for river

flows, apart from other natural sciences, is considered to be

one possible approach (Hosking and Wallis 1993; Kjeldsen

et al. 2017; Simková 2017). The second methodology uses

regression analysis (Merz and Blöschl 2009; Mašiček and

Toman, Palàt 2011; Lun et al. 2021). There is also research

mixing both approaches (Di Baldassarre et al. 2006; Sali-

nas et al. 2014), i.e. application of the regression analysis

to correlate the L-moment diagram data.

Both approaches have their advantages and shortcuts.

L-moments ratio diagrams (LMRD) origin from the tradi-

tional moment ratio diagrams (MRD) introduced by Karl

Pearson in the beginning of the XIX century. The idea is to

use and graphically represent the relationship between the

first four moments of the distribution. There are various

versions of MRD, but the diagram showing the relationship
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between the fourth and the third moment, i.e. kurtosis

versus skewness is the most popular one. MRD of the

variation factor versus skewness is the second popular

representation.

MRDs can show empirical data or analytical theoretical

curves. Theoretical relations can be evaluated for the

majority of univariate distributions (Vargo et al. 2010).

MRD can be used for several purposes, such as:

1. to quantify the distance between various univariate

distributions,

2. to visualize distribution versatility within the range of

its moments,

3. to select the best fit distribution to the empirical data,

4. to visualize and test the relationships between distri-

bution families,

5. and to identify homogeneous process expressed by the

empirical moments relations.

Historical formulation uses classical moments definitions

as for normal Gaussian distribution. Introduction of the L-

moments by Hosking (1990) enabled to increase the

approach applicability. L-moments offer better moments

estimation properties, especially for small sample number

and fat-tailed distributions (outliers). It has been shown that

they might even outperform other estimation approaches,

like the standard algorithm of moments, TL- or LQ-mo-

ments (Simková 2017). L-moments and respective L-mo-

ments diagrams are widely used in the extreme events

analysis in climatology, hydrology (Katz et al. 2002;

Maeda et al. 2013), astronomy (Podladchikova et al. 2003)

or medicine (Louzada et al. 2016). LMRD is the most

common tool supporting the identification of a suit-

able frequency distribution of empirical samples (Kjeldsen

and Prosdocimi 2015). Typical diagram represents the L-

kurtosis (s4) versus L-skewness (s3). Empirical data may

be easily confronted with the theoretical plots for the

selected candidate probabilistic density functions (PDFs).

The proximity of the empirical data to the theoretical ones

might play the role of a selection criterion to choose the

best fit distribution (Peel et al. 2001).

Apart from distribution fitting, L-moments diagrams are

often utilized to compare various samples originating from

different sources, like for instance river discharge, in

search for their homogeneity. There are defined various

discordance measures used to recognize sources, whose

sample’s L-moments are marked contrarily from the others

(Hosking and Wallis 1993; Khan et al. 2017). The task

associated with the homogeneity testing is realized in the

2-dimensional (2D) space spanned by L-skewness and

L-kurtosis. Verification of the homogeneity hypothesis

may be performed by the visual inspection or may be

supported by the dedicated distance measures.

L-Moment Ratio Diagrams deliver new perspective to

the statistical analysis of various time series properties.

These properties are described by the aggregated position

of the time series on the diagram. Thus, they allow to

perform regional analysis comparing different features

associated with the data. This feature is the strong advan-

tage of the approach. However, the method does not give

any insight into the specific statistical properties. Regional

analysis is limited to the general clustering of the obser-

vations without connection to the internal (mean, L-Cv,

L-skewness and L-kurtosis) moments.

Regression analysis (Garmdareh et al. 2018; Desai and

Ouarda 2021) is applied to address this issue. It aims at

finding a quantitative relationship between certain catch-

ment properties and respective flow time series L-mo-

ments. This approach is quite natural and promising.

However, one has to take into account that standard

regression using least squares (LS) has its limitations. It

assumes that the process behind data is stationary, affected

by Gaussian noise and without outliers (Hawkins 1980;

Domański 2020). If these conditions are not met, the LS

regression estimation will be biased (Rousseeuw and Leroy

1987; Huber and Ronchetti 2009). Moreover, LS regression

assumes that the observations are relatively uniformly

distributed over the domain number of observations and

their number is high enough to satisfy convergence towards

the limiting probabilistic density function (PDF). Unfor-

tunately, hydrological data does not meet these assump-

tions. The process underlying statistical process are neither

stationary, nor Gaussian. Outliers are frequent, what is

visible in the tails fatness and the resulting need for the

extreme analysis. The length of the time series is not long

enough to assure the convergence. Therefore, obtained

estimations can be susceptible to the bias.

Researchers use different approaches to minimize the

effect, as for instance weighted moving average (WMA)

(Salinas et al. 2014). The present study does not focus on

that aspect, though sample regression analysis in different

context is included. It is proposed to use robust regression

performance index in form of the least median square

(LMS) (Rousseeuw 1984).

Following above arguments considering LMRDs and

regression analysis, the first approach (LMRD clustering)

is selected as it opens a new research opportunity. This

opportunity arises from the fact that LMRD plots enable

various approaches to the data comparison in the 2D space

of the moment ratio diagram. Such a statistical procedure

resembles the 2D grouping tasks well known in the data

mining research. One may find dozens of clustering algo-

rithms that aim at data grouping, finding cluster centers or

identifying the delimitation borders (Aggarwal and Reddy

2014; King 2015). Thus, the use of clustering methods in

the grouping task in the L-moments diagrams data seems to
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be natural and obvious. As the grouping itself is not an

ultimate focus of this research, classical k-means algorithm

is used (Lloyd 1982), as it is one of the simplest and

popular unsupervised machine learning methods.

Recent literature review shows some reports on clus-

tering approaches used in the hydrological analysis. The

Ward’s data agglomeration method is a hierarchical

approach and uses analysis of variance as the measure of

the distance between clusters It has been used for catch-

ment hydrological analysis (Cupak 2017; Cupak et al.

2017). A principal component analysis and a subsequent

clustering of the principal components has been used to

cluster catchment data (Jehn et al. 2020), while authors of

Sharghi et al. (2018) compared four approaches of clus-

tering, K-means, Ward, SOM and Wavelet-Entropy-based

method in a similar task. K-means clustering has been

applied in the analogous research in Dikbas et al. (2013),

Aytaç (2020). Step-wise cluster analysis hydrological

model has been proposed in Wang et al. (2021). Actually,

current research is frequently organized as follows:

researchers select a clustering algorithm, do catchments’

clustering by their features and finally observe the results in

the LMRD. Proposed approach is opposite. First, LMRD

are plotted and the K-means clustering is performed in the

diagram 2D domain. Clustering results are compared with

expert and statistical features classification.

Concluding, this study aims at the analysis of climatic

and physiographic catchment properties in the domain of

the L-moments ratio diagram based on the river daily flow

data from 290 flow gauges from Polish rivers. Catchment

properties are compared with the L-moments of the river

flow data and the best fitted PDFs. The analysis is sup-

ported by the k-means clustering to identify leading prop-

erties and to allow the generalization of observations. The

study starts with Sect. 2 presenting the considered geo-

graphical area and respective data. Regional clustering and

analysis of properties is included in Sections 4, preceded by

Sect. 3 describing applied methods and algorithms and

followed by Sect. 5 with concluding remarks and open

research items.

2 Study area and data

Regional hydrological analysis is performed using daily

river flow data ½m3=s� provided by the Institute of Meteo-

rology and Water Management - National Research Insti-

tute (IMGW-PIB) from 290 gauges located in Poland. The

analysis uses available historical data (daily discharges)

starting from November 1950 till the end of October 2019.

The map showing the area of interest is presented in Fig. 6.

Moreover, the analysis uses a set of catchment climatic and

physiographic properties, i.e. the catchment area [km2],

mean annual precipitation [mm], mean annual of the

minimum and maximum daily temperatures [deg. C],

catchment slope [-], elevation [m asl], dominant land use

classes (fractions), dominant soil hydrological groups

(fractions), soil permeability classes (fractions) and frac-

tion of lakes [-]. All the properties were calculated in

ArcGIS software using readily available climatic and

physiographic data for the respective catchment areas.

Climatic data were derived from the G2DC-PLþ data set

(Piniewski et al. 2021), and physiographic data were

derived from the input maps used in the recently developed

hydrological model SWAT covering the Polish territory

(Marcinkowski et al. 2021).

At first, catchment properties are briefly analyzed, i.e.

any possible effect of these features on the catchment flow

is checked. Such an analysis is not straightforward, as there

are at least are two challenges. First, the appropriate

aggregate measure of the river flow variable has to be

chosen. Three candidates are taken into account: mean

value as the classical statistical shift estimator, median

representing robust shift estimator and the maximum value.

In order to account for the direct effect of catchment size

on river flows, selected flow indices (mean, median and

max) were normalized, i.e. divided by the respective

catchment area. They are referred to as ‘‘specific’’ flows,

e.g. a mean specific flow, etc., and their unit is

m3 � s�1 � km�2

Second issue is associated with the regression analysis

itself. First of all, the number of observations is very low,

which may bias any obtained estimation. Moreover, the

underlying statistical process behind data cannot be

assumed neither Gaussian, nor stationary. Thus, apart from

classical mean shift estimator, the robust version is used

(Rousseeuw 1984). Classical regression uses least squares

(1) as the performance index, while the robust one – the

LMS (2). The example of this effect is shown in sample

Fig. 1.

LS ¼ mean
k

�kð Þ2; ð1Þ

LMS ¼ median
k

�kð Þ2; �k -- sample regression error.

ð2Þ

The estimators differ. LS index takes into account even

outlying observations, while the robust one concentrates of

data inliers (majority). The decision, which one should be

taken into consideration as the resulting index is not

straightforward.

As expected, the effect of catchment area on selected

specific flow indices evaluated by robust regression is close

to 0 due to standardization process (Table 1). Two cate-

gories of catchment properties stand out from others:
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topography and climate. Catchment slope has the highest

correlation with mean specific slope across all catchment

properties, followed by mean annual precipitation and

average elevation. The higher the slope, elevation and

precipitation, the higher the mean, median and maximum

specific flows. In contrast, average (min and max) tem-

perature have negative correlation with mean and median

specific flow, which can be explained by two facts: that

higher elevation is associated not only with higher pre-

cipitation but also with lower temperature, and that lower

temperature results in lower evapotranspiration. Other

categories of catchment properties such as land cover, soils

and hydrography exhibit less pronounced relationship with

specific flow, particularly when assessed with robust

regression. Linear regression shows that fraction of arable

land has negative correlation with all specific flows,

whereas fraction of forests, urban land and grassland has

positive correlation. Catchments having a high fraction of

impermeable soils have positive correlation with specific

flow due to higher surface runoff. In general, the robust

regression has significantly different results for maximum

specific flows, perhaps because the outliers are most

abundant there.

The values of each property are grouped into clusters.

The number of clusters is set to 4 (as the results of the

selection of quantiles: Q1, Q2 and Q3.). The division is

realized in two ways: using hydrological expert knowledge

and using statistical quantiles (Q1 ¼ 25%, Q2 ¼ 50% and

Q3 ¼ 75%) for respective feature. Data are presented in

Table 2. These properties are compared with the best fitted

PDFs and L-moments properties.

3 Methods and algorithms

All the applied methods are specified and introduced in this

section. Statistical approach covers used distributions, Q-Q

plots, L-moments and moment ratio diagrams. Data mining

approach is represented by the k-means clustering

algorithm.

(a)

(c)

(b)

Fig. 1 Example regression plots illustrating the effect of average slope on the mean, median and maximum specific flows
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3.1 Distributions used for the extreme flow
analysis

Analysis of the regional river flow data starts with the

review of properties for each flow gauge. Hydrographs are

plotted together with the histograms. Considered discharge

time series are characterized by the periodicity and fre-

quent extreme high value incidents.

Histograms for such time series are highly asymmetric.

One may find various probabilistic distribution functions

appropriate in such a case. The idea of this research was to

minimize unnecessary assumptions. Therefore the analysis

takes into account seven different distributions being fre-

quently used in the considered research context: Gamma

(GAM), lognormal (LGN), exponential (EXP), Weibull

(WEI), Generalized Extreme Value (GEV), generalized

Pareto (GPD) and four-parameter Kappa (K4D). Respec-

tive probabilistic density functions and their parameters are

shown in Table 3.

Each PDF should be fitted to the empirical data. The

fitting is achieved using maximum likelihood estimation

except the four parameter Kappa distribution, for which the

L-moments approach is applied. Sample plot showing fit-

ting, i.e. data histogram and fitted PDFs is sketched in

Fig. 2.

3.2 Q-Q plots and the best fit PDF estimation

In general quantile-quantile (so called Q-Q) plots enable to

compare different distributions by plotting their quantiles

against each other. A point on the diagram corresponds to a

certain quantile coming from an empirical and theoretical

distribution. They may be used as the heuristics for testing

’’goodness-of-fit’’ between some empirical data and a

theoretical PDF. It allows to check the assumption the

empirical data are derived by the chosen distribution. The

fitting is relatively simple. We need to find such a theo-

retical curve that appears to be the closest to the empirical

points. The distance between both curves determines the

’’goodness-of-fit’’ index.

Formal PDF fitting is done using the maximum likeli-

hood (MLE) approach. It gives reliable results and is

simple. It is frequently used used for large datasets (as in

our case) (Coles and Dixon 1999). The Q-Q plot is used to

select the best fit function. The fitting measure is robust

median absolute distance between empirical and theoretical

data. It plays the role of the ’’goodness of fit’’ index sup-

porting a decision about the best fitting distribution. Fig-

ure 3 shows a sample Q-Q plot for sample empirical data

versus seven theoretical distributions.

Table 1 Catchment features

impact on specific mean,

median and maximum flows

(normalized, i.e. divided by the

respective catchment area):

analysis using linear and robust

regression

Feature Linear regression Robust regression

Mean Median Max Mean Median Max

Catchment area - 10.4 - 8.5 - 11.2 0.6 0.3 - 0.5

Mean annual precipitation 28.4 23.1 26.7 24.5 14.8 1.1

Average max temperature - 33.8 - 30.1 - 19.5 - 7.9 - 9.6 1.3

Average min temperature - 32.1 - 24.8 - 26.0 - 9.1 - 16.8 - 0.6

Average elevation 33.1 25.5 31.1 14.3 21.7 6.3

Average slope 37.6 29.3 35.3 41.6 18.8 1.5

Arable land - 21.7 - 19.1 - 18.2 - 3.0 - 9.2 0.5

Urban 11.7 12.8 14.6 - 1.5 - 6.5 2.4

Grassland 17.8 13.5 13.2 1.3 2.3 1.6

Forests 15.1 13.0 13.0 2.9 8.3 - 0.7

Soil group A - 8.9 - 5.6 - 11.1 0.4 - 0.6 - 0.6

Soil group B - 10.9 - 7.5 - 11.7 - 1.2 - 1.9 0.3

Soil group C 13.5 9.1 15.0 - 0.9 1.4 0.1

Soil group D 9.9 6.0 16.2 3.2 3.9 - 4.2

Fraction of lakes - 3.7 1.9 - 12.2 1.2 2.1 - 1.3

Permeability: very low 9.4 5.3 16.9 - 0.8 3.0 2.9

Permeability: low - 10.0 - 10.3 - 5.2 - 0.5 - 2.6 1.0

Permeability: average - 9.4 - 5.6 - 14.2 - 0.3 - 3.5 - 0.1

Permeability: variable - 10.2 - 6.6 - 16.6 - 1.8 - 1.4 - 1.0

Permeability: high ? very high - 11.9 - 8.4 - 15.1 - 0.4 - 0.9 1.0

Relation is presented in form of the linear regression slope angle – higher angle absolute value means

stronger impact
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3.3 L-moments

L-moments have been introduced as linear combinations of

order statistics (Hosking 1990). This approach significantly

improves conventional methodology and definitions. It

gives new characterization of the shape of a probability

density function and allows to estimate the distribution

parameters. Unlike product moments, L-moments deliver

almost unbiased L-moments statistics, even for very small

samples. Additionally they are less sensitive to the distri-

bution’s tails (Peel et al. 2001). Above properties suite

them almost perfectly and allow to describe environmental

data commonly characterized by a moderate or high

skewness.

Evaluation of L-moments is realized through the fol-

lowing procedure. At first, the data xð1Þ; . . .; xðNÞf g, N -

number of samples, ranked in ascending order from 1 to N.

The sample L-moments (l1; . . .; l4), the sample L-skewness

s3 and L-kurtosis s4 are evaluated as

l1 ¼ b0; ð3Þ

l2 ¼ 2b1 � b0; ð4Þ

l3 ¼ 6b2 � 6b1 þ b0; ð5Þ

l4 ¼ 20b3 � 30b2 þ 12b1 � b0; ð6Þ

s2 ¼ l2
l1
; ð7Þ

s3 ¼ l3
l2
; ð8Þ

s4 ¼ l4
l2
; ð9Þ

where

bj ¼
1

N

XN

i¼jþ1

xi
ði� 1Þði� 2Þ � � � ði� jÞ

ðN � 1ÞðN � 2Þ � � � ðN � jÞ ð10Þ

Therefore, the data are summarized and described by the

sample L-location (L-shift) l1, L-scale l2, L-Cv (dimen-

sionless measure of variability) s2, L-skewness s3 2
ð�1; 1Þ and L-kurtosis s4 2 ð� 1

4
; 1Þ. L-moments might be

used to fit a distribution to a dataset. It is done through

fitting of the sample empirical L-moments to the exact

theoretical L-moments of the distribution. L-moments s3

and s4 may play the role of the goodness-of-fit measure.

L-moments can be analytically calculated for different

distributions. Theoretical relationships for univariate PDFs

can be found in Hosking (1990), Hosking (1992), Kjeldsen

et al. (2017).

Table 2 Clustering regions for

selected catchment features.

Quantiles Q1, Q2 and Q3 refer

to each catchment feature in the

respective row

Feature Unit Expert clustering Quantiles

Q1 Q2 Q3

Catchment area ½km2� 100 1000 10000 260.5 517.7 1203.8

Mean annual precipitation [mm] 650 800 1000 660.7 713.4 843.2

Average max temperature ½�C� 11 12 13 11.3 12.0 12.6

Average min temperature ½�C� 2 3 4 3.1 3.5 3.9

Average elevation [m] 200 400 600 132.1 185.6 346.7

Average slope ½%� 3 10 20 2.0 3.3 7.6

Arable land ½%� 20 40 60 25.0 39.1 54.0

Urban ½%� 3 8 15 2.8 4.8 7.4

Grassland ½%� 5 10 15 5.8 8.9 13.4

Forests ½%� 20 40 60 26.2 37.5 52.2

Soil group A ½%� 5 20 40 1.1 21.6 42.2

Soil group B ½%� 20 40 60 22.4 39.3 54.0

Soil group C ½%� 10 25 50 9.8 21.5 47.7

Soil group D ½%� 5 10 15 0.3 2.1 6.4

Fraction of lakes ½%� 1 2 4 0.03 0.3 1.9

Permeability: very low ½%� 5 15 30 0.2 2.0 15.3

Permeability: low ½%� 5 15 30 5.6 13.0 25.3

Permeability: average ½%� 5 15 30 0.8 10.1 19.0

Permeability: variable ½%� 5 15 30 0.3 5.2 8.2

permeability: high ? very high ½%� 5 15 30 0.2 13.3 21.1
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3.4 Moment ratio diagrams

MRDs have been used in practical applications to answer

questions about sample’s statistical properties, such as

theoretical distribution fitting, comparison of the distribu-

tion’s shapes or PDFs classification according to certain

categories (Bobee et al. 1993). The MRD is a graphical

representation in a Cartesian coordinates of a pair of

standardized moments. In general, there are two types of

moment ratio diagrams: a graph of skewness versus kur-

tosis and a graph of a scale factor versus skewness for

common univariate probability distributions (Vargo et al.

2010). The literature shows that the first one has gained

significant popularity and is adopted in current research.

Introduction of L-moments has been naturally used by

the MRDs and the L-moment diagrams have been exten-

sively analyzed. They form the graphical representation of

a relationship between L-kurtosis and L-skewness. Fig-

ure 4 shows theoretical relationship for selected distribu-

tions. One may see that exponential distribution is

represented as a single point, four parameters Kappa as a

region, while the rest of them by polynomial curves. As

Table 3 PDF functions used in the analysis

Name Probabilistic density function Parameters

GAM
F b;nðxÞ ¼

xn�1 exp ð�x
b Þ

bnCðnÞ ,
b[ 0; n[ 0, Cð�Þ Gamma function

LGN
F l;rðxÞ ¼

exp
�ðlog x�lÞ2

2r2

� �

xr
ffiffiffiffi
2p

p ; x[ 0
l 2 R; r[ 0

EXP F lðxÞ ¼
exp ð�x

lÞ
l

l 2 R

WEI
F b;nðxÞ ¼ n

b
x
b

� �n�1

exp� x

b

� �n b[ 0; n[ 0

GEV F l;b;n ¼ 1
b t xð Þnþ1

exp �t xð Þð Þ

t xð Þ ¼
1 þ x� l

r

� �
n

� ��1
n

if n 6¼ 0

exp ð� x� l
b

Þ if n ¼ 0

8
><

>:
;

l 2 R; b[ 0; n 2 R

GPD F l;b;n ¼ 1
b exp �ð1 � nÞtðxÞð Þ

t xð Þ ¼
�n�1 log 1 � nðx� lÞ

b

	 

if n 6¼ 0

x� l
b

if n ¼ 0

8
><

>:

l 2 R; b[ 0; n 2 R

K4D
F l;b;k;hðxÞ ¼ 1

b 1 � k
b x� lð Þ

h i1=k�1

� 1 � h 1 � k
b x� lð Þ

h i1=k
	 
1=h�1 l 2 R; b[ 0 h[ 0; k[ 0

Fig. 2 Sample PDF fitting performance for seven theoretical distributions versus empirical data histogram for Chałupki measurement site data
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GPD, GEV and Generalized Logistic (GLO) distributions

are the special cases of the K4D, they belong to its region;

GLO as the upper band and GPD the lower. Polynomials

used to approximate theoretical relationships can be found

in Tallaksen and Van Lanen (2004), Kjeldsen et al. (2017).

Position of any point on the L-moment diagram informs

about statistical properties of respective time series data.

Left-bottom part of the L-moment diagram is occupied by

datasets with low L-skewness s3 and L-kurtosis s4.

L-skewness closer to zero means that the PDF is more

symmetrical. Simultaneously, lower L-kurtosis reflects

lighter tails of the respective distribution. In contrary, top-

right diagram area depicts data, which are highly skewed

with significantly fat tails. Therefore, positioning on the

L-moment diagram allows fast data interpretation and

classification.

3.5 Clustering

Data clustering algorithms belong to the machine learning

area of science and are used to group data that lie close to

each other and may be classified as more similar to each

other in some sense, in contrast to other ones. The literature

shows dozens of clustering articles. The one used herein is

a k-means algorithm. It is one of the simplest unsupervised

approaches as it makes inferences from data using only

Fig. 3 Sample Q-Q plot

showing empirical data versus

seven theoretical distributions

for Chałupki measurement site

data: four-parameter Kappa

(K4D) exhibits the best fitting

Fig. 4 L-moment diagram for

theoretical distributions, GLO is

a Generalized Logistic. Red line

depicts the lower band – a limit

of all distributions. Grey color

covers K4D area
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input vectors without referring labeled results (Jin and Han

2010). The algorithm works according to the following

steps:

1. Specify the number of clusters M.

2. Initialize centroids randomly selecting M points for the

centroids without replacement.

3. Iterate until the assignment of points to clusters does

not change.

4. Compute the performance index being the sum of the

squared distance between points and centroids.

5. Assign each point to the closest data cluster.

6. Evaluate new centroids taking the average of all data

belonging to each cluster.

4 Regional clustering results

The results of the regional clustering are presented in the

below paragraphs, starting from the PDF goodness-of-fit

analysis, followed by the clustering in the domain of

L-moments diagrams.

4.1 PDF goodness-of-fit analysis

The analysis is grouped into formal steps. At first the

goodness-of-fit assessment is done to assign the most

appropriate distributions to each flow gauge. In contrast to

the majority of reports, the Q-Q diagram approach is used.

It allows better rationalization of the choice between four-

parameter Kappa distribution and other PDFs, of which

Fig. 5 PDF fitting analysis

using Q-Q plots

(a) (b)

Fig. 6 Maps showing flow gauges with the best fit PDFs
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some belong to the same family (GEV, GPD, EXP). The

results are presented in a graphical form. Figure 5 shows

the bar plot with the PDF fitting results. Two versions are

presented. In the first one all the distributions are used. As

it is seen the overwhelming majority of gauges is well

described by four-parameter Kappa (81%) and GEV (18%).

Once K4D is excluded from the analysis, GEV distribution

covers the majority of sites, however LGN, GAM and GPD

PDFs still match quite a significant number of points.

Nevertheless, the concluding remark is clear: four-pa-

rameter Kappa distribution should be considered as the best

fitting probability density function in case of Polish daily

river flow data.

4.2 L-moment diagram analysis

At first, L-moments are calculated for each flow time ser-

ies. Next, they are plotted on the L-diagram (see Fig. 7).

Additionally, empirical mean and median L-moments are

evaluated and respective points added to the diagram. The

plot confirms the fact that K4D distributions covers the

Fig. 7 L-moment diagram

showing empirical data and

theoretical curves

Fig. 8 L-moment diagram

showing ML-clustering to four

regions: classes denoted as

(red)—ML1, (grey)—ML2,

(blue)—ML3, (green)—ML4
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majority of Polish flow gauges, as the points mostly lie

within the area belonging to four-parameter Kappa region.

4.3 k-means clustering

Empirical points of the L-moments diagram can be treated

as any two-dimensional data on a plane and as such can be

subject to clustering. Figure 8 shows how the k-means

algorithm allocates data to the four regions. The number of

regions is equal to the number of classes defined for each

catchment property as in Table 2. Expert classification is

done into four classes. Similarly straightforward approach

using basic quantiles Q1, Q2 and Q3 also gives classifi-

cation into 4 groups.

The clustering plot depicts evaluated regions’ clusters.

As one can notice, the median of empirical points lies very

close to the border between two middle clusters, which is

as expected. For clarity, these clusters are called ML-

clusters (machine learning clusters). Machine learning

clustering is further compared with expert based classifi-

cation depending on catchment area categorization.

4.4 Effects of catchment properties

At that point all important elements are prepared and

catchment properties analysis can be performed. Each

property listed in Table 2 will be analyzed separately

according to the same proposed methodology.

(1) Two L-moment plots are prepared for both types of

feature cluster definitions, i.e. expert- and quantile-

based. The points are classified according to the

respective cluster membership. Expert clustering is

called EX-clusters, while quantile-based QU-

clusters.

(2) Median point for each cluster is evaluated.

(3) Binary membership matching between each feature

class point belonging either to EX-class or the QU-

class, and selected ML-cluster is performed. Accord-

ing to that the number of each EX- or QU-cluster

point and ML-clusters is evaluated showing how the

feature data fit into clusters.

4.4.1 Catchment area

The analysis starts with the catchment area. Respective L-

moment diagrams are shown in Fig. 9. Medians for each

cluster are fitting some pattern, i.e. flow gauges with the

largest catchment area tend to group themselves in the left-

bottom corner of the diagram, while those with small

catchment area are grouped in the right-top part of the

diagram. The meaning of these regions is as follows. Left-

bottom part of the L-moment diagram depicts observations

with low L-skewness s3 and low L-kurtosis s4. L-skewness

is closer to zero, which reflects the PDF to be near sym-

metrical. Lower L-kurtosis values depict lighter tails of the

distribution.

Since L-kurtosis for normal distribution (supposed to

have no fat-tails) equals to s4 ¼ 0:1226, observed C4 cat-

egory median s4 ¼ 0:2357 means that catchment data

belonging to C4 are less skewed and do not exhibit too fat

tails.

Therefore, the plot brings forward the following obser-

vation. Large catchment area means more symmetrical and

less tailed distribution. This fact can be simply explained

by the large water accumulation and catchment area inertia.

In contrast, sites with low catchment area can respond to

the rainfall events more abruptly, which results in asym-

metric PDF, fatter and longer tails, and finally in more

persistent behavior.

(a) (b)

Fig. 9 L-moments diagrams with clustering by catchment area
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Finally, the ML-clusters matching analysis is done.

Table 4 presents, how each catchment area category fits

into clusters obtained using machine learning (ML-clus-

ters). It is visible that the largest values, for both classifi-

cations (EX and QU) are positioned on the reverse

diagonal, i.e. C1 matches ML4 and C4 ML1. Though this

matching is not exact it confirms observations in a quali-

tative way.

An additional observation is that expert matching is not

even, as for instance EX-class C1 has only 6 observations.

That fact may also affect perception of obtained results.

4.4.2 Mean annual precipitation

The analysis continues with mean annual precipitation.

Respective LMRDs are shown in Fig.10. Median values for

each cluster are fitting opposite pattern to the catchment

area. Flow gauges with the highest mean annual

precipitation tend to group themselves in the top-right

corner of the diagram, while smaller ones in the opposite

side. Obtained relationship is not as explicit as in the

previous case.

Large values of mean annual precipitation may cause

larger flood events, skewing the distribution and generating

the tail. Low precipitation has much lower probability for

such extreme events.

Finally, the ML-clusters matching analysis is done.

Table 5 presents the results. It is visible that the largest

values, for both classifications (EX and QU) are on the

diagonal, however not as clearly as in previous case.

Probably getting better matching requires more exact

realization of classification and/or clustering.

Table 4 Cluster matching for

catchment area: italic—two

largest values, bold—the largest

one

ML-cluster ML-cluster

ML1 ML2 ML3 ML4 ML1 ML2 ML3 ML4

EX-class C1 2 4 13 6 QU-class C1 8 14 31 19

C2 34 39 69 38 C2 13 17 26 17

C3 23 32 22 2 C3 18 16 30 8

C4 2 4 0 0 C4 22 32 18 1

(a) (b)

Fig. 10 L-moments diagrams with clustering by mean annual precipitation

Table 5 Cluster matching for

mean annual precipitation:

italic—two largest values,

bold—the largest one

ML-cluster ML-cluster

ML1 ML2 ML3 ML4 ML1 ML2 ML3 ML4

EX-class C1 10 22 21 3 QU-class C1 11 29 28 4

C2 35 48 45 14 C2 21 27 21 4

C3 16 7 17 17 C3 24 16 19 13

C4 0 2 21 12 C4 5 8 36 24
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4.4.3 Average maximum and minimum temperatures

In the next step clustering by catchment-averaged annual

means of daily minimum and maximum temperatures is

investigated. Figure 11 shows respective diagrams for

minimum and maximum temperatures and both classifica-

tions. The relationships differs between both temperatures.

Average minimum values follow visible pattern, as the

lower minimum temperatures are more persistent. They

exhibit fat tails and have more skewed distributions.

(a) (b)

(c) (d)

Fig. 11 L-moments diagrams with clustering by maximum and minimum temperatures

Table 6 Cluster matching for

minimum and maximum

temperatures: italic—two

largest values, bold—the largest

one

ML-cluster ML-cluster

ML1 ML2 ML3 ML4 ML1 ML2 ML3 ML4

Avarage minimum temperature

EX-class C1 5 15 28 3 QU-class C1 15 21 33 3

C2 38 20 20 16 C2 31 12 16 14

C3 15 35 46 24 C3 8 20 29 15

C4 3 9 10 3 C4 10 25 26 12

Avarage maximum temperature

EX-class C1 0 1 16 5 QU-class C1 2 16 38 16

C2 2 14 21 10 C2 16 15 25 17

C3 43 36 49 28 C3 23 17 22 10

C4 16 28 18 3 C4 20 31 19 3
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Average maximum temperatures are not so clear in

interpretation. However, an interesting observation can be

made. All classes are grouped close to each other, except

11; 12ð ÞoC and in that region flow gauges exhibit properties

closer to Gaussian, than for other temperature ranges.

There is no obvious explanation to this fact, since rela-

tionship between temperature and flow regime is not

straightforward but indirect. It might be that certain

temperature ranges, such as ð11; 12ÞoC, are observed in

some regions and other features of those regions directly

affect flow levels. Definitely, this observation requires

further attention.

Table 6 presents the results for cluster matching. As it

was already shown no pattern is visible as well for the

maximum temperature, while minimum temperature

slightly depicts diagonal pattern.

(a) (b)

Fig. 13 L-moments diagrams with clustering by average slope

(a) (b)

Fig. 12 L-moments diagrams with clustering by elevation

Table 7 Cluster matching for

catchment elevation: italic—

two largest values, bold—the

largest one

ML-cluster ML-cluster

ML1 ML2 ML3 ML4 ML1 ML2 ML3 ML4

EX-class C1 56 60 37 4 QU-class C1 28 25 18 1

C2 5 14 32 22 C2 26 29 15 3

C3 0 1 15 15 C3 4 19 35 14

C4 0 4 20 5 C4 3 6 36 28
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4.4.4 Mean elevation

Figure 12 shows obtained LMRDs for the mean catchment

elevation, while Table 7 respective cluster matching

properties. Obtained results are in line with expectations.

The higher the elevation, the more persistent, skewed and

tailed the distribution is. It is natural that catchments with

higher mean catchment elevation exhibit more frequent and

higher rainfall events which translates into more flashy

flow regime.

Observations from the L-moment diagrams follow in a

qualitative way the Table 7 clustering matching. High-

lighted the most matching points lie within the diagonal of

the table.

4.4.5 Average slope

Figure 13 shows obtained L-moment ratio diagram for the

average slope. Observed results are less evident than for

mean elevation. Probably catchment with low and medium

slopes cannot be easily recognized on the diagrams,

Table 8 Cluster matching for

average slope: italic—two

largest values, bold—the largest

one

ML-cluster ML-cluster

ML1 ML2 ML3 ML4 ML1 ML2 ML3 ML4

EX-class C1 24 49 49 6 QU-class C1 5 29 34 4

C2 37 25 22 16 C2 26 25 18 4

C3 0 3 19 19 C3 30 19 16 7

C4 0 2 14 5 C4 0 6 36 31

(a) (b)

(c) (d)

Fig. 14 L-moments diagrams for land use fractions - part I
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however high-slope catchments (typically in mountainous

region) are clearly associated with distribution asymmetry

and fat tails.

Similarly to the LMRDs, the matching table is unclear.

The matching seems to be fine, as the pattern is similar to

the one observed with L-moments diagrams.

4.4.6 Land use

The analysis of the dominant land use is more complex, as

it involves categorical rather than quantitative data. The

following classes are used: arable land, urban, grassland

and forests. Therefore, the analysis has to be performed in a

different way. First, the results are evaluated similarly to

previous categories. Finally, the L-moments diagram is

plotted showing different types of land use, not the cate-

gories within the class (Table 8).

Figure 14 shows L-moment diagrams for arable and

urban land uses. Figure 15 presents grassland and forests.

Catchments are dived into four groups of different land use

types in each case.

Observations confirm expectations and intuition. Low

fraction of arable land use means more persistent beha-

viour. Possible explanation for that observation might be

the result of the extensive drainage of agricultural land in

Poland. An opposite situation occurs for urban land use

fraction. Low urbanization allows more water retention and

decreases data persistence, while higher fraction of urban

area means more impervious surfaces and faster catchment

response to rainfall. It is reflected by skewed distribution

with fatter and longer tails.

Forests have clear impact. Firstly, all the categories are

quite close to each other, so it is hard to distinguish sta-

tistical properties. L-moment diagram shows that the most

natural (with the least probability of extreme incidents) is

category C2 depicting the forest fraction of 20; 40ð Þ%.

Selection of the categories for grassland shows that

categories C1 and C2 exhibit very close to each other,

therefore meadows fraction of 0; 10ð Þ% are characterized

(a) (b)

(c) (d)

Fig. 15 L-moments diagrams for land use classes - part II
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by low skewness and kurtosis. In opposite, higher fraction

of pastures significantly encourages more extreme behav-

ior. One explanation for that might be connected with the

extensive drainage of grassland areas observed in Poland.

Cluster matching is presented in a single Table 9.

Observation of these results and their comparison confirms

qualitatively previous results. Figure 16 presents regional

analysis of land use classes by means of L-moments dia-

gram. Interestingly, urban land use class lies outside of the

Table 9 Cluster matching for

land use classes: italic—two

largest values, bold—the largest

one

ML-cluster ML-cluster

ML1 ML2 ML3 ML4 ML1 ML2 ML3 ML4

Arable land

EX-class C1 4 7 27 9 QU-class C1 9 10 36 17

C2 32 20 35 17 C2 23 18 22 10

C3 23 32 17 14 C3 20 23 19 10

C4 5 19 25 4 C4 9 28 27 9

Urban

EX-class C1 20 31 22 8 QU-class C1 20 25 19 8

C2 34 36 52 20 C2 25 24 18 6

C3 5 9 21 13 C3 12 17 32 11

C4 2 3 9 5 C4 7 12 35 19

Grassland

EX-class C1 17 16 20 4 QU-class C1 22 20 25 5

C2 37 26 21 18 C2 26 19 13 15

C3 9 20 29 13 C3 12 20 27 13

C4 1 16 34 9 C4 1 20 39 13

Forests

EX-class C1 2 13 19 3 QU-class C1 5 27 30 10

C2 26 41 39 21 C2 18 26 18 11

C3 22 18 27 13 C3 21 12 28 11

C4 11 7 19 9 C4 20 13 28 12

Fig. 16 L-moment diagram with

clustering using dominant land

use
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region limited by the four parameter Kappa distribution, as

it is the least natural and mostly affected by human action.

Concluding, arable land exhibits less extreme events while

areas with dominant grassland are characterized by the

highest skewness and kurtosis, i.e. have more persistent

behavior.

4.4.7 Dominant soil hydrological group

Dominant soil hydrological groups analysis is performed

analogously to the dominant land use analysis. Soils are

Table 10 Cluster matching for

dominant soil hydrological

groups: italic—two largest

values, bold—the largest one

ML-cluster ML-cluster

ML1 ML2 ML3 ML4 ML1 ML2 ML3 ML4

Soil group A

EX-class C1 1 9 44 34 QU-class C1 0 5 34 33

C2 5 21 21 3 C2 10 27 32 4

C3 28 24 18 6 C3 24 24 18 6

C4 27 25 21 3 C4 27 23 20 3

Soil group B

EX-class C1 5 6 33 19 QU-class C1 11 8 32 21

C2 25 32 22 6 C2 19 28 21 5

C3 28 28 26 12 C3 21 19 23 9

C4 6 12 23 7 C4 13 23 27 10

Soil group C

EX-class C1 24 23 20 7 QU-class C1 24 22 19 7

C2 25 25 31 6 C2 20 24 25 4

C3 12 20 19 12 C3 17 21 21 13

C4 0 11 34 21 C4 0 12 39 22

Soil group D

EX-class C1 44 67 79 15 QU-class C1 3 23 38 8

C2 13 9 7 5 C2 16 27 26 4

C3 3 2 6 10 C3 29 22 17 4

C4 1 1 12 16 C4 13 7 23 30

Fig. 17 L-moment diagram for

different classes of soil

hydrological groups

2878 Stochastic Environmental Research and Risk Assessment (2022) 36:2861–2882

123



grouped into four categories, denoted as A, B, C and D.

Similar analysis has been performed also in that case. In

view of similar L-moments plots and the wish to avoid

overloading the document with graphs, only a table show-

ing matching properties (Table 10) is presented together

with a combined L-moments diagram (see Fig. 17) show-

ing relationships between all considered categories.

Taking into account former experience with L-moment

diagrams and matching properties the conclusions might be

derived using the matching tables only. Soil hydrological

groups A and B (typically sands and loamy sands), char-

acterized by highest permeability, behave in a diagonal

way, i.e. lower fraction of these soils (and thus a higher

fraction of impermeable soils) results in higher site time

series persistence, i.e. resulting in more extreme behavior.

L-moment diagram showing regional comparison

between dominant soil hydrological group shows that

group D does not dominate in any catchment area. It also

confirms previous observations that soils with lower per-

meability class contribute to the higher probability of

extreme events. Distributions for such catchment areas are

characterized by higher skewness and kurtosis.

Table 11 Cluster matching for

soil permeability: italic—two

largest values, bold—the largest

one

ML-cluster ML-cluster

ML1 ML2 ML3 ML4 ML1 ML2 ML3 ML4

Very low permeability

EX-class C1 53 62 53 7 QU-class C1 28 23 19 2

C2 7 12 18 5 C2 24 24 21 4

C3 0 3 16 12 C3 11 26 29 6

C4 1 2 17 22 C4 1 5 35 32

Low permeability

EX-class C1 22 9 25 10 QU-class C1 22 11 29 10

C2 21 31 31 12 C2 18 24 21 10

C3 18 24 26 10 C3 16 24 23 9

C4 3 14 22 12 C4 8 19 30 16

Average permeability

EX-class C1 1 15 48 34 QU-class C1 0 6 38 28

C2 25 29 32 6 C2 14 20 27 12

C3 28 23 20 4 C3 21 26 23 2

C4 10 11 4 0 C4 26 27 16 4

Variable permeability

EX-class C1 12 24 63 42 QU-class C1 0 7 33 32

C2 35 33 27 4 C2 12 19 32 10

C3 10 16 7 0 C3 28 22 19 3

C4 4 6 7 0 C4 21 31 20 1

High permeability

EX-class C1 1 14 44 34 QU-class C1 0 6 38 28

C2 23 23 21 5 C2 14 24 25 10

C3 32 30 25 6 C3 31 25 14 2

C4 5 12 14 1 C4 16 24 28 5

Table 12 Cluster matching for

the fraction of lakes: italic—two

largest values, bold—the largest

one

ML-cluster ML-cluster

ML1 ML2 ML3 ML4 ML1 ML2 ML3 ML4

EX-class C1 9 46 93 44 QU-class C1 2 9 35 26

C2 8 11 8 1 C2 3 20 36 14

C3 21 16 3 0 C3 10 28 29 5

C4 23 6 0 1 C4 46 22 4 1
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4.4.8 Soil permeability

Soil permeability is classified into five categories, i.e. very

low, low, average, variable, high and very high. Similarly

to the soil hydrological grouping, only Table 11 with

clusters matching is presented. Observed results are in line

with intuition. The lower soil permeability is, the higher

persistence in distribution is noticed (higher skewness and

kurtosis, i.e. fatter and longer tails are observed). In con-

trast high and very high soil permeability stimulate infil-

tration and thus protect against extreme events. Average

permeability category allows to revert classification

matching, which means that only high, very low and low

permeable soils encourage persistence.

4.4.9 Fraction of lakes

Fraction of lakes as a single category is analyzed in a more

simple way. Table 12 shows the comparison. Table 12 is

characterized by counter diagonal relationship. Lower

fraction of lakes very significantly moves the category

towards ML3 and ML4, which are responsible for extreme

properties (high kurtosis and skewness). As opposed, high

fraction of lakes introduces accumulation and inertia into

the process. Presence of lakes in a catchment results in a

buffering effect on river flows, putting the PDF properties

closer to the normal Gaussian distribution. This relation is

also clearly confirmed by the L-moment diagrams

(Fig. 18). This relationship is the strongest among all

studied catchment properties.

This classification is the most distinct considering the

distance between the categories with respect to the differ-

ence in L-skewness and L-kurtosis. The range of variability

in L-skewness s3 is from 0.27 to 0.51, while the kurtosis is

in the range of s4 2 0:18; 0:35ð Þ. It is noteworthy that the

category C4 denoting the highest fraction of lakes results in

the median being the closest to the normal distribution, out

of all the considered features. Thus, presence of lakes

offers the biggest positive impact protecting against river

flow extremes.

5 Conclusions and further research

This work presents statistical regional daily river flow

analysis. L-moment diagrams are used to investigate an

impact of various catchment properties (catchment area,

average precipitation, temperatures, slope, elevation, land

use, dominant soil group, soil permeability and fraction of

lakes) on the probability of flow extreme events. Decom-

position of the catchment features into classes and their

presentation using LMRD allows to perform clustering.

Moreover, such classification is compared with direct use

of the k-mean clustering.

Results show that statistical L-moments analysis can be

improved with the use of data mining clustering algorithm.

First of all, applied methodology works well and gives an

insight into the nature of daily river flow time series for a

given set of catchments. Obtained results are clear and

confirm common hydrological knowledge. Such confir-

mation allows to use machine learning based clustering in

the LMRD domain, apart from the existing approaches, as

an alternative tool for the hydrological data analysis.

This work is interdisciplinary. Although the simplest

clustering algorithm is applied, obtained results are in line

with the hydrology-based categorization. Such results are

promising. More research is required on better cus-

tomization of the ML-based clustering algorithm. How-

ever, once it is fit and tuned, the hydrology analyst will get

entirely new investigation methodology. Deeper coordi-

nation with the hydrological properties will allow not only

to determine catchments that are most vulnerable to

(a) (b)

Fig. 18 L-moments diagrams with clustering by fraction of lakes
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extreme events, but also enable root cause analysis giving

recommendations for protective actions. Sample regression

analysis presented in Sect. 2 is still preliminary and it also

requires further analysis,as initial investigation is

promising.

Presented machine learning clustering approach is

independent on data space dimension. In current research it

is applied to the standard 2D L-moment ratio diagrams.

However, there are no formal obstacles to conduct similar

analysis in more dimension. Therefore it is planned to

prepare 3D L-moment diagrams (L-Cv / L-skewness / L-

kurtosis) and do clustering is such a space.

Presented results are even more valuable, in times of

rapid climate change and increasingly frequent extremely

dangerous flood events in Europe (Piniewski et al. 2017).
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