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Abstract
Estimation of reservoir inflow is of particular importance in optimal planning and management of water resources, proper

allocation of water to consumption sectors, hydrological studies, etc. This study aimed to estimate monthly inflow (Q) to

the Maroon Dam reservoir located in Iran utilizing climatic data such as minimum, maximum, and mean air temperatures

(Tmin, Tmax, T), reservoir evaporation (E), and rainfall (R). The impact of any of the mentioned variables was analyzed by

the entropy-based pre-processing technique. The results of the pre-processing showed that the rainfall is the most important

parameter affecting the reservoir inflow. Therefore, three types of input patterns were taken into consideration consisting

the antecedent Q-based, antecedent R-based, and combined antecedent Q and R-based input combinations. To estimate the

monthly reservoir inflow, a random forest (RF) was firstly employed as the standalone model. Then, two different types of

hybrid models were proposed via coupling the RF on complete ensemble empirical mode decomposition (CEEMD) and

wavelet analysis (W) in order to implement the coupled CEEMD-RF and W-RF models. It is worthwhile to mentioning that

six mother wavelets were used in developing the hybrid W-RF models. Four error metrics including root mean square error

(RMSE), mean absolute error (MAE), Kling-Gupta efficiency (KGE), and Willmott index (WI) were used to assess the

accuracy of implemented models. The attained results indicated the superiority of proposed hybrid models over the classic

RF for estimating the monthly reservoir inflow. The most precise model during the test phase was W-RF(3) utilizing the

Sym(2) as the mother wavelet under a lagged Q-based pattern with error measures of RMSE = 15.011 m3/s, MAE =

10.439 m3/s, KGE = 0.832, WI = 0.773.

Keywords Complete ensemble empirical mode decomposition � Estimation � Hybrid models � Monthly reservoir inflow �
Random forest � Wavelet analysis

1 Introduction

Water resources not only are essential for the human sur-

vival but also are a very important segment of socio-eco-

nomic conservation (Chu and Huang 2020). Iran is located

in arid and semi-arid regions of the world and therefore

rainfall plays a significant role in meeting water demands.

However, most of the rainfall events occur in the cold

seasons of the year when the agricultural activities are in

their lowest levels. Hence, there is a substantial need to

store water in reservoir dams to supply water needs in the

hot seasons (Khalili et al. 2016; Ahmadi et al. 2018; Pour

et al. 2020; Salehi et al. 2020; Sharafi and Karim 2020).

An accurate estimation of inflows to dams is of partic-

ular importance for the short-term and long-term
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exploitation and plays a very important role in sustainable

agriculture, floods and droughts management (Afan et al.

2020). For this purpose, many models have been proposed

and a lot of research is being done for developing models to

estimate complex hydrological phenomenon as accurately

as possible (Rahmani-Rezaeieh et al. 2020). In this regard,

the main problem is the involvement and impacts of dif-

ferent parameters like evaporation, rainfall, temperature,

and other climatic factors, which should be taken into

consideration in the hydrological studies (Nayak et al.

2004).

For modeling the inflows to the reservoirs, due to the

non-linear nature, different perspectives have been pro-

posed for the development and improvement of inflow

predictive models (Rahmani-Rezaeieh et al. 2020). In

general, two techniques including conceptual (white box)

and systemic (black box) models have been recommended

when modeling hydrological phenomena. The white box

models are developed based on governing mathematical

equations and existing physical parameters (Singh 2018).

On the other side, it is not possible to present mathematical

relationships in the black box models and the physical

variables affecting the target parameter could not be easily

recognized. The black box models include the potential of

estimating the intended output by receiving the possible

inputs and then performing a series of mathematical

operations on them. The performance of black box models

is significantly dependent on the quantity and quality of the

data used (Mehr et al. 2017). Artificial intelligence (AI)

model is a typical type of black box-based models that has

been extensively used in recent years to solve various

hydrological problems such as rainfall-runoff modeling

(Vidyarthi et al. 2020; Adnan et al. 2021a; Herath et al.

2020; Molajou et al. 2021), estimating the rainfall (Nourani

et al. 2019; Mehdizadeh 2020), river streamflow forecast-

ing (Mehdizadeh and Sales 2018; Fathian et al. 2019;

Mohammadi et al. 2020; Adnan et al. 2021b), and inflows

to the dams reservoirs (Santos et al. 2019; Apaydin et al.

2020Lee et al. 2020).

One of the AI models is random forest (RF), which uses

multiple iterative algorithms. It can be utilized as a pow-

erful technique for evaluating the hydrological issues

(Booker and Snelder 2012). The RF can learn complex

patterns and consider the non-linear relationships between

the independent and dependent variables. Besides, identi-

fying the most effective input parameters influencing the

target desired output is one of the important features of the

RF. The aforementioned benefits have led to the use of RF

when forecasting hydrological parameters (e.g., see Ali

et al. 2020; Ghorbani et al. 2020; Hussain and Khan 2020;

Pham et al. 2020; Tang et al. 2020).

In the application of AI-based models such as RF,

determining the optimal input data always plays a major

role in their final performance. Moreover, introducing the

maximum number of inputs will not necessarily lead to

achieving the highest accuracy of the relevant model. The

Shannon’s entropy theory is one of the approaches pro-

posed in recent years for selecting the optimal inputs of the

AI models (Ahmadi et al. 2021a). This theory shows that

an event with a high probability of occurrence could pro-

vide less information; otherwise, if an event is less likely to

occur, more information may be achieved (Saray et al.

2020). Indeed, the uncertainties are reduced through cap-

turing the new information and the value of new infor-

mation is equivalent to the amount of reduced uncertainty

(Pei-Yue et al. 2010). Therefore, by weighting each of the

inputs by the entropy method, the most effective ones can

be selected and used in the modeling procedure. Such

methodology has been already used in various studies when

selecting the optimal input predictors (Darbandsari and

Coulibaly 2020; Roy 2021; Ray and Chattopadhyay 2021).

Most of the recorded hydrological data have some

noises so that they prevent the proper transfer of infor-

mation to the models. Data pre-processing methods have

been proposed to overcome this problem, which wavelet

theory (W) and empirical mode decomposition (EMD)

belong to such methods. The wavelet analysis is more

sensitive to the proper choice of the mother wavelet type,

but there is no such limitation in the EMD method and it

can be therefore applied to the data without any special

preconditions. EMD is a spectral analysis method, which

was firstly introduced by Huang et al. (1998). After intro-

ducing the initial version (i.e., EMD), Wu and Huang

(2009) proposed ensemble EMD (EEMD) due to the

problem of mode composition existing in the EMD. Torres

et. al. (2011) then introduced complete EEMD (i.e.,

CEEMD) to eliminate the imperfection of the previous

versions (i.e., EMD and EEMD). Each of these methods

has properties that make them suitable for decomposing the

different original data. Data decomposition utilizing each

of the EMD, CEMD and CEEND divides it into sections

called as intrinsic modes, each of which contains parts of

the same scale of data. Diverse coupled models have been

proposed in literature to forecast hydrological parameters

with the aim of this feature of EMD (e.g., see Chen and

Dong 2020; Nazir et al. 2020; Ouarda et al. 2021).

As mentioned above, knowing the inflow time series to a

dam reservoir could be of significant use for the optimal

management and optimal allocation of water resources.

The main objectives of present study are as follows: to (1)

apply a pre-processing approach based on the entropy

technique when implementing input patterns related to

inflow estimation, (2) develop classic RF and then propose

novel hybrid models through hybridizing the RF with the

CEEMD and W, (3) evaluate the efficiency of six mother

wavelets in developing the hybrid W-RF models, (4)
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compare the performance of whole the models proposed in

the current study. According to the best knowledge of the

authors, this study is the first try in the literature to propose

the hybrid CEEMD-RF and compare its performance with

the coupled W-RF ones when estimating the monthly

reservoir inflow.

2 Materials and methods

2.1 Study area and data used description

The Maroon River originates in the Nil Mountains and

springs in the foothills of the Sadat Mountains of the

Zagros in Kohgoluyeh and Boyer-Ahmad Province in Iran.

It reaches the Maroon Dam Lake after a distance of 120 km

and enters the Behbahan plain through the Takab Strait.

The Maroon Reservoir Dam is located 19 km northeast of

Behbahan with a height of 165 m, a length of 345 m, a

width of 15 m and a total volume of the reservoir up to

1200 million cubic meters. This dam is of sandy gravel

type with clay core. The geographical position of study

location is shown in Fig. 1.

Idanak hydrometric station, located in Idanak village

and upstream of the Maroon Reservoir Dam, records the

required data. The data sets applied in the current study

were comprised of the minimum, maximum, and mean air

temperatures (Tmin, Tmax, T), rainfall (R), reservoir evap-

oration (E), and reservoir inflow (Q) during 1982–2017 on

a monthly time-scale. From whole the available data (i.e.,

420 data), 300 data were used to train the models while 120

data were applied when testing the developed models.

Figure 2 demonstrates the time series of monthly data used

in this study during both the training and testing periods.

Some of the statistical properties of the data used consist-

ing of minimum (Min), maximum (Max), Average (Avg),

standard deviation (SD), and coefficient of variation (CV)

for both the train and test phases are summarized in

Table 1.

3 Models applied overview

3.1 Entropy-based input selection

In modeling of an intended problem using the artificial

intelligence-based approaches, defining the effective

parameters as the models inputs plays a significant role in

improving their performances. In addition, in the time

series modeling of the hydrological phenomena, consider-

ing the effective lags of the investigated problem can lead

to an acceptable result (Ahmadi et al. 2021a). The models

inputs were discerned in this study through the Shannon’s

entropy measure. This method derived from the informa-

tion theory was initially introduced by Shannon (1948).

Entropy is a measure of disorder in a system and is also a

measure of the amount of uncertainty expressed by a dis-

crete probability distribution in information theory; so that,

this uncertainty is greater if the frequency distribution is

well distributed than when the frequency distribution is

sharper (Bednarik et al. 2010). This technique requires a

matrix based on criteria and options. If the decision matrix

data are known, the entropy technique can be employed to

evaluate the weights.

Here, the monthly minimum, maximum, and mean air

temperatures, monthly rainfall, and monthly reservoir

evaporation were considered as the possible inputs effec-

tive on the monthly reservoir inflow. The most important

variables were then identified using the entropy method. In

most of the previous studies, a systematic method is not

provided to specify the optimal lags when modeling the

intended problem. In the present study, the entropy tech-

nique was also applied to select the appropriate lags of the

considered inputs.

3.2 Random forest

Random forest (RF) as a data-driven method is firstly

proposed by Breiman (2001). Indeed, it is developed for

solving problems based on the regression and clustering

through the development of decision trees (Fathian et al.

2019). An RF is comprised of a collection of un-pruned

trees in which each tree is obtained by a recursive seg-

mentation algorithm. In other words, the RF is a combined

form of some decision trees so that several self-organizing

samples of data are involved in its construction (Friedman

et al. 2001). To create a regression tree, recursive seg-

mentation and multiple regressions are used. The decision

process is repeated at each internal node of the root node

according to the tree rule until the pre-determined stop

condition is met (Breiman 2001).

In the RF, a random vector Xn is generated for the nth

tree, which is independent of random vectors

X1;X2; ::::;Xn�1. Tree regression generates a set of trees

utilizing the training dataset and achieved Xn as follows

(Breiman 2001):

Xn ¼ h1ðxÞ; h2ðxÞ; :::; hnðxÞf g ð1Þ

hn ¼ hðx;XnÞ; x ¼ x1; x2; :::; xp
� �

ð2Þ

The above P-dimensional vector forms a forest and the

outputs for each tree are provided as (Breiman 2001):

y1 ¼ h1ðxÞ; y2 ¼ h2ðxÞ; :::; yn ¼ hnðxÞ ð3Þ

where yn denotes the output of nth tree.
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To obtain the final output, the average of predictions of

all the tress is calculated (Breiman 2001). The prediction

error is also computed according to Eq. (4) as (Breiman

2001):

MSE ¼

Pn

i¼1

yðxiÞ � yi½ �2

n
ð4Þ

where yðxiÞ illustrates the computational value, yi denotes

the observational value, n is the total number of observa-

tions, and MSE shows the mean square error rate between

the observational and computational values.

3.3 Wavelet theory

A wavelet is a class of mathematical functions used to

decompose a continuous signal into its frequency compo-

nents. This method is a time-independent spectral analysis

that separates time series in a time–frequency space in

order to describe the time scale of processes and their

relationships. Wavelet transform, like the Fourier trans-

form, considers the time series as a linear combination of

several base functions. One of the most important charac-

teristics of the wavelet transform is its ability to obtain

information in time, frequency, and position, simultane-

ously (Misiti et al. 1996). Continuous wavelet transform

includes the capability to operate at any scale. However,

Fig. 1 Geographical position of study location

2756 Stochastic Environmental Research and Risk Assessment (2022) 36:2753–2768

123



the difficulty of calculating the wavelet coefficients as well

as the need for high computational time and the production

of large volumes of data are some of the problems of this

type of wavelet transform. Discrete wavelet transform

(DWT) method can be used to solve this problem (Chen

et al. 1999).

To implement the DWT method, the Mallat algorithm or

the Multi Resolution Analysis (MAR) method is presented

(Mallat 2009). In this approach, the decomposed signal is

passed through low-pass and high-pass filters. The low and

high frequency contents of the signal are named as

approximation and details, respectively (Mehdizadeh et al.

Fig. 2 Time series of the monthly climatic data as possible inputs and reservoir inflow as the target during the study period

Stochastic Environmental Research and Risk Assessment (2022) 36:2753–2768 2757

123



2020a; Ahmadi et al. 2021b). This filtering paradigm can

be applied to obtain a time-scale display of a signal (Po-

likar 1999). In the DWT, the primary signal could be

reconstructed via the synthesizing of the wavelet coeffi-

cients. This operation starts from the last level of decom-

position and the original signal could be reconstructed

through assembling the approximation and details series.

3.4 Complete ensemble empirical mode
decomposition

Empirical mode decomposition (EMD) is a method of

spectral data analysis, which was firstly proposed by Huang

et al. (1998). This method has evolved several stages since

its introduction. Wu and Huang (2009) then introduced

ensemble EMD (EEMD) due to the problem of mode

composition. Finally, Torres et al. (2011) solved the

problem of imperfection of the EMD and EEMD methods

by proposing the complete EEMD (CEEMD).

In the CEEMD method, intrinsic mode functions are

displayed as IMFk. If we assume that the Ejð:Þ operator

provides the jth intrinsic mode computed by the EMD, xi

is the white noise with standard deviation N(0,1), x denotes

the original data, and e0 illustrates an initial constant, the

different steps of CEEMD are as follows:

The first intrinsic mode xþ e0xi is calculated via the

EMD and the first intrinsic mode of CEEMD is computed

as shown in Eq. (5) (Torres et al. 2011):

IMF1 ¼
1

I

XI

i¼1

IMFi
1 ð5Þ

The first residual value is then calculated from Eq. (6) as

(Torres et al. 2011):

rk ¼ rk�1 � IMFk ð6Þ

In the next step, the second intrinsic mode function is

obtained as (Torres et al. 2011):

IMF2 ¼
1

I

XI

i¼1

E1ðr1 þ e1E1ðxiÞÞwhere r1

¼ rk�1 þ e1E1ðxiÞ and i ¼ 1; . . .; I: ð7Þ

The residual value is computed as the Eq. (6) for

k ¼ 2; :::::k.

The (k ? 1)th intrinsic mode function is obtained from

the following Eq. (8) as (Torres et al. 2011):

IMFðkþ1Þ ¼
1

I

XI

i¼1

E1ðrk þ ekEkðxiÞÞ ð8Þ

where i ¼ 1; :::::; I As long as the residual has more than

three extremes, the procedure of extracting the intrinsic

mode functions continues.

3.5 Models development

Firstly, an entropy approach was used to discern the most

important climatic data to apply them when defining the

inputs of the models. This technique was also utilized to

determine the appropriate lags of the most effective inputs.

After determining the inputs patterns, the single RF and

then hybrid CEEMD-RF and W-RF models were imple-

mented. Firstly, the classic RF models were implemented

taking into consideration of the mean squared error

obtained in training and testing datasets. The optimal

number of trees was then used when modeling the intended

parameter using the RF so that no change in the mean

squared error was observed by increasing the number of

trees (Shataee et al. 2012). Besides, the data decomposition

through the wavelet functions and CEEMD technique was

utilized to generate the hybrid models. For this aim, the

selected inputs by the entropy method were processed

(using five mother wavelet functions with appropriate

decomposition levels and CEEMD approach) and then

introduced as inputs to the RF model; thus, the coupled

W-RF and CEEMD-RF models were developed.

3.6 Performance assessment metrics

This study used four evaluation metrics including root

mean square error (RMSE), mean absolute error (MAE),

Kling-Gupta efficiency (KGE), and Willmott index (WI) to

investigate the estimation accuracy of single RF and

Table 1 Statistical parameters

of the data used in this study
Parameters Train Test

Min Max Avg SD CV Min Max Avg SD CV

Tmin, �C 2.60 28.10 14.85 7.23 0.49 -0.70 27.50 12.44 7.66 0.62

Tmax, �C 14.20 46.40 31.36 10.17 0.32 24.70 49.50 33.70 10.18 0.30

T, �C 9.10 36.80 23.11 8.64 0.37 9.30 36.80 23.25 8.63 0.37

R, mm 0.00 522.20 53.63 82.39 1.54 0.00 263.00 39.49 58.39 1.48

E, mm 24.20 672.30 237.42 171.13 0.72 32.60 505.10 217.44 142.55 0.66

Q, m3/s 0.68 377.17 54.57 61.13 1.12 4.25 194.07 31.94 30.16 0.94
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coupled CEEMD-RF and W-RF models. These statistical

metrics can be formulated as the following equations:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1

Qo;i � Qe;i

� �2

N

vuuut
ð9Þ

MAE ¼
PN

i¼1 Qo;i � Qe;i

�� ��

N
ð10Þ

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCC � 1Þ2 þ ða� 1Þ2 þ ðb� 1Þ2

q
ð11Þ

WI ¼ 1�
PN

i¼1 ðQo;i � Qe;iÞ2
PN

i¼1 Qo;i � Qo

�� ��þ Qe;i � Qo

�� ��� �2

" #�����

�����
; 0�WI� 1

ð12Þ

where Qo;i and Qe;i denote the ith observed and estimated

monthly reservoir inflows, respectively, Qo illustrates the

mean of observed inflows, N is the total number of

observational values, CC indicates the correlation coeffi-

cient among the observed and estimated monthly inflows, a
is the standard deviation ration for the observed and esti-

mated monthly inflows, and finally b shows the mean ratio

for the observed and estimated monthly inflows. As it is

apparent, lower amounts of the RMSE and MAE as well as

higher amounts of KGE and WI metrics verify better per-

formance of respective model in estimating the monthly

inflow time series.

In addition to the evaluation statistical metrics men-

tioned above, scatter and violin plots were also provided to

visually investigate the estimation accuracy of standalone

RF and hybrid CEEMD-RF and W-RF models.

4 Results and discussion

In all models based on artificial intelligence, the correct

choice of inputs plays a significant role in achieving the

desired performance in order to estimate the target

parameter (e.g., monthly reservoir inflow in this research).

Therefore, before modeling, it is necessary to examine the

importance of each of the input parameters affecting the

output parameter by preprocessing methods. Here, an

entropy-based pre-processing technique was employed.

Possible input variables influencing the monthly reservoir

inflow in this study were comprised of monthly minimum

air temperature (Tmin), monthly maximum air temperature

(Tmax), monthly mean air temperature (T), reservoir

evaporation (E), and rainfall (R).

In the entropy method, a certain weight is assigned to

each of the input variables, which indicates the impact

factor and the importance of this parameter on the output

target parameter. Figure 3 shows the values of the weights

(in percent) assigned to the considered input parameters in

the form of a radar chart. As it can be clearly seen, rainfall

(R) is the most important parameter affecting the monthly

reservoir inflow due to having the highest weight (64.71%).

After R, the evaporation (E) parameter gained more weight

(21.13%) while the air temperature parameters had the

lowest assigned weight values. Hence, only the rainfall

variable was chosen among the variables considered when

defining the input patterns. In the present study, three dif-

ferent types of input scenarios were taken into considera-

tion including antecedent Q-based, antecedent R-based,

and combined antecedent Q and R-based patterns. The

entropy approach was used again to determine the appro-

priate lags of rainfall and inflow. In this regard, five lags of

rainfall and inflow were considered. The values of weights

(in percent) assigned to the different lags of rainfall and

inflow are depicted schematically in Fig. 4. As shown, the

first three lags have the highest weights in both the rainfall

and inflow variables, which indicates their greater impacts

on the target parameter.

Initially, a classic RF was applied to estimate the

monthly reservoir inflow of current month under the input

patterns mentioned above. It is worth mentioning that the

number of trees was selected in such a way that increasing

the number of trees from the intended number had no

significant effect on the performance RF-based models.

The values of statistical metrics of RMSE, MAE, KGE, and

WI computed for the single RF are summarized in

Tables 2, 3, 4. As clear, the RF includes the potential of

estimating the current month inflow as a function of

Fig. 3 Radar graph indicating the weights (in percent) assigned to

each of the inputs
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intended inputs (i.e., antecedent Q in Table 2, antecedent R

in Table 3, and combined antecedent Q and R in Table 4).

An attempt was then made in this study to enhance the

accuracy of monthly reservoir inflow estimations via

developing two types of coupled models. At first, a novel

hybrid model was proposed by coupling the CEEMD on

the classic RF. A performance comparison of the single RF

and hybrid CEEMD-RF models in Tables 2–4 confirms the

reliable potential of proposed coupled model compared to

the classic RF. For an instance, considering the best hybrid

model in Table 2 under the antecedent Q-based patterns

during the test phase, it can be seen that the statistical

measures of coupled CEEMD-RF3 are as RMSE = 16.723

m3/s, MAE = 11.380 m3/s, KGE = 0.434, WI = 0.752

while the mentioned error metrics of single RF3 were as

RMSE = 39.152 m3/s, MAE = 25.942 m3/s, KGE = 0.354,

WI = 0.435. This conclusion was also obtained for the

other scenarios of this pattern as well as antecedent

R-based and combined Q and R-based patterns (in Tables 3

and 4). The better estimation accuracy of hybrid CEEMD-

RF models than the classical RF ones can be explained

considering the fact that decomposing the original data via

the CEEMD can provide the decomposed data so that they

can be used successfully as the new inputs for improving

the classic models performances.

In addition to proposing a new hybrid model called as

CEEMD-RF, this study also developed another type of

hybrid model using the hybridization of W theory and RF.

Six various mother wavelets including Haar, Daubechies2

(db2), Daubechies4 (db4), Symlet (Sym), Coifflet (Coif),

and Fejer-Korovkin (FK) were used during the develop-

ment of coupled W-RF models. Based on the total number
Fig. 4 The values of weights (in percent) assigned to the lagged

rainfall and inflow data

Table 2 Statistical performance of conventional RF and hybrid CEEMD-RF models under the lagged Q-based patterns

Models Train Test

RMSE (m3/s) MAE (m3/s) KGE WI RMSE (m3/s) MAE (m3/s) KGE WI

RF1 30.689 19.139 0.601 0.789 36.259 25.492 0.351 0.445

RF2 27.509 15.695 0.662 0.827 36.354 24.612 0.373 0.464

RF3 25.527 14.372 0.703 0.841 39.152 25.942 0.354 0.435

CEEMD-RF1 21.486 13.552 0.735 0.850 23.227 19.308 0.483 0.580

CEEMD-RF2 16.797 11.081 0.753 0.878 22.729 20.565 0.425 0.552

CEEMD-RF3 17.139 11.324 0.738 0.875 16.723 11.380 0.434 0.752

Bold values denote the statistical metrics of superior model in the test phase

Table 3 Statistical performance of conventional RF and hybrid CEEMD-RF models under the lagged R-based patterns

Models Train Test

RMSE (m3/s) MAE (m3/s) KGE WI RMSE (m3/s) MAE (m3/s) KGE WI

RF1 31.643 20.249 0.588 0.776 33.302 23.510 0.478 0.488

RF2 25.252 15.540 0.717 0.828 32.525 21.618 0.485 0.529

RF3 24.211 14.339 0.727 0.842 30.225 20.128 0.532 0.562

CEEMD-RF1 20.316 13.041 0.754 0.856 31.632 25.360 0.508 0.448

CEEMD-RF2 18.733 11.405 0.752 0.874 24.790 17.846 0.618 0.611

CEEMD-RF3 19.658 12.005 0.743 0.851 30.110 23.934 0.533 0.479

Bold values denote the statistical metrics of superior model in the test phase
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of observational data used for the modeling procedure (i.e.,

420 data in the current study), certain levels of decomposed

data should be used (Mehdizadeh et al. 2020a, 2020b).

Here, two levels of data decomposition were taken into

consideration (Int Logð420Þ½ � ¼ 2). The numbers in the

parenthesis mentioned after the name of used mother

wavelet in Tables 5, 6, 7 (i.e., 1 and 2) denote the level of

decomposition applied when developing the coupled W-RF

models. A comparative assessment of the classic RF with

error metrics mentioned in Tables 2–4 and hybrid W-RF

models with error metrics tabulated in Tables 5–7 clearly

verifies that hybridizing the W and RF could lead to more

accurate estimates of monthly reservoir inflow. As an

example, the values of statistical metrics achieved for the

single RF2 during the test period of Q and R-based patterns

in Table 4 (i.e., RMSE = 30.462 m3/s, MAE = 21.622 m3/

s, KGE = 0.526, WI = 0.529) were improved to RMSE =

15.418 m3/s, MAE = 10.825 m3/s, KGE = 0.806, WI =

0.764 in the hybrid W-RF2 model utilizing Sym(2) mother

wavelet. The dependable performance of hybrid W-RF

models than the classical RF can be justified by explaining

the fact that the wavelet analysis provides useful subsets of

the original observations series, which can increase the

model’s potential to estimate the desired target parameter

by extracting suitable information produced by these new

sub-series.

In a review paper, Nourani et al. (2014) evaluated the

ability of the wavelet-artificial neural networks (W-ANN)

hybrid model in various hydrological contexts (including

rainfall-runoff) at short- and long-term time scales. They

found out that due to the use of subsets resulting from the

wavelet transform as the inputs of neural network models,

the model performance increases significantly, which is

completely consistent with the results of the present study.

A performance evaluation of six different mother

wavelets when coupling them on the classic RF (Tables 5–

7) clearly affirms that Sym and Coif are the best wavelets

because of having lowest error values of the corresponding

hybrid W-RF models; therefore, these wavelets could be

suggested to be used as the suitable mother wavelets when

estimating the monthly reservoir inflow through the hybrid

W-RF technique. On the contrary, least-performing wave-

lets were the Haar and FK, which are not recommended. As

mentioned above, two levels of decomposition were

employed in the development of W-RF models. According

to the values of statistical indicators mentioned in

Tables 5–7, it can be clearly concluded that the estimation

accuracy of coupled W-RF models was generally improved

through applying the two decomposition levels in com-

parison to the use of one decomposition level. The wavelet

transform by decomposing the original time series at higher

decomposition levels helps to better interpret the structure

of the original observational series and obtain useful

information about its history; hence, this issue can be one

of the reasons for improving the performance of W-RF

models with increasing the level of data decomposition

(Mehr et al. 2014).

Comparing the modeling accuracy of monthly reservoir

inflow utilizing the hybrid CEEMD-RF and W-RF models

demonstrates that CEEMD-RF models outperformed the

W-RF ones for some cases and vice versa W-RF showed

superior results than the CEEMD-RF for other cases.

However, the W-RF models generally surpass the

CEEMD-RF ones. The superior models for the estimation

of monthly reservoir inflow time series of study location in

the test stage were W-RF3 via Sym(2) wavelet under the

antecedent Q-based patterns, W-RF2 through the Sym(2)

wavelet under the antecedent R-based patterns, and W-RF2

via Sym(2) wavelet under the antecedent Q and R-based

patterns. The values of statistical metrics for the mentioned

superior models are bolded in Tables 5–7.

Regarding the ability of the intended input patterns, it

can be seen from Tables 2–7 that the single RF and hybrid

CEEMD-RF and W-RF models provided lower perfor-

mances under the antecedent R-based input patterns. On

the other side, using patterns based on the combined

Table 4 Statistical performance of conventional RF and hybrid CEEMD-RF models under the lagged Q and R-based patterns

Models Train Test

RMSE (m3/s) MAE (m3/s) KGE WI RMSE (m3/s) MAE (m3/s) KGE WI

RF1 25.917 14.283 0.718 0.842 32.455 21.579 0.497 0.530

RF2 24.232 13.336 0.735 0.853 30.462 21.622 0.526 0.529

RF3 22.909 12.670 0.733 0.860 32.480 22.710 0.489 0.505

CEEMD-RF1 16.869 10.105 0.786 0.888 22.112 17.918 0.638 0.610

CEEMD-RF2 16.652 10.033 0.764 0.889 18.569 14.133 0.688 0.692

CEEMD-RF3 17.067 10.507 0.744 0.884 17.482 13.285 0.669 0.711

Bold values denote the statistical metrics of superior model in the test phase
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antecedent Q and R data is highly recommended to achieve

the more accurate estimates of monthly reservoir inflow

time series.

Besides the statistical error metrics used in the present

study including the RMSE, MAE, KGE, and WI, two

descriptive charts were also prepared and taken into con-

sideration to visually evaluate the estimation accuracy of

classic RF and coupled CEEMD-RF and W-RF models. In

this context, scatter and violin diagrams were provided.

Figure 5 depicts the scatter plots of observed and esti-

mated inflow data through the best models considering the

different input patterns. According to this figure, it can be

observed that the data dispersion around the dashed 1:1 line

is significant for the single RF models, which indicates that

Table 5 Statistical performance of hybrid W-RF models utilizing various mother wavelets under the lagged Q-based patterns

Models Wavelet type Train Test

RMSE (m3/s) MAE (m3/s) KGE WI RMSE (m3/s) MAE(m3/s) KGE WI

W-RF1 Haar(1) 25.644 14.104 0.728 0.844 30.832 20.085 0.444 0.563

Haar(1) 24.236 13.663 0.744 0.849 21.944 15.091 0.709 0.671

db2(1) 23.303 13.318 0.777 0.853 22.124 13.846 0.686 0.685

db2(2) 19.244 10.885 0.824 0.880 17.133 10.975 0.734 0.761

db4(1) 21.060 12.700 0.805 0.860 23.083 13.158 0.674 0.713

db4(2) 17.700 10.847 0.819 0.880 21.547 13.401 0.699 0.708

Sym(1) 24.957 13.896 0.752 0.841 22.733 14.788 0.679 0.678

Sym(2) 20.366 11.222 0.801 0.854 18.523 11.321 0.701 0.742

Coif(1) 21.858 13.629 0.758 0.849 21.249 14.602 0.637 0.682

Coif(2) 20.961 13.029 0.779 0.856 17.038 12.007 0.739 0.739

FK(1) 24.196 13.693 0.735 0.849 24.820 17.207 0.626 0.625

FK(2) 20.117 11.023 0.803 0.878 24.460 17.159 0.630 0.626

W-RF2 Haar(1) 21.482 11.724 0.755 0.870 31.220 19.566 0.487 0.574

Haar(1) 20.283 11.849 0.755 0.869 20.328 14.414 0.725 0.686

db2(1) 17.399 9.785 0.829 0.892 19.125 11.895 0.735 0.702

db2(2) 16.725 9.289 0.835 0.897 17.390 11.016 0.742 0.755

db4(1) 15.543 8.809 0.849 0.903 18.686 10.950 0.759 0.762

db4(2) 15.854 9.486 0.809 0.895 17.717 11.133 0.725 0.758

Sym(1) 18.413 9.954 0.811 0.888 18.597 12.650 0.786 0.725

Sym(2) 17.024 9.846 0.824 0.891 17.884 11.612 0.731 0.733

Coif(1) 17.989 10.339 0.803 0.886 17.401 12.442 0.777 0.729

Coif(2) 18.092 11.229 0.775 0.876 16.424 11.835 0.701 0.742

FK(1) 20.380 11.313 0.765 0.875 21.780 15.669 0.707 0.659

FK(2) 19.272 10.278 0.772 0.886 20.721 15.279 0.649 0.667

W-RF3 Haar(1) 21.086 11.268 0.742 0.876 30.475 19.959 0.510 0.565

Haar(1) 18.644 11.102 0.759 0.877 20.348 14.645 0.718 0.681

db2(1) 16.958 9.454 0.811 0.896 19.063 12.308 0.783 0.732

db2(2) 16.553 9.428 0.812 0.896 18.441 12.194 0.809 0.748

db4(1) 16.286 9.124 0.820 0.899 20.103 12.049 0.727 0.738

db4(2) 16.677 10.051 0.787 0.889 18.076 11.540 0.702 0.749

Sym(1) 17.013 9.496 0.810 0.896 17.145 11.046 0.794 0.762

Sym(2) 16.313 9.395 0.815 0.896 15.011 10.439 0.832 0.773

Coif(1) 17.478 9.844 0.795 0.891 18.236 13.126 0.754 0.714

Coif(2) 18.619 11.554 0.751 0.872 16.755 11.952 0.684 0.740

FK(1) 19.575 10.579 0.768 0.883 29.008 18.724 0.561 0.592

FK(2) 19.498 10.461 0.762 0.884 20.128 15.145 0.629 0.670

Bold values denote the statistical metrics of superior model in the test phase
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the classic RF could not perform well in estimating the

observed monthly reservoir inflow data. However, coupling

the RF with the CEEMD and W techniques has improved

the accuracy of monthly inflow estimates. In this regard,

W(Sym)(2)-RF3 hybrid model developed under the lagged

Q-based pattern could present the highest convergence

around the perfect 1:1 line.

One of the drawbacks of the scatter plot is that it does

not provide any possibility to compare the distribution of

estimated and observed data. In other words, through the

scatter plot, it is not possible to find out whether the mean

Table 6 Statistical performance of hybrid W-RF models utilizing various mother wavelets under the lagged R-based patterns

Models Wavelet type Train Test

RMSE (m3/s) MAE (m3/s) KGE WI RMSE (m3/s) MAE (m3/s) KGE WI

W-RF1 Haar(1) 24.202 15.092 0.768 0.833 28.613 20.925 0.532 0.544

Haar(1) 24.160 14.868 0.750 0.836 29.237 20.294 0.550 0.558

db2(1) 24.083 17.831 0.615 0.612 28.413 18.649 0.572 0.586

db2(2) 28.595 19.528 0.558 0.575 20.424 15.547 0.702 0.682

db4(1) 23.513 15.097 0.763 0.833 27.004 17.657 0.601 0.615

db4(2) 20.884 13.375 0.787 0.852 27.268 17.850 0.586 0.611

Sym(1) 23.513 15.097 0.763 0.833 27.001 18.134 0.596 0.605

Sym(2) 21.613 12.936 0.797 0.857 19.351 14.020 0.719 0.695

Coif(1) 23.768 14.939 0.739 0.835 25.990 17.891 0.621 0.610

Coif(2) 22.680 13.710 0.750 0.849 29.846 18.783 0.542 0.591

FK(1) 23.787 14.570 0.771 0.839 30.271 21.166 0.529 0.539

FK(2) 22.679 14.020 0.775 0.845 29.179 20.435 0.546 0.555

W-RF2 Haar(1) 21.151 12.604 0.796 0.861 29.659 19.644 0.530 0.572

Haar(1) 20.893 12.474 0.765 0.862 31.176 26.792 0.133 0.417

db2(1) 20.898 11.832 0.785 0.869 28.021 18.846 0.546 0.587

db2(2) 19.864 11.366 0.795 0.874 20.756 14.236 0.710 0.676

db4(1) 20.125 11.619 0.793 0.872 26.709 17.628 0.593 0.616

db4(2) 18.852 11.018 0.799 0.878 24.550 15.689 0.643 0.658

Sym(1) 20.858 14.196 0.521 0.691 26.954 18.029 0.590 0.607

Sym(2) 17.283 11.393 0.684 0.752 19.616 13.878 0.729 0.698

Coif(1) 22.271 12.662 0.746 0.860 23.112 15.894 0.664 0.654

Coif(2) 20.908 12.171 0.772 0.866 24.720 16.306 0.637 0.645

FK(1) 21.693 12.462 0.790 0.862 30.007 20.401 0.528 0.556

FK(2) 20.356 11.781 0.793 0.870 26.056 18.691 0.604 0.593

W-RF3 Haar(1) 20.365 11.704 0.788 0.871 26.605 18.535 0.584 0.596

Haar(1) 20.190 11.950 0.765 0.868 26.309 17.756 0.611 0.613

db2(1) 20.878 11.421 0.772 0.874 25.245 16.980 0.625 0.630

db2(2) 19.580 11.170 0.784 0.877 23.541 16.421 0.674 0.654

db4(1) 19.720 11.121 0.781 0.877 25.187 16.496 0.626 0.641

db4(2) 18.642 10.935 0.793 0.879 22.778 14.951 0.676 0.674

Sym(1) 20.007 11.324 0.738 0.877 24.746 15.811 0.637 0.643

Sym(2) 19.314 11.044 0.805 0.880 21.702 15.255 0.692 0.668

Coif(1) 19.812 11.244 0.774 0.876 22.236 15.457 0.682 0.663

Coif(2) 19.730 11.624 0.774 0.872 23.096 15.759 0.668 0.657

FK(1) 20.370 11.481 0.781 0.873 27.165 19.084 0.578 0.584

FK(2) 42.252 27.010 0.652 0.702 25.441 18.464 0.613 0.598

Bold values denote the statistical metrics of superior model in the test phase
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and variance of the observational data are correctly esti-

mated by the developed models or not. To solve this

problem, a violin diagram can be taken into consideration.

It is better to mention that a violin diagram is another form

of a box plot. Box plots only illustrate the minimum,

maximum, mean, and quarters of the data; but, the violin

diagram is used to visualize the data distribution and its

possible density. The violin graphs for the optimal single

and coupled models are given in Fig. 6. It can be seen that

the single RF models with different inputs have not been

able to estimate the maximum values well, but overesti-

mation has occurred for the minimum and average data.

Table 7 Statistical performance of hybrid W-RF models utilizing various mother wavelets under the lagged Q and R-based patterns

Models Wavelet type Train Test

RMSE (m3/s) MAE (m3/s) KGE WI RMSE (m3/s) MAE (m3/s) KGE WI

W-RF1 Haar(1) 21.471 11.225 0.802 0.876 23.742 16.820 0.650 0.634

Haar(1) 21.354 11.733 0.791 0.870 19.896 13.630 0.766 0.703

db2(1) 18.588 9.629 0.837 0.887 20.845 13.002 0.751 0.715

db2(2) 18.094 9.502 0.842 0.890 16.845 11.482 0.802 0.723

db4(1) 15.303 8.179 0.864 0.910 21.115 11.156 0.731 0.757

db4(2) 14.897 8.636 0.850 0.905 17.540 9.994 0.773 0.782

Sym(1) 18.223 9.350 0.848 0.897 20.430 12.970 0.753 0.718

Sym(2) 17.331 9.332 0.851 0.897 15.726 10.482 0.824 0.772

Coif(1) 17.615 9.951 0.825 0.890 18.375 11.782 0.754 0.743

Coif(2) 17.177 10.218 0.826 0.887 16.844 10.800 0.776 0.765

FK(1) 20.011 10.437 0.809 0.885 23.127 15.946 0.669 0.653

FK(2) 18.450 9.961 0.819 0.890 21.134 15.308 0.711 0.667

W-RF2 Haar(1) 19.252 10.099 0.787 0.888 25.334 17.688 0.616 0.615

Haar(1) 18.822 10.690 0.777 0.882 21.564 14.352 0.723 0.687

db2(1) 17.730 9.342 0.800 0.877 20.124 13.211 0.751 0.712

db2(2) 17.040 9.225 0.806 0.889 15.745 11.956 0.795 0.742

db4(1) 15.161 8.205 0.840 0.909 20.038 11.664 0.740 0.746

db4(2) 15.539 9.062 0.820 0.900 18.904 11.167 0.746 0.757

Sym(1) 17.603 9.258 0.815 0.898 19.961 13.124 0.762 0.724

Sym(2) 16.742 9.141 0.816 0.899 15.418 10.825 0.806 0.764

Coif(1) 17.026 9.506 0.816 0.895 18.283 12.461 0.759 0.729

Coif(2) 17.052 10.059 0.799 0.889 18.403 12.097 0.746 0.737

FK(1) 19.212 10.036 0.794 0.889 22.066 15.990 0.680 0.652

FK(2) 18.625 9.886 0.791 0.891 20.126 15.156 0.710 0.670

W-RF3 Haar(1) 19.819 10.418 0.769 0.885 25.690 18.581 0.602 0.595

Haar(1) 18.582 10.614 0.767 0.883 21.078 16.846 0.618 0.633

db2(1) 18.065 9.834 0.800 0.842 21.124 13.966 0.712 0.633

db2(2) 16.997 9.874 0.838 0.841 15.955 12.112 0.642 0.712

db4(1) 15.657 8.497 0.824 0.906 20.874 12.407 0.716 0.730

db4(2) 15.637 9.160 0.812 0.899 18.095 12.449 0.460 0.729

Sym(1) 17.521 9.236 0.806 0.892 20.680 13.840 0.730 0.699

Sym(2) 16.886 9.128 0.814 0.896 15.884 11.999 0.802 0.739

Coif(1) 17.374 9.687 0.797 0.893 18.729 12.884 0.747 0.719

Coif(2) 17.168 10.198 0.784 0.887 18.799 14.289 0.360 0.689

FK(1) 19.336 10.287 0.773 0.886 24.008 17.386 0.641 0.621

FK(2) 19.085 10.252 0.770 0.887 19.720 15.025 0.502 0.673

Bold values denote the statistical metrics of superior model in the test phase

2764 Stochastic Environmental Research and Risk Assessment (2022) 36:2753–2768

123



The average of the estimated data is skewed. And therefore

have a higher mean than the observational data. A com-

parison of the violin diagrams for the hybrid models of

CEEMD-RF under the different input patterns shows that

they could not be able to estimate the maximum values

correctly. The hybrid W(Sym)(2)-RF3 model implemented

under the lagged Q data-based pattern illustrated the best

performance in estimating the observational inflow data so

that the minimum and maximum values are estimated

proportionally and the average of the estimated data is very

close to the average of the observed values.

5 Conclusion

In the present study, improved models of RF were devel-

oped and proposed for the estimation of monthly reservoir

inflow time series. To reach this goal, CEEMD and W were

hybridized with the classic RF (i.e., CEEMD-RF and

Fig. 5 Scatter plots of the observed and estimated monthly reservoir inflows via the best classic RF and hybrid CEEMD-RF and W-RF models

for the considered input patterns during the test phase
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W-RF coupled models). To implement the hybrid W-RF,

six various mother wavelets were employed under two

decomposition levels. It is worthy to mention that an

entropy-based pre-processing technique was used to

determine the input patterns. The attained outcomes can be

summarized as follows:

• Results of entropy approach revealed that the rainfall

was the most important variable influencing the

monthly inflow time series.

• Among the three different input patterns intended for

the development of simple and hybrid models (i.e.,

antecedent Q-based, antecedent R-based, and combined

antecedent Q and R-based patterns), whole the models

developed via the application of combined antecedent

Q and R data generally illustrated the better

performance.

• Hybridizing the CEEMD and W techniques on the RF

led to better estimations of the monthly inflow time

series compared with the classic RF. Among the best-

performing hybrid models of CEEMD-RF and W-RF,

the best W-RF models demonstrated superior perfor-

mances than the other hybrid ones.

• Testing the six different mother wavelets to couple

them on the classic RF showed that Sym and Coif were

generally the suitable wavelets to improve the estima-

tion accuracy of monthly inflow through the hybrid

W-RF models. On the other hand, Haar and FK

wavelets were the least-performing wavelets.

• It was concluded that the estimation accuracy of W-RF

models was significantly improved through increasing

the decomposition levels from one to two when

decomposing the input data.

This study applied the developed hybrid models for

estimating the monthly reservoir inflow. It is recommended

that the proposed hybrid models, specifically the new

hybrid CEEMD-RF one, could be of use and tested for

modeling the other hydrological phenomena like rainfall,

river streamflow, evaporation, drought, etc. Besides the

hybrid CEEMD-RF and W-RF models proposed in the

current study, more efforts could be made to introduce

other types of coupled techniques via hybridizing the

artificial intelligence models with the time series analysis

and nature-inspired optimization algorithms.
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