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Abstract
Reliable water quality prediction can improve environmental flow monitoring and the sustainability of the stream

ecosystem. In this study, we compared two machine learning methods to predict water quality parameters, such as total

nitrogen (TN), total phosphorus (TP), and turbidity (TUR), for 97 watersheds located in the Southeast Atlantic region of the

USA. The modeling framework incorporates multiple climate and watershed variables (characteristics) that often control

the water quality indicators in different landscapes. Three techniques, such as stepwise regression (SR), Least Absolute

Shrinkage and Selection Operator (LASSO), and genetic algorithm (GA), are implemented to identify appropriate pre-

dictors out of 28 climate and catchment-related variables. The selected predictors were then used to develop the Random

Forest (RF) and Boosted regression tree (BRT) models for water quality predictions in selected watersheds. The results

highlighted that while both algorithms provided reasonable results (based on statistical metrics), the RF algorithm was

easier to train and robust to model overfitting. Partial dependence plots highlighted the complex and nonlinear relationships

between the individual predictors and the water quality indicators. The thresholds obtained from partial dependence plots

showed that the median values of total nitrogen (TN) and total phosphorus (TP) in streams increase significantly when the

percentage of urban and agricultural lands is above 40% and 43% of the watershed area, respectively. Furthermore, when

soil hydraulic conductivity increases, the reduction in runoff results in decreased Turbidity levels in streams. Therefore,

identifying the key watershed characteristics and their critical thresholds can help watershed managers create appropriate

regulations for managing and sustaining healthy stream ecosystems. Besides, the forecasting models can improve water

quality predictions in ungauged watersheds.
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1 Introduction

The rapid change in land use and agricultural practices can

alter the stream water quality (Castela et al., 2008; Mishra

et al., 2020; Walsh et al. 2005; Wang et al., 2021a, b).

Maintaining healthy streams poses a challenge, mainly

because of the many pollutant sources and the complex

interaction between different watershed characteristics

(Waite et al., 2010; Walsh & Webb, 2016; Yu et al., 2014).

The increase in total nitrogen (TN) and total phosphorus

(TP) concentrations in rivers is often linked to the high

percentages of urban lands within a watershed (Bucak

et al., 2018; Castela et al., 2008; Johnson & Ringler, 2014;

Mattsson et al., 2005; Walsh et al. 2005). This high level of

pollutants in streams can lead to eutrophication and water

quality degradation (Correll, 1999; Hecky & Kilham, 1988;

Paerl, 1988).

Previous studies highlighted the significant correlations

between the anthropogenic variables (e.g., urbanization and

agricultural activities) and the concentration of TN and TP

in a watershed (Allan, 2004; Giri & Qiu, 2016; Lintern

et al., 2018). Watershed characteristics and climatic vari-

ables (e.g., topography, soil, climatic data) can also influ-

ence stream water quality(Alnahit et al., 2020; Lintern

et al., 2018; Tramblay et al., 2010). For example, a steep
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slope may influence stream water quality by mobilizing

pollutants into streams, leading to water quality degrada-

tion (Alnahit et al., 2020; Kang et al., 2010; Lintern et al.,

2018). Similarly, soil properties can also affect water

quality (Alnahit et al., 2020; Lintern et al., 2018; Varanka

et al., 2015). For instance, watersheds dominated by parent

rock showed low values of dissolved ions; on the other

hand, soft sedimentary rocks showed high values of dis-

solved ions (Young et al., 2005). Furthermore, a high

phosphorus level in rivers was noticed in a watershed with

high values of sediment depositions (Dillon & Kirchner,

1975). Different watershed characteristics can potentially

influence water quality since they influence the mobiliza-

tion process and the delivery of indicators into rivers

(Granger et al., 2010; Lintern et al., 2018).

Overall, there are two commonly modeling strategies for

predicting stream water quality in ungauged watersheds, (1)

deterministic physically-based models (e.g., distributed

hydrologic and water quality models) and (2) statistical and

machine learning methods (e.g., decision tree models). This

study uses machine learning methods to estimate the long-

term median stream water quality indicators using several

climate and watershed characteristics. Linear regression

models are commonly used to explore the relationship

between water quality and different land-use variables

(Seber & Lee, 2012; Tong & Chen, 2002; Zampella et al.,

2007). However, the effects of watershed characteristics on

water quality indicators are often complex and nonlinear.

Recent machine learning algorithms can handle nonlinear

relationships associated with complex watershed processes

(Alpaydin, 2020; Konapala & Mishra, 2020; Shen et al.,

2020). Moreover, these algorithms determine the relation-

ship between response variables (e.g., water quality indi-

cators) and predictors (e.g., land-use variables) instead of a

priori assumption, improving the model prediction accu-

racy. Several studies have applied techniques adapted from

machine learning models to understand the relationships

between water quality and land use variables(e.g., Bui et al.,

2020; Castrillo & Garcı́a, 2020; Fatehi et al., 2015; Ko et al.,

2015; Puissant et al., 2014; L. Q. Shen et al., 2020; Singh

et al., 2017; Tu & Xia, 2008; R. Wang et al., 2021a, b).

These studies highlighted that these algorithms are more

suitable than linear models such as Bayesian linear regres-

sion, stepwise linear regression, and partial least squares

regression, especially when human/landscape interactions

are complex (Giri et al., 2019; Mouazen et al., 2010).

Among the previously used machine learning algo-

rithms, the boosted regression tree (BRT) algorithm and the

random forest (RF) algorithm recently gained a lot of

attention (Chen et al., 2020; Fang et al., 2021; Knierim

et al., 2020; Konapala & Mishra, 2020; Shen et al. 2020;

Veettil & Mishra, 2020). BRT and RF have fewer param-

eters, and both can investigate and provide estimates

related to the hierarchy of variables in the classification

(Everingham et al., 2016). Additionally, RF and BRT

algorithms (1) have less user-defined parameters; (2) are

flexible in handling nonlinear relationships, missing values,

and outliers; (3) can limit model overfitting; (4) are capable

of incorporating qualitative and quantitative variables; and

(5) have been applied successfully in different areas (Giri

et al., 2019; Konapala & Mishra, 2020; Veettil & Mishra,

2020; Yang et al. 2016; Shen et al. 2020).

Many recent studies highlighted the use of machine

learning algorithms to study the potential influence of

human activities on water quality parameters (e.g., Giri

et al., 2019; Jeung et al., 2019; Onderka et al., 2012;

Tramblay et al., 2010; Tung & Yaseen, 2021; Wang et al.,

2021a, b). However, prior studies have used a limited

number of watersheds and associated variables. Addition-

ally, no prior studies performed a comprehensive analysis

using RF and BRT algorithms to predict water quality

indicators (TN, TP, TUR) for a large number (97 nos) of

watersheds based on a combination of climate, watershed,

and morphological variables in the southeast USA.

This study will complement previous studies that used

only a limited number of watersheds and associated variables.

The median values of water quality indicators are selected for

individual watersheds, and corresponding 28 variables asso-

ciated with watershed, climate, and topographic and soil

characteristics are used for the model development. The

selected watersheds represent various land use, climate,

watershed characteristics with different watershed areas to

improve our understanding of the predictive power of two

selected machine learning algorithms that can capture the

linkage between climate-watershed characteristics and water

quality indicators. The RF and BRT algorithms use an

ensemble of many simple tree models to optimize predictive

performance instead of a single tree model used in the tra-

ditional simple regression. The water quality indicators

investigated in this study are TN, TP, and TUR, while the

predictors (independent variables) represent a combination of

the climatic and watershed characteristics.

Overall, this study aims to address the following

research questions: (1) to compare and identify the best

machine learning algorithms based on the classification and

decision tree approach for water quality (TN, TP, and

TUR) prediction in streams; and (2) to investigate the

functional relationships and interactions among dominant

variables influencing stream water quality based on the

interpretive machine learning techniques (i.e., partial

dependence analysis). The remainder of the manuscript is

organized as follows: Sect. 2 introduces the study area and

data used in the study. The methods employed in the study

are discussed in Sect. 3. Section 4 presents the results,

while the discussion is provided in Sect. 5. The conclusions

drawn from this study are summarized in Sect. 6.
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2 Study area and data

2.1 Study area

This study includes 97 watersheds located in North Car-

olina, South Carolina, and Georgia (Fig. 1a). These

watersheds are located in three main physiographic

regions, including coastal plain, blue Ridge, and Piedmonts

(Turner & Ruscher, 1988). There are more than 250

watersheds with water quality monitoring stations in the

region; however, only 97 watersheds were selected based

on the following criteria: (1) nested watersheds were not

included to avoid pollutant transfer from other watersheds;

(2) watersheds with reservoirs covering more than 25% of

the watershed were excluded, and (3) water quality stations

located less than 50 km downstream of a reservoir outlet

were eliminated.

The watersheds were delineated using a 10 m Digital

Elevation Model (DEM). The latitude and longitude of

each watershed outlet were located, and then the Soil and

Water Assessment Tool (SWAT) was used to generate the

watershed boundary (Arnold et al., 2012). The selected

watersheds vary in size from 72 to 5786 km2. In addition,

the selected watersheds experience different degrees of

human activities (urbanization and agricultural activities)

(Fig. 1b). The primary urbanization form is expanding low-

density residential areas, medium-density residential areas,

and high-density residential areas. Such changes in land

use have altered watersheds hydrology and the environ-

mental conditions of streams in the study area.

The study area climate is characterized by a humid

subtropical climate, with hot summers and mild winters.

The mean annual temperature is 20 �C, while the mean

annual evapotranspiration is 635 mm/year (SCDHEC,

2016). The study area runs from the north to the south, with

elevation ranging from 2035 to 0 m above sea level

(Fig. 1b). Land use is dominated by forest (approximately

55%, mainly located in the northern side of the study area,

Fig. 1b).

Fig. 1 a Selected watersheds located within the Southeastern part of the USA. b Examples of watershed characteristics: land use/land cover and

the digital elevation model (DEM) over the selected watersheds
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2.2 Datasets

For each watershed, the water quality monitoring data from

2000 to 2019, including TN, TP, and TUR, were down-

loaded using data retrieval tools from R software package

‘‘dataRetrieval’’ (https://github.com/USGS-R/EflowStats).

The water quality monitoring data was expressed as a

concentration (mg/l) (or in NTU in the case of TUR). Since

the stationarity of the time series is crucial, the stationarity

was checked at each site using two methods. Specifically,

each time series was split into four sections, and the mean

and variance were computed for each section. The aug-

mented Dickey-Fuller (ADF) unit root test and Kwiat-

kowski–Phillips–Schmidt–Shin (KPSS) test were utilized

(Vazifehkhah et al., 2019). Most of the time series passed

the stationarity tests. We performed first-order differencing

for the time series that did not pass the stationarity test to

generate stationary time series (Mishra & Desai, 2005).

Furthermore, a t-test at a 95% confidence interval was

performed to exclude outliers for each time series.

The watershed characteristics selected in this study were

land use, topography, geology, and climatic data (Table 1).

The land use data were obtained from the National Land

Cover Dataset (NLCD) for the year 2011. The land use data

of 2011 was used to represent the whole period (2000 to

2019) to capture the broad impacts of land use on water

quality. The Soil data was downloaded from the Soil Sur-

vey Geographic (SSURGO) database (SSURGO, 2018).

The climate data (precipitation and temperature) data from

2000 to 2019 over the study area was downloaded from

Parameter-elevation Relationships on Independent Slopes

Model (PRISM) (Daly et al., 2008). PRISM was developed

employing ground rain gauge data, DEM, and interpolation

schemes (Daly et al., 2008). The precipitation and tem-

perature data were averaged over each watershed (areal

average) using the Zonal Statistics tools in ArcMap (Esri,

2014). The topographic data for each watershed (e.g.,

mainstream length–width ratio, watershed slope, and

watershed elevation) was extracted from a 10 m DEM

using SWAT model. Twenty-eight different water-

shed/climatic characteristics were obtained from these

datasets (Table 1). Following previous research, these

characteristics were selected to identify the essential pre-

dictors influencing the water quality indicators (Alnahit

et al., 2020; Lintern et al., 2018; Mainali & Chang, 2018;

Varanka & Luoto, 2012). Based on EPA criteria, the con-

centration for TN and TP should be about 0.90 mg/l and

0.04 mg/l, respectively (US EPA, 2002; Ice & Binkley,

2003). The water quality indicators and land use vary

within the selected watersheds (Fig. 2). For example, the

median TN based on the 97 watersheds ranged from 0.54 to

1.9 mg/l, while the overall median for all watersheds is

about 0.9 mg/l (Fig. 2a). FRST land has the highest per-

centage among different types of land use, followed by

URBAN, AGRL, GRAS, HAY, and WTLN (Fig. 2b).

3 Model development

The Classification and Regression Tree (CART) (Breiman,

2001; Friedman & Meulman, 2003; Golden et al., 2016;

Yang et al. 2016) is a flexible and nonparametric method

implemented in this study. The CART method can handle

outliers, missing values, multicollinearity, and

heteroscedasticity in the datasets. CART method is com-

monly used to investigate complex datasets with numeric

and/or categorical variables (predictor variables) that

interact with each other nonlinearly (De’ath and Fabricius

2000). Both RF and BRT belong to the CART family,

which has been implemented in different disciplines, such

as species distributions (Shabani et al., 2017), groundwater

mapping (Naghibi et al., 2016), water quality (Golden

et al., 2016; Povak et al., 2014), aquatic ecosystems (Elith

et al., 2008; Smucker et al., 2013; Tonkin et al., 2014), and

environmental modeling (Giri et al., 2019; Strobl et al.,

2008).

Watershed characteristics and climatic variables (total

of 28 characteristics) were chosen as predictor variables

(independent variables), while the water quality indicators

(TN, TP, and TUR) were chosen as dependent variables.

The median values of temporal variations of TN, TP, and

TUR at each watershed outlet were calculated and used as

the dependent variables. The one-way variance test indi-

cated significant differences in water quality indicators’

median values among the watersheds [confidence interval

of 95%; a = 0.05; n = 97]. The overall modeling frame-

work is shown in Fig. 3, which are discussed in the fol-

lowing sections.

3.1 Variables selection

Three different approaches were used to select the pre-

dictor variables (Fig. 3b). In addition to using all the 28

predictor variables, a stepwise linear regression (SR) was

used to select the smallest number of relevant variables that

provide the best linear combination (Lima et al., 2016;

Wang et al., 2018). However, SR may have statistical

deficiencies, such as bias estimates, standard error, and size

of p-values (Harrell, 2001; Mo et al., 2016); therefore, the

Least Absolute Shrinkage and Selection Operator (LAS-

SO) was also used for variable selection (Bardsley et al.,

2015; Tibshirani, 1996). LASSO uses a cross-validation

technique to find a set of significant variables with the

optimal performance; LASSO shrinks regression coeffi-

cients to zero if there is a strong correlation with another
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variable (Bardsley et al., 2015). Furthermore, a non-linear

method (genetic algorithm, GA) was included to choose the

most significant climatic/watershed characteristics (Huang

et al. 2016; Taghizadeh-Mehrjardi et al., 2016). GA is an

adaptive optimization search method that mimics Dar-

winian natural selection theory to find optimal values of a

function (Huang et al., 2016; Taghizadeh-Mehrjardi et al.,

2016). Three standard parameter settings were defined for

the GA, population size of 50, crossover rate of 0.80, and

mutation rate of 0.1 based on the recommendation of

(Welikala et al., 2015). The relevant variables based on

the four different datasets were used to develop predictive

models based on RF and BRT algorithms.

3.2 Random forests (RF) model

The RF algorithm approach uses an ensemble of regression

(or classification) tree models (Breiman, 2001). Specifi-

cally, a series of individual trees are build based on random

subsamples from the original data. Each subsample pro-

vides a decision tree, and each decision tree is used to

predict the response variable (or a class). In the end, an

ensemble average of all individual trees is computed. The

inclusion of several trees increases the probability of

deriving an effective prediction model (Breiman, 2001;

Strobl et al., 2008). The accuracy of the random forests

algorithm relies mainly on the strength of the individual

Table 1 Definitions of the selected independent variables to quantify relationships between watershed characteristics and climatic variables on

the mean water quality indicators

Name Definition Unit

(a) Land use variables

URBAN Cumulative percent of low density, medium density, and high-density urban land use %

FRST Cumulative percent of forest land use (e.g., deciduous, evergreen, and mixed) %

GRAS Cumulative percent grassland use (Range-Brush and Range-Grasses) %

HAY Cumulative percent of Hay/pasture lands %

AGRL Cumulative percent of cultivated crops %

WTLN Cumulative percent of wetland land use (Wetlands-forested and Wetlands-non-forested) %

(b) Soil variables

SOL_K Saturated hydraulic conductivity (areal average) mm/hr

SOL_F Soil erodibility (areal average) –

SOL_OM Organic matter content in the soil (areal average) %wt

CLAY Clay content (areal average) %wt

SAND Sand content (areal average) %wt

SILT Silt content (areal average) %wt

SOL_AWC Available water capacity of the soil layer (areal average) mm/mm

SOL_pH Soil pH value (areal average) –

(c) Topography variables

AREA Area of the watershed Km2

WT_S Mean Slope of the watershed %

CH_L The longest flow path in the watershed m

CH_W The mean width of the main channel in the watershed m

CH_D The mean depth of the main channel in the watershed m

CH_S The mean slope of the main channel m/m

CH_WDR The ratio of the main channel (width to depth) –

Elev Elevation of the watershed (weighted average) m

(d) Climatic variables

MeanRain Mean total rainfall (areal average) mm/year

WetMRain Mean rainfall of the wettest month (areal average) mm

DryMRain Mean rainfall of the driest month (areal average) mm

MeanTemp Mean annual temperature (areal average) oC

ColdMTemp Mean temperature of the coldest month (areal average) oC

HotMTemp Mean temperature of the hottest month (areal average) oC
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tree classifiers and the dependency between the classifiers

(Amit & Geman, 1997). Therefore, key parameters for RF

models are the number of trees and predictor variables used

to determine the split at each node (Vorpahl et al., 2012).

Figure 3d illustrates the steps used to develop the RF

prediction model for each watershed’s median water

quality indicators. The RF modeling requires two param-

eters: the number of trees (ntree) and the number of vari-

ables at each tree node (mtry). To optimize the two

parameters, a grid search was performed using different

combinations of ntree and mtry. The range of the number

of ntree was set between 100 and 2000 with an increment

of 50. The number of selected independent variables (mtry)

ranged from 1 to 28 (or the total number of significant

variables based on SR, LASSO, and GA) with an increment

of 1 (Rodriguez-Galiano et al., 2015). The data was split

into 10-folds for cross-validations, and the error rates for

each of the 10 cross-validation partitions were aggregated

into a mean percentage error. Three replicates of the ten-

fold cross-validation were performed, and the process was

repeated 50 times to evaluate the reliability of the predicted

model (Fig. 3d).

The relative importance of each variable was calculated

based on the mean decrease in accuracy (%IncMSE), as

suggested by Genuer et al., (2010). The mean decrease in

accuracy was calculated as a percentage of mean square

error (MSE) increment when removing that variable from

the prediction set. A higher value of %IncMSE for a

variable indicates that the predictor has higher relative

importance than other predictors. Partial dependence plots

in RF model were also calculated for each independent

variable.

3.3 Boosted regression trees (BRT) model

The Boosted regression trees (BRT) technique is an

improvement of the regression trees model. BRT uses a

boosting technique to combine decisions from a sequence

of base models to enhance the accuracy of the final model

(Elith et al., 2008; Naghibi et al., 2016; Yang et al. 2016).

BRT is a forward and stagewise procedure, where a sub-

sample of the original data is randomly selected to fit new

tree models to minimize a loss function (Golden et al.,

2016). The final fitted model is a linear function of the sum

(a)

(b)

Fig. 2 Box plots showing the

range of a water quality

constituents (TN, TP, and TUR)

and b land-use types.

Definitions of land-use variables

are shown in Table 1
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of all trees multiplied by the contribution of each tree used

to build the model (Elith et al., 2008). The bag fraction

(BF) in BRT is the proportion of the training set used for

each model fit, learning rate (LR) is the contribution of

each tree to the model development, and tree complexity

(TC) is the number of nodes in a tree. The number of trees

(NT) required for the best model prediction is calculated

based on LR and TC (Elith et al., 2008).

In BRT modeling, four parameters (LR, T, NT, and BF)

need to be defined, and to optimize these parameters,

several experiments were conducted using different com-

binations of LR, TC, and NT. The values of LR varied

from 0.001 to 0.03 at 0.002 increments; the values of TC

were varied from 1 to 7 with an increment of 1; the NT

values varied from 100 to 2000 at an increment of 100.

These combinations generated an optimal BRT model

using three repetitions of tenfold cross-validation. As in the

case of RF model, the process was repeated 50 times

(Fig. 3d). The variable of importance was found by the

number of times a variable appeared in all trees. The mean

of the relative importance of each variable from various

trees was calculated. This mean was used to build a hier-

archy of overall relative importance (Elith et al., 2008;

Friedman & Meulman, 2003; Golden et al., 2016; Yang

et al. 2016). The partial dependence plots were generated to

determine the effect of the individual independent variables

on the fitted function.

Fig. 3 The modeling framework to model the median water quality constituents in streams
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Both BRT and RF algorithms use several decision trees

to enhance the predictive performance. BRT and RF use

different techniques (boosting in the case of BRT and

bagging method in the case of RF) that may lead to dif-

ferent results. Specifically, the boosting method is built-in

subsequent trees, while the bagging approach is built-in

parallel (independently). In addition, boosting is an itera-

tive process, where tree models are built to improve the

weak learners in each tree to enhance the overall model

prediction accuracy (Elith et al., 2008). In the case of

boosting method, the fitted values in the final model are the

sum of all trees multiplied by the contribution of each tree

(Elith et al., 2008). On the other hand, trees are grown

independently in the bagging method, which means that

each event would have an equal probability of being

selected in subsequent samples. Each tree is given equal

weight for final decision-making instead of higher weight

for a better performing tree during training in the boosting

method (Breiman, 2001; Yang et al. 2016).

3.4 Partial dependence

The concept of partial dependence aims to quantify the

functional relationship between dominant predictors and

the water quality indicators in streams. Partial dependence

is evaluated by integrating the effects of all the predictors

beside the covariate of interest (Breiman, 2001). Partial

dependence of a variable xk is computed by averaging it

over the input predictors Xi; i ¼ 1; . . .; nf g with fixed xk as

fk
�
ðxkÞ ¼

1

n

Xn

i¼1

fk
�
ðxi;Ck

; xkÞ ð1Þ

where bf is the output based on the RF and BRT models.

This partial dependence estimate is usually constructed to

understand the functional relationship between the vari-

ables (xk) and their potential influence on the water quality

indicators. Here, we assessed partial dependence for a

subset of dominated predictors for each model (RF and

BRT) to visualize the effects of a given single predictor on

the outcomes of classification (RF and BRT). For a given

value of the predictor, the prediction is quantified by

averaging the predictions over all other predictors in the

dataset.

3.5 Model validation

BRT and RF models were evaluated using a tenfold cross-

validation method. The final models for each of the water

quality indicators were evaluated using three statistical

measures: Nash–Sutcliffe efficiency (NSE), mean absolute

error (MAE), and root mean square error (RMSE) (shown

in Eqs. 2–4, respectively).

NSE ¼ 1�
Pn

i¼1 ðOi � PiÞ2Pn
i¼1 ðOi � OÞ2

ð2Þ

MAE ¼ 1

n

Xn

i¼1

Oi � Pij j ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðOi � PiÞ2
s

ð4Þ

where n is the number of watersheds, Oi is the observed

water quality variable at the watershed i, O is the mean of

the observed data, P is the mean of the predicted data, and

Pi is the predicted water quality constituent at the water-

shed i.

NSE represents the observed and predicted data in 1:1

line, and the prediction becomes optimal as NSE approa-

ches to 1.0. MAE indicates how close the prediction to the

observation, while RMSE is the standard deviation of the

residuals. MAE and RMSE are computed and reported in

the same units as the variable being evaluated (Moriasi

et al., 2015). Empirical relationships were categorized by

R2 values as weak (R2 B 0.25), moderate

(0.25\R2\ 0.75), and strong (R2 C 0.75) correlation

following the recommendation of Hair et al., (2013).

4 Result

4.1 Variables selection using three methods

We performed a preliminary analysis based on Spearman’s

correlation matrix (31 9 31) for water-quality indicators

(TN, TP, and TUR) and watershed/climatic characteristics

(28 variables) (Fig. 4). A cell with a white color indicates

that the correlation is statistically insignificant (p[ 0.05).

A positive correlation between TN and URBAN and a

positive correlation between TN and SOL_AWC was

observed. There is also a negative correlation between TN

and FRST, a negative correlation between TN and WT_S,

and weak correlation between TN and other water-

sheds/climatic characteristics. Similarly, a positive corre-

lation between TP and both URBAN and SOL_AWC,

negative correlations between TP and both FRST and

GRAS, and a weak correlation between TP and other

watersheds/climatic characteristics was observed. There

are positive correlations between TUR and URBAN,

FRST, and HAY across each watershed. Additionally, the

proportion of clay and silt and the SOL_pH in a watershed

are positively correlated with the median TUR values. On

the other hand, TUR shows a negative correlation with

GRAS, AGRL, WTLN lands at each watershed. Similarly,

the proportion of sand and SOL_OM and SOL_K show a
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negative correlation with TUR. The Elev and CH_S show a

positive correlation with TUR. All climatic variables (ex-

cept MeanRain and DryMRain) exhibit a negative corre-

lation with TUR values in streams.

Interestingly, while the concentrations of TN and TP are

negatively correlated with FRST according to the Spear-

man correlation (Fig. 4), FRST is positively correlated

with TUR. This is likely due to the spatial correlation

between FRST lands and climatic and topographic water-

shed characteristics. Specifically, watersheds with higher

elevation and steep slope are dominated by FRST (posi-

tively correlated with elevation and mean steep channel).

Hence, FRST under these conditions may lead to more

sediments and particulates being transported into receiving

streams, resulting in higher TUR values (Lintern et al.,

2018; Alnahit et al., 2020).

Figure 5 shows the significant predictors for each water

quality indicators (TN, TP, and TUR) selected based on

SR, LASSO, and GA methods. Overall, based on the SR

approach, three significant predictors are found for TN,

four significant predictors are found for TP, and five sig-

nificant predictors are found for TUR. On the other hand,

the LASSO approach suggests that eleven predictors are

significant for TN, ten predictors are significant for TP. In

contrast, only eight predictors are found to be significant

for TUR. A higher number of predictors are selected based

on the GA approach; for example, sixteen significant pre-

dictors are selected for TN and TP, and nine predictors for

TUR (Fig. 5). Specifically, URBAN, and AGRL are

Fig. 4 The correlation matrix showing Spearman’s correlation

analysis between the median water quality constituents and watershed

characteristics/climatic variables. [Note: A cell with a white color

indicates that the correlation is statistically insignificant (p[ 0.05).

The definition of predictors is shown in Table 1
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identified for TN by all methods. Other predictors, such as

GRAS, HAY, and WTLN, were selected by all methods

(except SR method) for TN.

The soil parameter such as mean SOL_OM selected by

all the methods was a important predictor for TN and

picked by two methods for TP. Similarly, MeanRain and

mean channel slope (CH_S) are significant variables based

on LASSO and GA methods (Fig. 5a). Overall, URBAN

and AGRL are selected by all methods for TP, while FRST,

GRAS, Elev, and DryMRain are significant predictors

based on the LASSO and GA methods (Fig. 5b). For TUR,

all the three methods identified WTLN and the mean

SOL_K as significant predictors, while all methods select

URBAN and CH_L except for SR method (Fig. 5c). This

discussion highlighted the choice of predictors can vary

based on the methods (SR, LASSO, and GA), therefore it is

important to evaluate the performance for the predictors for

(a) (b) (c)

Fig. 5 Variable selection based on stepwise regression (SR), Least absolute shrinkage and selection operator (LASSO), GA (genetic algorithm),

and ALL (All 28 predictor variables). [Note: A cell with a gray color indicates that the variable is selected by the variable selection method]
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water quality prediction, as discussed in the following

section.

4.2 Evaluation of RF and BRT models

We evaluated the performance of the selected climate and

watershed variables for water quality prediction over 97

watersheds. The input (predictor) variables for RF and

BRT models are selected based on all 28 predictor vari-

ables (ALL), and are those identified based on the SR,

LASSO, and GA methods. These four types (ALL, SR,

LASSO, and GA) of input variables are selected for the

individual watersheds, and the median values of water

quality indicators for the same watershed is considered as

an output of the model. For each water quality constituent,

eight models are evaluated (four models using RF and four

models using BRT models). The models are named as

RF_slection method (BRT_selection method). For exam-

ple, RF_LASSO represents a random forest model devel-

oped based on the variables selected by LASSO. The

model performances are quantified based on the three

goodness-of-fit statistics (NSE, MSE, and RMSE). The box

plots of goodness-of-fit statistics developed based on

selected watersheds are shown in Fig. 6.

Figure 6 shows that all models (except SR models)

predicted the TN, TP, and TUR concentrations moderately

well based on the median values of NSE, MAE, and

RMSE. Additionally, the models selected by LASSO, GA,

and the ALL models show similar levels of prediction

accuracy based on the median values of NSE. The selected

climatic and watershed characteristics as predictors

explained at least 48% of TN, TP, and TUR variation in

streams are (as indicated by NSE values). Specifically, the

median NSE values explain approximately 53% of the

variability in the TN, 55% of the variability in the TP, and

48% of the variability in the TUR in streams for both RF

and BRT algorithms. Additionally, the random forest

model algorithm performed slightly better compared to the

boosted regression models for TN, TP, and TUR models

(Fig. 6). For example, when using predictors selected by

the GA method for TN, the model of RF_GA has higher

median values of NSE (0.56) with lower median values of

MAE (0.022) and RMSE (0.061) compared to BRT_GA

model (NSE = 0.53, MAE = 0.024, and RMSE = 0.061).

The relative importance of the top five predictors for the

TN, TP, and TUR models using RF and BRT are presented

in Fig. 7 and Fig. 8, respectively. The relative importance

of each predictor is calculated as the mean value of the 50

runs of each model. The TN variability in streams is

influenced mainly by the presence of URBAN lands,

AGRL lands, and GRAS lands, as well as the mean total

rainfall (MeanRain) over a watershed. URBAN lands show

the highest relative importance for all TN models, followed

by AGRL lands for RF_SR, RF_LASSO, and RF_GA

methods and FRST lands in the case of RF_ALL model.

On the other hand, the TP variability is influenced by

URBAN, AGRL, GRAS, and watershed soil properties (the

proportion of CLAY/SILT within a watershed in the SR

and LASSO models). URBAN lands have the highest rel-

ative importance for all TP models, followed by MeanRain

in the case of RF_SR, RF_LASSO, and RF_GA models

and by HAY in the case of RF_SR model. For TUR,

WTLN shows the highest relative importance for all TUR

models (Fig. 7). The mean watershed slope (WT_S)

appeared as an important variable in TUR_SR and

TUR_ALL models.

RF and BRT models identified similar top five predic-

tors with a high relative influence on the water quality

indicators (Figs. 7 and 8). For instance, the five predictors

of TN models for RF_GA and BRT_GA are the same;

however, the relative importance is slightly different.

URBAN is the most important predictor for TN followed

by AGRL, MeanRain, GRAS, and HAY in the case of

RF_GA model, while for BRT_GA model, URBAN is the

most important predictor for TN followed by HAY,

MeanRain, GRAS, and AGRL across the selected

watershed.

Overall, the results from both the RF and BRT models

suggest that the top five influential predictors for TN, TP,

and TUR in streams are similar; however, the relative

influence of each predictor is different in each model. This

is expected as each machine-learning algorithm uses dif-

ferent inherent model structures. Specifically, RF algorithm

generates tree independently (in parallel) where each tree is

assigned equal weight for the final decision. This is dif-

ferent from the stagewise method of tree development that

coupled with higher weight for better performing etree in

the case of BRT. Besides, the bagging method in RF

algorithm aims to minimize the variance in model fitting,

while the boosting algorithm in BRT focuses on improving

weak classifiers at each tree. Additionally, RF algorithm is

slightly better compared to BRT algorithm. This may be

due to a higher overfitting issue in BRT compared to RF.

This is likely because, in the boosting algorithm, trees are

grown in an adaptive way to eliminate any bias, which may

reduce the variance, resulting in a model overfitting.

5 Partial dependence plots

Partial dependence plots can provide the functional rela-

tionship between an individual climate/watershed variable

and the predicted water quality indicators. We assessed the

partial dependence of the top dominant variables on water

quality indicators for both RT and BRT models (Figs. 9

and 10, respectively). The partial plots are developed based
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on the key variables, which includes URBAN, FRST,

AGRL, GRAS, WTLN, and SOL_K.

Among the most important predictors, TN and TP reveal

a positive trend with the URBAN and AGRL, while they

share a negative trend with the percentage of FRST and

GRAS lands in the study area (Fig. 9). Specifically, for RF

models, TN and TP values in streams decrease linearly as

the GRAS cover increase in the watershed. On the other

hand, in BRT models, the GRAS cover is nearly linearly

related to TP in streams when the percentage of GRAS was

above approximately 9% of the watershed, while TN val-

ues in streams show a slight increase when the GRAS

cover is around 10% of the watershed and then leveled out

when the watershed is above approximately 21% of the

watershed area (Fig. 10). Overall, for RF models, the

partial plots suggest that TN and TP increased abruptly

when the percentage of URBAN was above approximately

40% and 55% percent of the watershed, respectively and

when AGRL land is above 43%.

(a)

(b)

(c)

Fig. 6 The models’ performance for predicting the median values of TN, TP, and TUR using random forest (RF) and boosted regression tree

(BRT) with 50 runs for the different variable selection methods. The selected input variables for each method are shown in Fig. 5
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TUR shows a negative trend with the percentage of

WTLN and the mean values of SOL_K, while TUR exhi-

bits a positive trend with the percentage of URBAN and

FRST. Specifically, the TUR levels in streams in both RF

and BRT tend to increase as URBAN and FRST land cover

increased, but only below values of about 50% of the

watershed area.

6 Discussion

This study shows that urban and agricultural lands are the

largest contributors to nutrient loads (TN and TP) delivered

to streams. The relative importance analyses and partial

dependence plots suggest that the increase in human

activities (e.g., urbanization and cropping) in a watershed

has led to greater TN and TP concentrations in streams.

This larger proportion of urbanization in the watershed,

resulting in high TN and TP in streams, may be due to the

increased use of fertilizer on urban lawns, the presence of

treatment plants, and stormwater discharges (Perry &

(a)

(b)

(c)

Fig. 7 The relative influence of the top 5 predictors of the median TN, TP, and TUR models based on the Random Forests (RF) algorithm
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Vanderklein, 1996; Polsky et al., 2014; Tasdighi et al.,

2017). These findings are expected and in agreement with

previous studies that noted a positive correlation between

the TN/TP and the percentage of the cropping and urban-

ization in the watershed (Agouridis et al., 2005; Pratt &

Chang, 2012; Tasdighi et al., 2017; Wan et al., 2014;

Wilson & Weng, 2010).

Additionally, WTLN lands appeared as a significant

predictor for all TUR models and it has the highest relative

importance value for most TUR models (Figs. 7 and 8).

This is expected and it may be associated with wetlands

near streams which act as a sink for particulate matter (Cui

et al., 2016; Shen et al., 2019; Suzuki et al., 2018). On the

other hand, FRST and GRAS have higher relative impor-

tance for TN and TP predictions in most models (Figs. 7

and 8). On the other hand, the negative correlation between

TN and TP with GRAS and FRST is expected as the

GRAS, and FRST can potentially decrease nutrients in

streams (Giri & Qiu, 2016; Tu & Xia, 2008).

Soil characteristics appear in all the models for TUR.

For example, the proportion of clay in the watershed and

the SOL_K appeared in the TUR models. When there is a

Fig. 8 The relative influence of the top 5 predictors of the median TN, TP, and TUR models based on the Boosted tree regression (BRT)

algorithm

2674 Stochastic Environmental Research and Risk Assessment (2022) 36:2661–2680

123



high percentage of clay and silt in soils, hydraulic con-

ductivity (SOL_K) can be lower, leading to more runoff.

Particulates are transported mainly from the watershed into

streams by runoff. This high rate of runoff can lead to more

particulates being transported over longer distances

(Charlton, 2007; Wood, 1977), thus contributing to

increased TUR and TP in streams. In addition, the positive

relationship of TUR with the SOL_OM (organic matter) is

expected, as many previous studies have indicated that

organic matter can increase TUR in streams (Lenhart,

2008; Lenhart et al., 2010; Waters, 1995).

Moreover, the RF algorithm was easier to calibrate and

robust to overfitting problems than BRT, which is partly

associated with the bagging algorithm method that reduces

the variance of the prediction model. These findings are

consistent with previous findings showing that RF per-

formed better than BRT (Giri et al., 2019; Park & Kim,

2019; Shabani et al., 2017; Wang et al., 2018). For

example, Park and Kim (2019) found that RF was slightly

better than BRT in predicting landslide susceptibility

mapping using different variables, such as topography and

land use variables. Additionally, Shabani et al. (2017)

showed that RF outperforms BRT when predicting the best

location to distribute the date palm trees under different

climate change scenarios. Overall, one of the advantages of

using these machine learning algorithms (RT and BRT)

compared to the traditional approaches (linear regression)

is their ability to handle nonparametric datasets as well as

nonlinear relationships (Grömping, 2009; Noi et al., 2017;

Trawiński et al., 2012).

Fig. 9 Partial dependence plot based on Random Forests for TN, TP, and TUR in the streams
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Previous studies used stepwise regression (SR) to

identify the most significant watershed characteristics

influencing stream water quality (Hajigholizadeh &

Melesse, 2017; Shrestha & Kazama, 2007; Wang et al.,

2018). However, in this study, SR selected fewer predictors

compared to LASSO and GA methods (Fig. 5) and did not

perform well for RF and BRT models (Fig. 6). This may be

due to the statistical deficiencies in the SR method, such as

the distribution of test statistics, bias estimates, and stan-

dard error (Mo et al. 2016). Specifically, the regression

error in the SR procedure follows the Gaussian distribution

where the predictors and response variables are usually

transformed into a Gaussian distribution. This may influ-

ence the interpretation of the regression coefficients (Has-

tie et al., 2017). More importantly, when solving a non-

convex optimization problem, the SR procedure often fails

to find a global optimal set of variables and stays at a local

optimum (Hastie et al., 2017). On the other hand, LASSO

uses cross-validation to find predictors with the optimal

generalization performance (Arlot & Celisse, 2010), which

enhance the selection capability and providing better

results compared to SR (Hammami et al., 2012). Overall,

the model performance results showed that using GA

models performed slightly better than LASSO and ALL

models. These findings agree with Xie et al. (2015) and

Wang et al. (2018), where the GA model was found to

improve soil type recognition accuracy by 3–10%. These

studies highlighted that SR models performed the worst, as

it chooses a predictor based on the correlation’s strength

and ignoring interaction effects between predictors.

Fig. 10 Partial dependence plot based on Boosted tree regression for TN, TP, and TUR in the streams
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The models developed in this study can improve water-

quality management decisions. The water-quality managers

can implement the partial plots to identify the impact

thresholds for different land use and watershed character-

istics to formulate watershed regulation and find impaired

water bodies that have not yet been assessed. Although this

study focused on the Southeastern part of the United States,

the methodology can be extended to other United States

regions to evaluate the long-term median stream water

quality.

7 Conclusion

Understanding the variability of water quality in rivers is

essential to improve and predict water quality and envi-

ronmental conditions in watersheds. Random forests and

Boosted regression tree algorithms were evaluated to

determine the most reliable model to predict the long-term

median water quality indicators (TN, TP, and TUR). Dif-

ferent climatic and watershed characteristics across 97

watersheds located in the Southeastern of the US were used

as predictor variables. The results showed that the random

forests algorithm performed slightly better than boosted

regression tree algorithm for predicting the median values

of TN, TP, and TUR. The cross-validation results sug-

gested that the prediction accuracy of the random forest

explained 53%, 55%, 48% of variation in TN, TP, and

TUR in streams, respectively. The RF algorithm was easy

to train due to lesser user-defined parameters compared to

BRT. Additionally, RF addressed the model overfitting

issue slightly better than BRT as it uses a bagging algo-

rithm that reduces the variance of the predictive function.

Because of this, the relative importance of predictors (cli-

matic and watershed characteristics) for the response

variables (TN, TP, and TUR) was slightly different for both

algorithms, leading to slight differences in model

predictability.

The results also highlighted the importance of forest and

grasslands within a watershed to sustain healthy streams.

Identifying a threshold can help water quality watershed

managers develop watershed regulations or design a

restoration program based on scientific criteria. While the

partial plots can be useful to identify key variables to

enhance stream water quality management, additional

research is needed to evaluate the different hotspots ((e.g.,

septic tanks, industries, biogeochemical hotspots, and the

distance of pollutant sources from the streams) within the

watersheds on the long term spatio-temporal water quality

changes.
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Onderka M, Wrede S, Rodný M, Pfister L, Hoffmann L, Krein A

(2012) Hydrogeologic and landscape controls of dissolved

inorganic nitrogen (DIN) and dissolved silica (DSi) fluxes in

heterogeneous catchments. J Hydrol 450:36–47

Paerl HW (1988) Nuisance phytoplankton blooms in coastal,

estuarine, and inland waters 1. LimnolOceanograp

33(4part2):823–843

Park S, Kim J (2019) Landslide susceptibility mapping based on

random forest and boosted regression tree models, and a

comparison of their performance. Appl Sci 9(5):942

Perry JA, Vanderklein E (1996) Water Q Natural Resour Manage

Polsky C, Grove JM, Knudson C, Groffman PM, Bettez N, Cavender-

Bares J, Hall SJ, Heffernan JB, Hobbie SE, Larson KL (2014)

Assessing the homogenization of urban land management with

an application to US residential lawn care. Proc Natl Acad Sci

111(12):4432–4437

Povak NA, Hessburg PF, McDonnell TC, Reynolds KM, Sullivan TJ,

Salter RB, Cosby BJ (2014) Machine learning and linear

regression models to predict catchment-level base cation weath-

ering rates across the southern Appalachian Mountain region,

USA. Water Resour Res 50(4):2798–2814

Pratt B, Chang H (2012) Effects of land cover, topography, and built

structure on seasonal water quality at multiple spatial scales.

J Hazard Mater 209:48–58

Puissant A, Rougier S, Stumpf A (2014) Object-oriented mapping of

urban trees using Random Forest classifiers. Int J Appl Earth Obs

Geoinf 26:235–245

Rodriguez-Galiano V, Sanchez-Castillo M, Chica-Olmo M, Chica-

Rivas M (2015) Machine learning predictive models for mineral

prospectivity: An evaluation of neural networks, random forest,

regression trees and support vector machines. Ore Geol Rev

71:804–818

Seber GAF, Lee AJ (2012) Linear regression analysis (Vol 329).

Wiley, New York

Shabani F, Kumar L, Solhjouy-Fard S (2017) Variances in the

projections, resulting from CLIMEX, Boosted Regression Trees

and Random Forests techniques. Theoret Appl Climatol

129(3):801–814

Shen G, Yang X, Jin Y, Xu B, Zhou Q (2019) Remote sensing and

evaluation of the wetland ecological degradation process of the

Zoige Plateau Wetland in China. Ecol Ind 104:48–58

Shen LQ, Amatulli G, Sethi T, Raymond P, Domisch S (2020)

Estimating nitrogen and phosphorus concentrations in streams

and rivers, within a machine learning framework. Scientific Data

7(1):1–11

Shrestha S, Kazama F (2007) Assessment of surface water quality

using multivariate statistical techniques: A case study of the Fuji

river basin, Japan. Environ Modell Softw 22(4):464–475

Singh B, Sihag P, Singh K (2017) Modelling of impact of water

quality on infiltration rate of soil by random forest regression.

Model Earth Syst Environ 3(3):999–1004

South Carolina Department of Health and Environmental Control,

Watershed Water Quality Assessment (2016)

Smucker NJ, Becker M, Detenbeck NE, Morrison AC (2013) Using

algal metrics and biomass to evaluate multiple ways of defining

concentration-based nutrient criteria in streams and their

ecological relevance. Ecol Ind 32:51–61

Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A (2008)

Conditional variable importance for random forests. BMC Bioinf

9(1):1–11

Suzuki J, Imamura M, Nakano D, Yamamoto R, Fujita M (2018)

Effects of water turbidity and different temperatures on oxidative

stress in caddisfly (Stenopsyche marmorata) larvae. Sci Total

Environ 630:1078–1085

Taghizadeh-Mehrjardi R, Nabiollahi K, Kerry R (2016) Digital

mapping of soil organic carbon at multiple depths using different

data mining techniques in Baneh region, Iran. Geoderma

266:98–110

Tasdighi A, Arabi M, Osmond DL (2017) The relationship between

land use and vulnerability to nitrogen and phosphorus pollution

in an urban watershed. J Environ Qual 46(1):113–122

Tong STY, Chen W (2002) Modeling the relationship between land

use and surface water quality. J Environ Manage 66(4):377–393

Tonkin JD, Stoll S, Sundermann A, Haase P (2014) Dispersal distance

and the pool of taxa, but not barriers, determine the colonisation

of restored river reaches by benthic invertebrates. Freshw Biol

59(9):1843–1855

Tramblay Y, Ouarda TBMJ, St-Hilaire A, Poulin J (2010) Regional

estimation of extreme suspended sediment concentrations using

watershed characteristics. J Hydrol 380(3–4):305–317
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