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Abstract
In an environment, one of the natural geological hazards is land surface subsidence. Underground mining and subsurface

coal fires are primarily responsible for subsidence of land. Activities, such as, over-exploitation of coal, minerals,

groundwater and petroleum resources, depillaring of the existing galleries and water logging of the relinquished galleries

are the major factors resulting in subsidence. The deformation is primarily measured in terms of change in ground elevation

values (Z-dimension) at different time intervals at identified ground locations. All the conventional and exiting techniques

have certain limitations in monitoring and predicting land surface subsidence. In this work, we predict the land subsidence

in Jharia Coalfield, Dhanbad, India for one year in the interval of twelve days on the datasets collected through a

monitoring technique called Modified PSInSAR. The sample datasets contains 14 locations and 67 previous land subsi-

dence value calculated from each location. We train and test predictive models and perform the prediction of the land

subsidence using Vanilla and Stacked long short-term memories. Finally, we demonstrate the predicted deformation values

of the 14 locations for one year. The prediction model shows the subsidence rate in Nai-dunia basti near Jharia, Dhanbad is

alarming as 93.8 mm/year where as Digwadih and Godhar showed the critical rate as 82 mm/year.

Keywords Deformation monitoring � Land subsidence prediction � Modified PSInSAR � Recurrent neural networks �
Vanilla and stacked LSTM

1 Introduction

In an environment, one of the natural geological hazards is

land surface subsidence. Underground mining and subsur-

face coal fires are primarily responsible for subsidence of

land. Activities, such as, over-exploitation of coal, miner-

als, groundwater and petroleum resources, depillaring of

the existing galleries and water logging of the relinquished

galleries are the major factors resulting in subsidence

(Kumar et al. 2020; Pandey et al. 2016; Chatterjee 2006;

Jianjun et al. 2012). Subsidence vulnerability becomes

more in those areas where large underground voids have

been created by extracting coals, ores, etc. (Ishwar and

Kumar 2017; Qin and Perissin 2015; Engelbrecht and Inggs

2013; Paradella et al. 2015; Gupta et al. 2014; Guang et al.

2009; Miao et al. 2008). It is very terrible as it involves

human loss and great loss of national properties. It also

affects the surface and subsurface water resources and the

ultimate result is the degradation of the environment. Mine

subsidence can take a shape of disaster in inhabited areas if

preventive measures are not taken in time. Unfortunately,

the increasing demand of energy and mineral resources

worldwide has brought mechanization and rapid expansion

of mining activities. With the increase of mining activities,

there will be a corresponding increase in mine subsidence

problems causing more damage unless proper subsidence

control measures are taken. Control measures are directly

dependent on detection, monitoring and prediction pattern

of subsidence area. Spatial-temporal monitoring and need

for precise calculation of land subsidence for mapping in

zonal management and corresponding control of surface
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deformation caused by both underground mining and

subsurface fires. However, the effectiveness of the pre-

ventative and protective measures of subsidence greatly

depends upon the accuracy of subsidence monitoring and

associated prediction parameters.

Most of the existing techniques of subsidence monitor-

ing are based on ground-level that rely on the instruments

as Precise Level (PL), Auto Level (AL), Digital Level

(DL), Total Station (TS), etc. These instruments with

associated field survey techniques provide a highly relevant

measurement with a millimeter accuracy, but very cum-

bersome in comparison to modern geo-spatial techniques.

Ground-based subsidence monitoring methods are also not

safe because measurements are required to be taken along

subsidence prone areas. Global Navigation Satellite System

(GNSS) based techniques have made the measurement

quite easier in terms of portability of the instruments and

satellite dependencies for the data acquisition (Chatterjee

et al. 2015; Wang et al. 2011; Jing-Xiang and Hong 2009;

Lü et al. 2008). However, GNSS suffers from some of the

same vexing problems as physical movement required in

subsidence prone areas with very costly instruments. The

limitations of GNSS techniques have been overcome by

spaceborne imaging techniques. Spaceborne subsidence

monitoring has emerged as a better technique after the

development of Synthetic Aperture Radar (SAR) Interfer-

ometry. The radar satellites can observe almost anywhere

on the surface with ease, even during darkness and cloudy

conditions, which makes it invaluable for subsidence

monitoring. Interferometric Synthetic Aperture Radar

(InSAR) technique uses two or more SAR images to gen-

erate maps of surface deformation or digital elevation,

using differences in the phase of the waves returning to the

satellites. Its limitation is accuracy as atmospheric errors

introduce several errors. When images are acquired at

different times (temporal baseline), utilizing the Differen-

tial SAR Interferometry (DInSAR) technique, it is possible

to measure the changes of the surface elevation. These

measurements are shown by a series of colored bands, the

so-called fringes or interferogram as shown in Fig. 1, as the

Angarpathra, Godhar, and Bastacola mines of Jharia coal

field (JCF).1 The DInSAR technique also has limitations of

accuracy and reliability of specific area deformation. The

Persistent Scatterer Interferometric Synthetic Aperture

Radar (PSInSAR) technique shows relatively better results

for deformation of the land surface and with higher

accuracy.

The Long short-term memory (LSTMs) are the variants

of recurrent neural networks (RNNs) mainly used for time

series forecasting. The LSTMs are categorized into

Vanilla, Bidirectional, and Stacked LSTMs. The LSTMs

have been used to predict the Land subsidence in (Li et al.

2020; Qiao et al. 2020; Mubashar et al. 2021; Pu et al.

2018) and Bidirectional LSTMs are used in (Shen et al.

2021; Qu et al. 2019). The LSTMs are efficiently predict-

ing the Land subsidence from the given datasets with better

accuracy. It is better to use the Bidirectional LSTMs

because it processes the data in both forward and backward

time order. The Vanilla and Stacked LSTMs are the vari-

ants of LSTMs, where Vanilla LSTMs reduces the memory

usage four times better than the LSTMs. So that we can

minimize the additional memories during evaluation, and it

also speeds up the training and testing. The stacked LSTMs

are performing the operations simultaneously using a

hierarchy of hidden layers, and it evaluates the complex

data very easily with improved accuracy (Gangopadhyay

et al. 2018; Liang et al. 2018).

Our research is based on the processing and analysis of

free available SAR datasets as SENTINEL-1A SAR data.

These SAR Datasets are available on a specific web portal

in archive format for the researchers’ but lagging by a few

months to be available some times. The modified PSInSAR

technique is giving large Excel sheet of movement of

location termed as PS point and pictorial view with coded

colour to identify subsidence on map. The Vertical

movement of the PSs near GNSS control stations

(Fig. 2) have been validated with processed GNSS data

output. Here an excel sheet of 26,000 rows and 100 col-

umns had been generated but we ran a sample of 14 rows

data sets to study the LSTM module for 1-year prediction.

The prediction is for the future so the output of the pro-

cessed SAR data in Excel format is transferred to the

LSTM module for further prediction at 12 days’ intervals

for a year. This prediction is giving alarming information

to deal with settlement and inhabitants residing in the

vicinity and saving the life and economy of the nation.

The contributions of this article are summarized as

follows:

• We develop a modified PSInSAR processing Technique

by changing the range, subset area, pixel value, boxcut

Angarpathra

Bastacola

Godhar

Fig. 1 Fringes by DInSAR processed of ALOS PALSAR Images in

mines of JCF 1 Jharia coal field (JCF), Jharkhand state, India.
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filtering on SAR images. This processing technique

helps in increasing the accuracy of the deformation

velocity. The outcome of the approach is in the form of

colour coded subsidence locations, referred as Perma-

nent Scatterers (PSs). In our experiment, we considered

SAR images of Sentinel-1A of JCF and converted them

into PSs

• The movement of PSs are validated with the processed

GNSS Data. This strategy helps in assessment of

accuracy of deformation obtained by modified PSIn-

SAR. After validation, the PSs of higher coherence are

selected for model testing and converted into numerical

format and stored in excel using SAR data processing

tool called SARPROZ.

• The excel sheet consists of 26,000 rows and 100

columns generated using SARPROZ tool and we use a

sample of 14 rows datasets to predict the land

subsidence using LSTM.

• Train and test the data for accurate predictions of the

land surface subsidence using Vanilla and Stacked

LSTMs.

• We present the comparisons of observed and predicted

values of land subsidence in JCF of mining as well as

GNSS-based locations. Finally we also present the

predicted values of land surface subsidence for one

year.

• All the predicted locations are finally validated with

physical site visits accordingly. The prediction showed

the subsidence rate in Nai-dunia basti in JCF is

alarming as 93.8 mm /year whereas Digwadih and

Godhar showed the critical rate as 82 mm/year.

The remaining sections of this article is arranged as fol-

lows. In Sect. 2, we review some of the existing but related

approaches for land subsidence prediction in Mining areas.

In Sect. 3, we provide the preliminaries used in the

problem formulation. In Sect. 4, we describe the proposed

model in detail. In Sect. 5, we present the experimental

results of the proposed algorithm. This paper is concluded

in Sect. 6.

2 Related work

In recent years Jharia Coal field (JCF) has witnessed large

number of land subsidence and coal fires. Underground

activities and coal fires are main cause of such incidents.

Nearly 150 such cases have been reported in the past

decade. In (BCCL 2008), Master plan prepared by Bharat

Coking Coal Limited (BCCL) in association with central

mine planning and design institute (CMPDI) also signifies

huge losses in BCCL due to mine fire and induced subsi-

dence in rural as well as urban area of JCF.

The researchers have used conventional DInSAR tech-

niques for monitoring long-term land subsidence phe-

nomenon and achieved the deformation by analyzing the

fringes obtained by SAR images (Chatterjee et al. 2006;

Strozzi et al. 2001; Lanari et al. 2004; Raucoules et al.

2003; Amelung et al. 2000). However, the conventional

DInSAR techniques have limitations in terms of (1) very

small spatial baseline (\200 m) (2) baseline dependent

accuracy of external DEM (3) no reduction of atmospheric

phase. To overcome the limitations associated with con-

ventional DInSAR techniques, a first-generation time series

InSAR (Advanced DInSAR) technique was introduced by

(Ferretti et al. 2001). Many researchers have worked on

advanced DInSAR techniques and developed different

approaches to deformation analysis (Hooper et al. 2004;

Hooper and Zebker 2007; Hooper 2008; Crosetto et al.

2005; Mora et al. 2003; Schmidt and Bürgmann 2003).

Many studies have been taken out internationally for land

subsidence monitoring using Advance DInSAR techniques

(Dong et al. 2013; Qin and Perissin 2015; Chatterjee et al.

2015, 2016; Ishwar and Kumar 2017; Engelbrecht et al.

2011; Gupta et al. 2014; Przyłucka et al. 2015).

In order to overcome the limitations of second genera-

tion advanced DInSAR techniques, the development of the

Persistent Scatterer Interferometric Synthetic Aperture

Radar (PSInSAR) technique took place to detect land

deformation at the millimeter level. The PSInSAR tech-

nique is the geodetic SAR processing technique that uses

two or more SAR images to generate maps of topography

or deformation of the Earth’s surface (Prati et al. 2010;

Hooper et al. 2012; Mura et al. 2016).

The PSInSAR technique has been applied in the coal

filed or nearby areas to detect land deformation using

C-Band and L-Band SAR Data (Abdikan et al. 2014;

Thapa et al. 2016). The short wavelength C-band is more

suitable to detect slow velocity subsidence if the optimal

baseline is maintained, whereas long wavelength L-band

can effectively detect rapid velocity subsidence (Chatterjee

Fig. 2 Shows the GNSS survey points superimposed on LISS IV in

Jharia Coal field, India
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et al. 2015; Abdikan et al. 2011; Yue et al. 2011). Its

limitation is as less number of PSs achieved due to

exclusion of partially correlated scatterers for the analysis

resulting in some information losses in the vicinity.

The authors in (Perissin and Wang 2011) have devel-

oped a modified PSInSAR approach which is also called

Persistent Scatterer Interferometry (PSI). In PSI the cor-

related scatterers are also included along with permanent

scatterers to increase the point target density in the highly

susceptible area for decorrelation (Sefercik and Soergel

2014). PSI is more reasonable than the Advance DInSAR

time series for recognizing most stable scattered pixels

where pixel properties don’t fluctuate with time and radar

look point (Crosetto et al. 2016; Mura et al. 2016).

A study conducted by Central Ground Water Board

(CGWB), in Lucknow city, indicated land subsidence is

likely to occur due to over exploitation of groundwater in

the next 15–20 years if immediate step to increase recharge

is not taken at some of the localities of Lucknow in Uttar

Pradesh: such as Narhi, Charbagh, Rajajipuram and

Gomtinagar regions may see land subsidence by 2026

(Trivedi 2020).

The authors in (Zhou et al. 2017) have studied the

spatial–temporal analysis of land subsidence caused by

groundwater pumping from 2010 to 2015 in the Beijing

plain using the SBAS InSAR technique. 69 interferograms

generated using 47 TerraSAR images were utilized to

investigate the land subsidence where long haul ground-

water over exploitation and the use of shallow metropolitan

space has prompted land subsidence. The highest yearly

land subsidence rate was 146 mm/year from 2011 to 2015.

The study between the SBAS InSAR results and the ground

leveling measurements demonstrated that the SBAS InSAR

results accomplished an accuracy of 2 mm. This research

work is aimed at the study of the feasibility of the modified

PSInSAR technique with C-band SAR data for finding the

slow surface deformation caused by coal mine fire and

underground mining activities in JCF. Also, a multi-tem-

poral analysis of SAR images of ENVISAT ASAR has

been carried out for monitoring and mapping of temporal

land subsidence of the area under study. The modified PSI

technique has proven its ability to detect land subsidence

over the vegetated and rural areas. It also resolves low

spatial density of permanent scatterers by considering

partially correlated scatterers as permanent scatterers (PSs)

and extracting information from these PSs. The study has

been focused on detecting continuous slow rate subsidence

of fifteen major sites of JCF. The imaging techniques also

reduce the safety risk and decrease the expenses that are

inherent in conventional methods due to extensive field-

work. In this study, the SAR images acquired by SENTI-

NEL-1A of the European Space agency have been

processed by SARPROZ Software for deformation analysis

of JCF, Dhanbad, India. Further Prediction analysis has

been carried out for the determination of vertical shifting of

the objects which will be helpful to the safe planning of the

projects. In (Iwanec et al. 2016; sar 2019), authors have

performed theoretical studies how to predict the subsidence

above the single and multi-seam longwall mines. However,

the work has certain limitations and the prediction is totally

based on the physical conditions.

3 Preliminaries

In this section, we provide the preliminaries used in the

proposed work. Long Short-Term Memory (LSTM) is used

to time series forecasting (TSF). LSTM model that is used

for univariate TSF problem is Univarite LSTM. While

predicting the future values using the past observations

through single series of observations and a model is a

complicated issue.

As per earlier discussions, the LSTMs operate on

sequential data and increasing the number of layers

increases the levels of abstraction overtime on the input

data. The network depth is more important than the number

of memory cells considered for a layer. The LSTM with

multiple layers is treated as Stacked LSTM. These

upstream layers always provide the sequential output

instead of a single output value. Each layer in Stacked

LSTMs consider a 3D input for its memory cell and pro-

duce a single value as 2D array in an output. Each layer of

the stacked LSTM is a chain-like processing framework

shown in Fig. 3. The cell state in the Fig. 3 is running on

top with minor interactions to just flow unchanged data.

This layer can remove or add information to the cell state

using the two gates such as � and �. The r layer provide

the values between 0 or 1 and it is described in Eq. (1).

r ¼
0 Nothing through

1 Everything through

�
ð1Þ

σ σ tanh σ

tanh

X

X

+

X

C(t-1)

xt

Ct

h(t-1) ht

Ct

ft
it Ot

ht

Pointwise 
Multiplication

Cell State

Wf Wi Wc Wo

Forget
gate

Linear

Input
gate

Output
gate

Fig. 3 Structure of a LSTM
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Cðt�1Þ ¼
0 Get rid of complete data

1 Keep data completely

�
ð2Þ

The process framework performs mainly four operations to

produce the final outcome. First, the forget gate starts

removing the useless informations form the input gate as

shown in Eq. 3. It provides input data to the sigmoid

function (rð. . .Þ) such as previous layer output i.e. ht�1 and

hidden layers feature information xt. The ft maps the pre-

vious layer cell state output i.e. Ct�1 to the current cell state

Ct.

ft ¼ r Wf ht�1; xt½ � þ bf
� �

ð3Þ

where Wf is the weight matrix and bf is the bias vector of

the forget gate. The r is computed as shown in Eq. (4).

rðaÞ ¼ 1

1 þ e�a
ð4Þ

In the next state, the LSTM performs two operations rð. . .Þ
and tanh ð. . .Þ simultaneously to update the current cell

state Ct as shown in Eqs. (5, 6), respectively. The rð. . .Þ
and tanh ð. . .Þ produces the it and Ct, respectively using

previous layer output i.e. ht�1 and hidden layers feature

information xt.

it ¼r Wi ht�1; xt½ � þ bið Þ ð5Þ

Ct ¼ tanh Wc ht�1; xt½ � þ bcð Þ ð6Þ

where Wi and Wc are the weight matrix of input gate and

state update vector, respectively, and bi and bc are the bias

vectors of input gate and state update vector, respectively.

The hyperbolic tangent function is represented using tanh

and it is computed as shown in Eq. (7).

tanhðaÞ ¼ ea � e�a

ea þ e�a
ð7Þ

Finally, the current state of LSTM has been updated using

previous two operations as shown in Eq. (8).

Ct ¼ Ct�1 � ftð Þ þ it � Ct

� �
ð8Þ

where � is point-wise scalar multiplication of the vectors.

In the last phase, the LSTM produces the output through

output gate by using the current cell state information. The

outputs such as Ot and ht are computed as shown in

Eqs. (9) and (10).

Ot ¼r Wo ht�1; xt½ � þ boð Þ ð9Þ

ht ¼Ot � tanh ðCtÞ ð10Þ

In general, the LSTM is comprised of a hidden layer fol-

lowed by an output layer. Depends on the types of TSF

problem, several LSTM techniques are existed in the lit-

erature among Vanilla and Stacked LSTMs are more

popular. In this work, we tested two univariate LSTM

model such as (1) Vanilla LSTM and (2) Stacked LSTM.

3.1 Vanilla LSTM and stacked LSTM

While making the prediction through Vanilla LSTM, it

uses an output layer and a single hidden LSTM layer. It

supports the sequence data as an input. The LSTM model

reads single time step in each time, unlike the Convolution

neural networks (CNN) and the data represented in state

format while learning the model.

The LSTM can extend with multiple hidden layer which

makes the deeper model called stacked LSTM and which

reflects the deep learning model. Increasing the number of

layers in the LSTM will increase the prediction accuracy.

But, increasing the too many layers also increase the

complexity as well the computational time. The additional

layers recombine the representations to provide the new

combinations of the predictions with increased abstraction.

Instead of giving importance to the memory cells of a

layer, considering the depth of network is more important.

An LSTM produces the two dimensional output by taking

the three dimensional input to the system while performing

the learning process. This issue can be addressed by taking

the output of each LSTM layer at each time stamp and set

the input data with a return sequences ¼ True argument.

This allow us to have three dimensional output from hidden

LSTM layer as input to the next. Here we build both

Vanilla LSTM and Stacked LSTM for predicting the next

one Year land subsidence and compared both model with

their loss and accuracy. These four steps discussed earlier

will repeated over multiple LSTM layers as shown in

Fig. 4.

4 Proposed work

The proposed model is illustrated and depict using flow

chart shown in Fig. 5, which is primarily partitioned into

four parts including data collection (along with masking),

data augmentation, Training and Evaluation models. Using

Vanilla and Stacked LSTMs, predicting land surface sub-

sidence values for one year.

4.1 Data collection

A network of fifty eight Global navigation satellite system

(GNSS) survey points established in JCF to find the sub-

sidence magnitude during 11 phases of the survey at

quarterly intervals. The GNSS data which we have col-

lected has been processed with respect to BASE Station

data. The errors during post-processing have been
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minimized by Precise Point Positioning. Archives data of

the same time period has been made available by Inter-

national GNSS Service (IGS) to reduce the ephemeris.

Some important parameters are shown in Table 1 and

locations are pointed on a map shown in Fig. 6. The

measurement of land surface subsidence for some of the

locations in JCF using GNSS are shown in Fig. 7. SAR

images of SENTINEL-1A of the same period acquired

from the European Satellite Agency. The 67 SAR Images

of 12 days Temporal Resolution is processed in SARPROZ

σ σ tanh σ

tanh

X

X

+

X

xt

Ct

ht

Ct

ft
it Ot

ht

Pointwise 
Multiplication

Cell State

Wf Wi Wc Wo

Forget
gate

Linear

Input
gate

Output
gateσ σ tanh σ

tanh

X

X

+

X

C(t-

2)

xt-1

Ct-1

h(t-2) ht-1

Ct-1

ft-1
it-1 Ot-1

ht-1

Pointwise 
Multiplication

Cell State

Wf Wi Wc Wo

Forget
gate

Linear

Input
gate

Output
gate σ σ tanh σ

tanh

X

X

+

X

xt+1

Ct+1
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Ct+1

ft+1
it+1 Ot+1

ht+1

Pointwise 
Multiplication

Cell State

Wf Wi Wc Wo

Forget
gate

Linear

Input
gate

Output
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Fig. 4 Structure of Stacked LSTM

Fig. 5 Flow chart of the

proposed model
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Software to obtain the persistent Scatterer in the JCF.

During processing of SAR data by PSInSAR technique a

huge excel sheet with a lot of information has been pro-

duced in terms of deformation magnitude of temporal

baseline of SAR images coherence, Displacement velocity

cumulative displacement etc. Ultimately the result of

deformation will be up to the last date of the SAR image

used. An excel sheet of 26,000 PSs obtained with more

than 0.5 temporal coherence value after the processing. A

sample of 22 locations has been collected covering a few of

the GNSS survey points’ locality of JCF. The GNSS pro-

cessed result was used to validate the occurrence of sub-

sidence shown by the PSInSAR technique. For further

prediction the excel sheet of 14 locations is converted into

Dataframe with normalized data (using pandas and sklearn

python packages) which inputs the LSTM.

The JCF is a large coal mines area in India with 19.4

billion tonnes of available coal. Since 1916, this area suf-

fered a coal bed fire and consumed nearly 37 millions tons

of coal. It results in water and air pollution and also land

subsidence in the cities of JCF (Pai and Carr-Wilson 2018).

We consider various parameters from the JCF including the

land type (Agricultural or Barren), transportation facility

(Road, Rail, or others), Displacement velocity, depth of the

seam and the SAR image availability from 03-10-2016 to

28-12-2018 on every twelve alternative days using the

remote sensing. The land subsidence near to the river area

is high as compared to the other areas during rainy seasons.

In general, the land subsidence patterns have more diver-

sity among the various locations around the Jharia coal

field, and great challenges to predict the short-term land

subsidence. The missing values during the data collection

are masking based on the method used in (Che et al. 2018).

4.2 Data augmentation and preparation

For any machine learning methods including stacked

LSTMs, training dataset is one of the important consider-

able factors. The best training dataset will be generated

through data augmentation and preparation, and the process

is summarized using Fig. 8. The primary goal of the data

augmentation is to amplify training data by dividing

Fig. 6 PSs in JCF generated by SARPROZ using processed 67 SAR

images of SENTINEL-1A

(a) L10 (b) L11 (c) L13

Fig. 7 The GNSS survey points of locations L10, L11 and L13-

Table 1 Dataset locations

Location ID Latitude Longitude Altitude Location Displacement velocity (mm/year) Cumulative displacement (mm)

L1 23.70349 86.42649 182.7 East of barari masjid - 72.6 - 162.2

L2 23.70618 86.42627 177.8 Digwadih_NE - 81.8 - 182.7

L3 23.70055 86.41453 162.5 Didwadih - 64.7 - 144.5

L4 23.73156 86.42495 184.6 Nai dunia basti - 93.8 - 209.6

L5 23.78219 86.39222 250.8 Godhar near GDR19 - 82 - 183.3

L6 23.73856 86.43497 210.3 Laltenbasti - 56.9 - 127.1

L7 23.74762 86.32791 203.5 Garbhudi,Moonidih - 27.2 - 60.7

L8 23.75829 86.37329 190.4 Balihari,G21 - 30 - 67

L9 23.75509 86.36283 239.6 Aralgaria,G8 - 26.8 - 59.9

L10 23.79083 86.35486 210.7 Bansjora,G91 - 27.8 - 62

L11 23.77601 86.42264 209 Bastacola, nearG12 - 30 - 67

L12 23.77514 86.38484 220.5 Ghansadih Kendua - 20.6 - 46

L13 23.77067 86.36826 216.8 Gopalichak,G5 - 25 - 55.9

L14 23.8002 86.43213 257.2 Golf ground Dhanbad 2.6 5.8
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original data with overlaps to minimizes the complexity of

the computations. In this work, we consider the time-

warping data augmentation approach to prepare the data for

training process. We operated with various warping ratios

to show the variability of the synthetic training data

(Rashid and Louis 2019). With this augmentation process,

the training data increases 4-fold with various temporal

length.

The data collected and augmented from the remote

sensing is one dimensional, where the LSTM requires 3D

input data. In data preparation phase, the data initially split

in to multiple short sub-sequences and then reshape sub-

sequences. We illustrate the data preparation through an

example for better understand. The learning process of

LSTMs follows a sequence of inputs to an output. An

Example of Univariate time series: {6, 8, 10, 12, 13, 16, 18,

20, 22, 24, 26}. Split these series in to multiple input/

output samples. Here, the input can contains more that one

step (in this example we consider three and represented

using X) and an output as one step (treated as Y) as shown

below:

X Y
½6 8 10� 12

½8 10 12� 13

½10 12 13� 16

::: :::
½20 22 24� 26

In this way, the input data split and reshare the data for

providing the input to training or testing modules. The

input data categorized into training and test data. The

training data used in Stacked LSTM learning models where

as the test data used for predicting the results.

4.3 Training and evaluation model

The training data augmented and prepared for input to the

Stacked LSTM. The over-fitting is avoided by adopting the

dropout strategy after each LSTM for better generalization.

The dropout rate is approximately 10% (Wei 2020). The

stacked LSTM has the capability to handle the long and

short-term time dependencies for forecasting the accurate

land subsidence. The first LSTM layer sends a sequence

vector to the next LSTM layer and so on. Each subsequent

LSTM receives previous time stamp’s feedback that either

allow for process or drop the data. The basic working

model of the stacked LSTM is presented in Sect. 3.

The test data prepared for testing only and no aug-

mentation performed on it. After the model being learned, a
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Fig. 8 Process model of data augmentation and preparation

Table 2 Comparisons of Vanilla LSTM and Stacked LSTM Con-

cerning Rm and Rp

Location Vanilla LSTM Stacked LSTM

Rm Rp Rm Rp

L1 0.0817 71.4 0.0139 88.204

L2 0.062 74.96 0.038 80.364

L3 0.059 75.68 0.050 77.639

L4 0.053 76.85 0.0315 82.227

L5 0.058 75.91 0.049 77.655

L6 0.069 73.62 0.037 80.5

L7 0.147 61.604 0.078 71.9

L8 0.106 67.31 0.15 61.03

L9 0.102 68.00 0.08 71.4

L10 0.091 69.7 0.052 77.09

L11 0.117 65.697 0.0512 77.35

L12 0.067 74.01 0.047 78.28

L13 0.055 76.46 0.0401 79.97

L14 0.163 59.51 0.09 68.4

380 Stochastic Environmental Research and Risk Assessment (2022) 36:373–388

123



0 12 24 36 48 60 72

−150

−100

−50

0

Days (×12)

D
ef
or
m
at
io
n
(m

m
)

Actual V-LSTM
Trained V-LSTM
Testing V-LSTM
Actual S-LSTM
Trained S-LSTM
Testing S-LSTM

0 12 24 36 48 60 72

−150

−100

−50

0

Days (×12)

D
ef
or
m
at
io
n
(m

m
)

Actual V-LSTM
Trained V-LSTM
Testing V-LSTM
Actual S-LSTM
Trained S-LSTM
Testing S-LSTM

(b) L2

0 12 24 36 48 60 72

−150

−100

−50

0

Days (×12)

D
ef
or
m
at
io
n
(m

m
)

Actual V-LSTM
Trained V-LSTM
Testing V-LSTM
Actual S-LSTM
Trained S-LSTM
Testing S-LSTM

(c) L3

0 12 24 36 48 60 72

−200

−150

−100

−50

0

Days (×12)

D
ef
or
m
at
io
n
(m

m
)

Actual V-LSTM
Trained V-LSTM
Testing V-LSTM
Actual S-LSTM
Trained S-LSTM
Testing S-LSTM

(d) L4

0 12 24 36 48 60 72

−200

−150

−100

−50

0

Days (×12)

D
ef
or
m
at
io
n
(m

m
)

Actual V-LSTM
Trained V-LSTM
Testing V-LSTM
Actual S-LSTM
Trained S-LSTM
Testing S-LSTM

(e) L5

0 12 24 36 48 60 72

−100

−50

0

Days (×12)

D
ef
or
m
at
io
n
(m

m
)

Actual V-LSTM
Trained V-LSTM
Testing V-LSTM
Actual S-LSTM
Trained S-LSTM
Testing S-LSTM

(f)

(a) L1

L6

Fig. 9 Comparison between the observed and predicted values of land subsidence of Location L1–L6 with Vanilla and Stacked LSTM model
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Fig. 10 Comparison between the observed and predicted values of land subsidence of each Location L7–L12 with Vanilla and Stacked LSTMs

model
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test data set is taken as an input to evaluate the model

efficiency and finally to validate the accuracy of the pre-

dicted values.

5 Experimental results

In this section we evaluate the prediction accuracy of the

land subsidence through Vanilla LSTM and Stacked

LSTM. Initially, we discuss the model construction fol-

lowed by the results analysis.

5.1 Model construction

In this work, we collect the data from 14 locations around

Jharia coal field from Jharkhand state in India between 3rd

Oct 2016 to 28th Dec 2018, i.e. 817 days. We consider 14

environmental conditions and each condition 817 samples

are collected. All these conditions are segmented with the

length of 128 and 60% overlap. In this work, we use 64, 32,

and 32 hidden units in LSTM layer 1, layer 2 and layer 3,

respectively. The input layer has 128 units which is equal

to input sample dimension. We can fit the training dataset

once the complete model is defined. For the whole dataset,

70% is used for training and remaining used for testing.

The Root Mean Square Error (RMSE) is an indicator to

evaluate the performance of training model.

5.2 Results analysis

In this section, we compare the simulation results of

Stacked LSTM and Vanilla LSTM using various metrics

such as accuracy, land subsidence, and etc. The proposed

approach used regression model, so Root mean squared

error is a good measure of accuracy.

5.2.1 Root mean square errors

It is measured as the difference between values predicted

by a model and the values observed and it is denoted using

Rm. It is calculated using Eq. (11)

Rm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Xi � X̂i

� �2

N

vuuut ð11Þ

where Xi is the actual data and X̂i is the predicted data of

data set i, and N indicates the number of samples.

5.2.2 Root mean absolute percentage errors

It is measured as the difference between values predicted

by a model and the values observed and it is denoted as Rp.

It is calculated using Eq. (11)

Rp ¼
100ffiffiffiffi
N

p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

Xi � X̂i

Xi

� �2

vuut ð12Þ

where Xi is the actual data and X̂i is the predicted data of

data set i, and N indicates the number of samples. The

comparison results of running example dataset in terms of

Rm and Rp are presented in Table 2

The comparison between the observed and predicted

train and test land subsistence (reduced level) values of

Location L1–L14 with Vanilla LSTM and Stacked LSTM

model are presented in Figs. 9, 10 and 11. We observe that

the prediction accuracy of both the models is between 80%
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Fig. 11 Comparison between the observed and predicted values of land subsidence of each Locations L13 and L14 with Vanilla and Stacked

LSTMs model
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Table 3 Predicted Deformation values (mm) using Stacked LSTM

Day (X

12)

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14

68 - 165 - 181 -

150.1

- 224 -

202.4

- 111 - 59 -

62.5

- 66 - 78 - 68 - 49 - 48 - 8

69 - 172 -

183.1

- 164 - 225 - 212 - 116 - 60 - 66 - 70 - 79 - 70 - 50 -

54.2

- 8.3

70 - 175 - 187 -

157.2

- 232 - 218 - 118 -

59.6

- 65 - 83 - 82 -

70.2

- 48 - 52 - 10

71 - 176 - 190 -

161.3

- 233 -

224.1

- 119 -

59.5

-

66.2

- 82.2 - 85.2 - 75 - 51 - 51 - 11

72 - 178 -

193.2

-

166.1

- 231 -

227.2

- 121 -

61.4

- 64 - 78 - 83 -

72.5

- 55 - 53 -

11.2

73 - 201 - 195 -

157.8

-

240.1

- 229 - 123 - 62 - 65 - 84 - 86 - 74 - 54 - 58 -

11.4

74 - 202 - 199 -

160.3

-

246.3

-

238.2

- 126 -

61.8

- 62 - 81 - 90.1 - 73 -

54.7

- 55 - 11

75 -

204.5

-

200.2

-

167.2

- 249 - 236 - 129 - 63 - 67 - 83.8 - 89 -

75.1

- 56 - 56 -

10.6

76 -

205.7

- 203 - 166 - 251 - 240 -

131.5

- 64 - 65 - 84 - 93 - 76 -

57.8

-

58.1

- 12

77 - 207 - 205 - 180 - 256 - 238 -

137.1

- 67 - 67 - 85 - 93.2 -

76.6

- 57 - 59 -

12.2

78 - 209 - 208 -

181.1

- 262 - 241 -

135.3

- 65 - 70 - 84.6 - 94 - 77 - 56 -

60.4

- 14

79 -

211.4

-

211.1

- 175 - 271 -

245.2

-

140.1

-

61.8

- 72 - 90 - 96 - 78 - 62 -

60.6

- 11

80 - 214 - 215 -

185.2

- 264 -

251.1

-

142.6

- 69 - 73 - 91 - 99.1 - 80 - 61 - 62 -

12.6

81 -

214.5

- 217 -

181.1

- 267 - 263 - 141 - 75 - 74 -

101.7

- 97 - 81 - 60 - 63 - 11

82 -

212.5

- 216 - 177 -

274.2

- 255 -

147.1

- 78 - 81 - 102 - 97.5 - 82 -

62.2

-

63.2

- 14

83 -

217.3

- 218 - 176 - 278 -

265.5

- 146 -

78.2

- 83 - 108 - 95 - 84 - 63 - 66 -

14.2

84 -

218.1

- 220 - 189 - 282 - 259 -

150.5

-

78.1

- 85 - 105 - 98 - 82 - 64 -

66.5

- 12

85 - 221 -

222.1

- 191 - 286 - 264 -

153.8

-

78.5

- 86 - 115 - 101 - 88 - 61 - 62 - 17

86 - 223 - 225 - 188 - 285 - 268 - 152 - 82 - 89 - 130 - 99.2 - 90 - 68 - 66 - 18

87 - 224 -

227.6

-

199.2

- 288 - 270 -

151.2

- 81 - 102 - 129 - 102 - 91 - 67 - 68 - 16

88 - 223 - 229 - 201 - 292 - 273 - 156 - 80 - 85 - 127 - 98.1 - 97 - 68 -

68.5

- 12

89 - 226 - 231 - 203 - 291 - 278 - 161 - 84 - 101 - 131 -

101.6

- 100 - 69 - 68 - 13

90 - 229 - 234 - 207 - 296 - 289 - 177 - 83 - 81 -

129.2

- 109 - 109 - 74 - 72 -

12.5

91 - 232 - 237 - 205 - 298 - 285 - 172 - 78 - 89 - 130 - 112 - 112 - 68 -

73.2

-

13.8

92 -

233.6

- 239 - 213 - 301 - 290 - 164 -

78.3

- 93 - 127 - 116 - 113 - 71 - 74 -

14.5

93 -

225.4

- 241 -

212.1

- 308 - 295 - 166 - 74 - 100 - 128 - 117 - 112 - 71 - 76 -

14.6

94 -

227.2

- 245 -

209.8

- 307 - 296 -

168.5

-

73.1

- 105 - 131 - 115 - 115 - 65 -

76.4

-

16.6
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to 95% for 14 locations. We estimate the deformation of

next one year with every twelve alternative days and the

predicted deformation values (mm) are presented in

Table 3. As the analysis shows the subsidence in Nai dunia

basti near Jharia (L4) is alarming as 93.8 mm /year where

as Digwadih(L2) and Godhar(L5) showing critical rate as

82 mm/year during the period 2016–19. Based on the

prediction result Godhar (L5) is showing alarming as

105 mm/year and L4 & L2 is showing 97 mm/year and

71 mm/year respectively.

5.3 Hyperparameters’ influence

In this work, two hyperparameters are highly influenced on

the accuracy and Time consumption which are (a) #of

LSTM layers and (b) Size of the input. We conduct

experiments on these hyperparameters and plot the results

in Figs. 12 and 13.

In Fig. 12, we evaluate the accuracy by considering the

two hyperparameters. In Fig. 12a, we assess the accuracy

of fourteen data labels by increasing the # of LSTM layers

in the stacked LSTM. We notice that increasing the number

of layers also increases the accuracy. Similarly, we eval-

uate the accuracy by increasing the input data’s size, and

the results are plot in Fig. 12b. Here, we observe that

increasing the input size also increases the accuracy. In

Fig. 13, we evaluate the computation time per epoch by

considering the two hyperparameters. In Fig. 13a, we

assess the time computation of fourteen data labels by

increasing the # of LSTM layers in the stacked LSTM. We

notice that increasing the number of layers also increases

the computation time slightly. We conclude that increasing

the layers in the stacked LSTM also increases the com-

putational time. Similarly, we evaluate the time computa-

tion by increasing the input data’s size, and the results are

plot in Fig. 13b. Here, we observe that increasing the input

size also increases the computational time. In the proposed

Table 3 (continued)

Day (X

12)

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14

95 - 229 -

245.3

- 213 - 315 -

301.5

- 169 - 78 - 109 -

134.2

- 114 - 117 -

72.2

- 77 -

16.9

96 - 235 - 248 - 215 - 317 - 305 - 172 - 77 - 101 - 135 - 118 - 119 - 74 - 78 - 17

97 - 236 - 251 - 216 - 318 -

306.1

-

173.1

- 79 - 106 -

134.6

- 120 - 120 - 76 - 76 - 19

98 - 234 - 252 - 217 - 321 - 307 - 174 -

80.1

- 114 - 137 -

120.1

- 122 - 79 - 80 18.6
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Fig. 12 Influence of Accuracy with varying hyperparameters (a) #of LSTM Layers (b) size of input
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work, we used three layers to balance the prediction

accuracy and computational time.

6 Conclusion

In this work, we have presented a new scientific approach

for monitoring, validation and prediction of mining

induced land subsidence in Jharia Coalfield using modified

PSInSAR, GNSS and Recurrent Neural Networks. We

have used the modified PSInSAR technique to collect the

land subsidence value in an Excel sheet as well as colour

coded pictorial views of the subsided locations. Some of

PSs in the vicinity of GNSS survey points have been

selected for prediction modelling. The cumulative dis-

placement and deformation velocity during datasets period

and during prediction period have been analysed and the

suitable precaution mobel may be developed. We have

used two variants of RNN are Vanilla LSTM and Stacked

LSTM. We have collected 67 datasets pertaining to land

subsidence at 14 various locations in JCF at an interval of

12 days. To perform prediction of land subsidence, we

have trained, tested, and validated the predictive models by

splitting datasets into 7:2:1. Finally, we have predicted the

land subsidence for one year i.e, next 30 predictions in the

interval of 12 days and demonstrated the prediction

deformation values of all the 14 locations. All the predicted

locations are finally validated with physical site visits

accordingly. The prediction showed the subsidence rate in

Nai-dunia basti in JCF is alarming as 93.8 mm /year

whereas Digwadih and Godhar showed the critical rate as

82 mm/year.
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