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Abstract
Regional Frequency Analysis (RFA) relies on a wide range of physiographical and meteorological variables to estimate

hydrological quantiles at ungauged sites. However, additional catchment characteristics related to its drainage network are

not yet fully understood and integrated in RFA procedures. The aim of the present paper is to propose the integration of

several physiographical variables characterizing the drainage network systems in RFA, and to evaluate their added value in

predicting quantiles at ungauged sites. The proposed extended dataset (EXTD) includes several variables characterising

drainage network characteristics. To evaluate the new variables, a number of commonly used RFA approaches are applied

to the extended data representing 151 stations in Quebec (Canada) and compared to a standard dataset (STA) that excludes

the new variables. The considered RFA approaches include the combination of two neighborhood methods namely the

canonical correlation analysis (CCA) and the region of influence (ROI) with two regional estimation (RE) models which

are the log-linear regression model (LLRM) and the generalized additive model (GAM). The RE models are also applied

without the hydrological neighborhood. Results show that regional models using the extended dataset lead to significantly

better flood quantile predictions, especially for large basins. Indeed, the variable selection performed with EXTD con-

sistently includes some of the new variables, in particular the drainage density, the stream length ratio, and the ruggedness

number. Two other new variables are also identified and included in the DHR step: the circularity ratio and the texture

ratio. This leads to better predictions with relative errors about 29% for EXTD, versus around 42% for STA in the case of

the best combination of RFA approaches. Thus, the proposed new variables allow for a better representation of the physical

dynamics within the watersheds.

Keywords Drainage network characteristics � Ungauged basin � Canonical correlation analysis � Region of influence �
Generalized Additive Model, Regional frequency analysis

Abbreviations
BH Basin relief

BIAS Mean bias

CCA Canonical correlation analysis

DD Drainage density

DDBZ Mean annual degree days below 0 �C
DEM Digital elevation model

DHR Delineation of homogenous regions

Edf Estimated smooth degree of freedom

EXTD Extended dataset

FS Stream frequency

GAM Generalized additive model

IF Infiltration number

LATC Latitude of the centroid of the basin

LLRM Log-linear regression model

LONGC Longitude of the centroid of the basin

LU Stream length

MALP Mean annual liquid precipitation

MASP Mean annual solid precipitation

MATP Mean annual total precipitation

MBS Mean basin slope

MCL Main channel length

MRB Mean bifurcation ratio
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MRL Mean stream length ratio

NASH Nash efficiency criterion

NHN National Hydro Network

PFOR Percentage of the area occupied by forest

PLAKE Percentage of the area occupied by lakes

PL1 Percentage of first-order stream lengths

PN1 Percentage of first-order streams

QST Specific quantile associated to the return period

T

QT At-site flood quantile corresponding to return

period T

R2 Coefficient of determination

RB Bifurcation ratio

RBIAS Relative mean bias

RC Circularity ratio

RE Regional estimation

RFA Regional frequency analysis

RL Stream length ratio

RMSE Root-mean-square error

RN Ruggedness number

ROI Region of influence

RRMSE Relative root-mean-square error

RT Texture ratio

STA Standard dataset

U Stream order

Var Explanatory variable

WMRB Weighted mean bifurcation ratio

q RHO coefficient

qWMRB RHO WMRB coefficient

1 Introduction

Regional frequency analysis (RFA) procedures are com-

monly used in hydrology to estimate flood and low-flow

quantiles at sites where little or no hydrological data is

available. Generally, RFA includes two main steps: delin-

eation of homogenous regions (DHR) and regional estima-

tion (RE) (e.g. Chebana et al. 2014; Chebana and Ouarda

2007; Ouarda 2016). In this context, climatic, morphometric

and physiographic characteristics of the watershed are

widely used to describe geomorphic processes (e.g. Baum-

gardner 1987; Hadley and Schumm 1961; Marchi and Dalla

Fontana 2005; Tramblay et al. 2010) in order to predict

hydrological variables using RFA approaches (e.g. Dawson

et al. 2006; Dodangeh et al. 2014; Goswami et al. 2007;

Seidou et al. 2006; Tsakiris et al. 2011).

A number of physio-meteorological variables, such as

basin area, basin slope, precipitation characteristics and land

occupation are commonly used in the field of hydrology and

more precisely in the RFA procedures. They are considered

as the most relevant variables for these studies based on their

high correlation with the hydrological variables (Chokmani

and Ouarda 2004). In addition to the commonly considered

variables (a more exhaustive list is in Table 1), drainage

network characteristics (Jung et al. 2017) and tectonic setting

(e.g. Ahmadi et al. 2006; Hamed et al. 2014) may have a

strong impacts on hydrological dynamics, and are conse-

quently related to flood quantiles. However, they are not yet

well investigated and integrated in RFA studies. Indeed, the

assessment of morphometric and physiographic variables

requires the analysis of a number of stream characteristics

(e.g. ordering of the streams, bifurcation ratio, texture ratio,

stream length ratio, etc.). These variables characterize the

basin shape as well as the drainage system, and can be useful

to model the hydrological dynamics. Youssef et al. (2011)

also indicated that the circularity ratio, number of orders and

drainage density have a direct impact on the hydrological

risk. Hence, the integration of these variables in the proce-

dures for the regionalization of extreme hydrological events

may contribute to the enhancement ofRFA results. Variables

related to drainage network systems are already used in

several morphometric and hydrologic studies (e.g. Ameri

et al. 2018; Biswas et al. 1999; Kaliraj et al. 2015; Pareta and

Pareta 2011; Rai et al. 2017; Ratnam et al. 2005; Reddy et al.

2004; Sivasena Reddy and Janga Reddy 2013; Vijith and

Satheesh 2006; Youssef et al. 2011) and they can eventually

be useful in regionalization studies. These variables can be

extracted based on classical approaches such as topographic

maps and field examination or with advanced techniques

using remote sensing and Digital Elevation Models (DEM).

Remote sensing techniques coupledwith the potential of GIS

tools are increasingly popular. Indeed, they make it possible

to calculate the various characteristics of the basin very

quickly and more efficiently based on a DEM which is not

possible in the past.

During the last decades, the focus in RFA has been

mainly on the development of new delineation and esti-

mation methods (e.g. Durocher et al. 2015; Ouali et al.

2016; Wazneh et al. 2016). Meanwhile, the list of phys-

iographical and meteorological variables used as predictors

has seen little evolution. In the present study, a number of

commonly used RFA approaches are applied to test and

evaluate the potential improvements that may result from

the adoption of new physiographic variables.

The objective of this work is to propose the use of new

physiographical variables related to the basin shape and

drainage network and argue about their usefulness. To

evaluate their added value for quantile prediction in RFA,

they are computed and used for a set of 151 basins in

Quebec (Canada). More specifically, the objective is to use

both the standard and extended databases to predict
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Table 1 Predictor variables used in a number of previous regionalization studies

References Country Predictor variables adopted

Muttiah et al. (1997) USA Catchment areas, mean annual rainfall, and mean basin elevation

Rahman (2005) Australia Catchment area, design rainfall intensity, mean annual rainfall, mean annual rain days, mean

annual Class A pan evaporation, mainstream slope, lemniscate shape, river bed elevation at

the gauging station, maximum elevation difference in the basin, stream density, forest cover,

and fraction quaternary sediment area

Dawson et al. (2006) United Kingdom Catchment area, base flow index, standard percentage runoff, index of flood attenuation

attributable to reservoirs and lakes, standard period (1961–1990) average annual rainfall,

median annual maximum 1-day rainfall, median annual maximum 2-day rainfall, median

annual maximum 1-h rainfall, mean Soil Moisture Deficit for 1941–1970, proportion of time

when Soil Moisture Deficit\ 6 mm during 1961–1990, longest drainage path, mean distance

between each node (on a regular 50 m grid) and catchment outlet, mean altitude of catchment

above sea level, mean of all inter-nodal slopes in the catchment, invariability of slope

directions, extent of urban and suburban land cover in 1990

Leclerc and Ouarda

(2007)

Canada Catchment area, gauging station latitude, gauging station longitude, mean total winter/spring

precipitation, mean winter/spring maximum air temperature

Leclerc and Ouarda

(2007)

USA Catchment area, mean annual rainfall, runoff measured, mainstream slope, main-channel

length, forest cover, and storage measured as the percent of the catchment area

Griffis and Stedinger

(2007)

Canada Catchment area, mean annual rainfall, mean basin slope, the fraction of the basin area covered

with lakes and annual mean degree days below 0 �C
Shu and Ouarda (2008)

Alobaidi et al. (2015)

Durocher et al. (2015)

Ouali et al. (2016)

Wazneh et al. (2016)

Mexico Drainage area, mean annual precipitation, final altitude of the mainstream and slope of the main

stream

Castiglioni et al.

(2009)

Italy Drainage area, main channel length, the percentage of permeable area, maximum, minimum

and mean elevations, average elevation relative to the minimum elevations, concentration

time, mean annual temperature and mean annual temperature precipitation

Wan Jaafar et al.

(2011)

England Catchment area, longest flow path, basin length, basin perimeter, form factor, average slope,

maximum relief, relief ratio, drainage density, stream frequency, bifurcation ratio, length of

overland flow, land use (agriculture), land use (forest), land use (residential), land use (water

and wetland), soil type (coarse), soil type (medium), soil type (medium fine), soil type (fine),

soil type (peat soil) and rainfall

Seckin (2011) Turkey Drainage area, elevation, latitude, longitude and return period

Flavell (2012) Australia Catchment area, mean annual rainfall, mainstream slope, main-channel length, and 12 and 24 h

statistical rainfall totals

Haddad and Rahman

(2012)

Australia Catchment area, design rainfall intensity, mean annual rainfall, mean annual

evapotranspiration, stream density, mainstream slope, stream length, and forest cover

Beck et al. (2013) 3394 basins around

the world

Humidity index, mean annual precipitation, precipitation seasonality, mean annual potential

evaporation, potential evaporation seasonality, seasonal correlation between water supply and

demand, mean annual air temperature, mean snow water equivalent depth, mean elevation,

mean surface slope, fraction of open water, fraction of forest, mean Normalized Difference

Vegetation Index (NDVI), mean permeability of consolidated and unconsolidated geologic

units below the soil, mean gravel content, mean sand content, mean silt content, mean clay

content

Aziz et al. (2014) Australia Catchment area, design rainfall intensity values I(tc) with where ARI = 2, 5, 10, 20, 50 and

100 years return period (tc = time of concentration), mean annual rainfall, mean annual areal

evapotranspiration, and mainstream slope

Castellarin (2014) Italy Drainage area, mainstream length, maximum, mean, and minimum elevations, mean annual

temperature, net annual precipitation, annual potential evapotranspiration, coefficients of L

variation of the net annual precipitation, annual potential evapotranspiration, percentage of

previous area, the long-term mean daily stream flow standardized by the catchment area, and

the daily stream flow associated with a duration of 355 days standardized by catchment

Latt et al. (2015) Myanmar Catchment area, mean basin elevation, basin slope, basin length, shape factor, soil conservation

curve number, time of concentration, mean annual rainfall

Smith et al. (2015) Several basins across

the world

Catchment area, average annual rainfall and the upstream catchment slope
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quantiles associated to several return periods, and compare

their prediction performances. In this work, standard RFA

methods are considered for quantile prediction, namely

Canonical correlation analysis (CCA) (Ouarda et al. 2000)

and the region of influence (ROI) (Burn 1990) for DHR,

including a case with no DHR, as well as the log-linear

regression model (LLRM) and the generalized additive

model (GAM) (Hastie and Tibshirani 1987) for RE.

The present paper is structured as follows: Sect. 2 offers

a review of the new physiographic and morphometric

variables proposed in this work by detailing their charac-

teristics. Section 3 briefly presents the theoretical back-

ground of the CCA and the ROI approaches for the

delineation of neighborhoods and the LLRM and the GAM

for the regional estimation. The adopted methodology and

the developed regional models are detailed in Sect. 4.

Section 5 describes the study area and the used datasets.

The results are presented and discussed in Sect. 6, and the

conclusions of the work are summarized in the last section.

2 Variables characterizing drainage
networks

Drainage network characteristics and evolution depend

closely on the prevailing climatic, physiographic, and

topographic conditions of the basin (Jung et al. 2015).

These conditions determine the drainage network

configuration which, in turn, can affect the hydrological

response of the watershed (Howard 1990), and conse-

quently hydrological quantile estimation. The new phys-

iographical variables considered in this work are presented

herein. Table 2 summarizes the definitions and standard

mathematical equations used to determine these variables.

2.1 Stream order (U)

The stream order of a basin is the highest stream order

within the basin, where an order one is a stream starting at

the source. A number of stream ordering systems are

available in the hydrological literature. The simplest and

most used one is the Strahler system originally introduced

by Horton (1945) and then modified by Strahler (1952).

This method is based on a hierarchical ranking of streams.

When two first order streams join, an order two is formed

and so on. Several researchers have directly correlated the

stream order with stream flow (e.g. Blyth and Rodda 1973;

Stall and Fok 1967). Blyth and Rodda (1973) also observed

that during dry periods, first-order streams present less than

20% of the total length of the drainage network. At the

maximum development of the drainage network, the total

length of first-order streams constitutes over 50% of the

total basin stream length. Thus, stream order frequency,

especially the frequency of the first-order streams, may be

well correlated with the hydrological response of the

watershed.

Table 1 (continued)

References Country Predictor variables adopted

Ridolfi et al. (2016) Italy Catchment area, the previous area, the maximum and mean altitudes, the gauge elevation, the

mean slope, the length and the slope of the longest drainage path (LDP), annual mean

precipitation, and the coordinates of each site

Odry and Arnaud

(2017)

France Aridity index, annual mean evapotranspiration, annual mean solid precipitation, annual mean

liquid precipitation, annual mean temperature, annual mean soil moisture, mean soil moisture

prior to a rainy event ([ 20 mm), mean duration of rainfall events, mean number of rainfall

events per season, mean intensity of rainfall events, river network density, mean elevation,

mean slope, capacity of the production reservoir of a lumped rainfall-runoff model, presence

of sand bedding, presence of rock bedding, low infiltration capacity class, medium infiltration

capacity class, high infiltration capacity class, forest cover, arable cover, grassland cover,

catchment area, catchment eastening (X) and catchment northening (Y)

Hailegeorgis and

Alfredsen (2017)

Mid-Norway Catchment area,

Requena et al. (2018) Canada Catchment area, fraction of the catchment controlled by lakes, fraction of the catchment

occupied by forest, annual mean degree-days below 0 �C, summer mean liquid precipitation,

curve number and average number of days with mean temperature greater than 27 �C
Rahman et al. (2018) Australia Catchment area, catchment shape factor, main stream slope, stream density, percentage of

catchment covered by forest, rainfall intensity (6 h duration and 2 year return period), mean

annual rainfall and mean annual potential evapotranspiration
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2.2 Texture ratio (RT)

The texture ratio (RT) allows characterizing the basin

drainage texture and is one of the most important factors in

the drainage morphometric analysis due to its high rela-

tionship with the underlying lithology, the infiltration

ability and the topographic characteristics of the terrain

(Schumm 1956). High RT levels indicate the presence of

soft rocks with high sensitivity to erosion (Ameri et al.

2018), and consequently a high and speedy surface runoff.

2.3 Circularity ratio (RC)

The circularity ratio (RC) is defined as the ratio between

the areas of a catchment to the area of the circle having the

same perimeter of the catchment. It is an important variable

that helps characterize the basin shape. It is affected by the

length and frequency of streams, geological structures, land

use and cover, and the slope of the catchment (Dar et al.

2014; Vijith and Satheesh 2006). RC values range between

0 and 1. Basins with RC values close to 1 are characterized

by circular form and a low concentration time and then a

high peak flow. Low RC values are associated with

strongly elongated basins and with lower runoff.

2.4 Stream length ratio (RL)

The stream length ratio (RL) was defined by Horton (1945)

as the ratio between the mean length of the streams of a

given order and the next lower order. It is based on

Table 2 Morphometric variables definitions

Morphometric variables Formula/Relationship References

Stream order (u)* Hierarchical order Horton (1945), Strahler

(1957)

Stream Length (Lu)* Length of stream Horton (1945)

Texture ratio (RT) RT ¼ N1

P ;where N1 = the number of first order streams and P = perimeter (km) Schumm (1956)

Circularity Ratio (RC)* RC ¼ 4p A
P2

� �
;where A = area of the basin (km2), P = perimeter of the basin (km)

and p = 3.1415

Miller (1953)

Stream length ratio (RL) RL ¼ MLu
Lu �1

, where MLu = the average stream length of a given order u (km) and

MLu-1 = the average stream length of the next lower order (km)

Horton (1945)

Mean stream length ratio

(MRL)

MRL = Average of the stream length ratio of all orders Horton (1945)

Bifurcation ratio (RB) RB = Nu
Nu + 1

, Nu = the number of stream segments of order u, Nu ? 1 = the

number of stream segments of the next higher order

Horton (1945)

Mean bifurcation ratio

(MRB)*

MRB = Average of bifurcation ratios of all orders Strahler (1957)

Weighted mean

bifurcation ratio

(WMRB)

WMRB =

P
RB u

uþ1ð Þ(Nu + Nuþ1ÞP
N

, where RB u
uþ1ð Þ = the bifurcation ratio between

each successive pair of orders, Nu = the total number of stream segments of order u

and
P

N = the total number of streams involved in the ratio

Schumm (1956), Strahler

(1953)

RHO coefficient (q) q ¼ RL
RB

Horton (1945)

RHOWMRB coefficient

(qWMRB)
qWMRB ¼ RL

WMRB
Horton (1945), Schumm

(1956), Strahler (1953)

Drainage density (DD)* DD ¼ L
A
, where L = total stream length of all orders (km), A = area of the basin

(km2)

Horton (1932), (1945)

Stream frequency (FS)* FS ¼ N
A
, where N = total number of streams of all orders and A = area of the basin

(km2)

Horton (1932), (1945)

Infiltration number (IF) IF ¼ DD� FS Faniran (1968)

Basin Relief (BH) The highest elevation of the basin—Lowest elevation of the basin (km) Schumm (1956), Strahler

(1957)

Ruggedness number

(RN)

RN ¼ BH� DD, where BH = Basin relief and DD = Drainage density Melton (1957)

PN1 Percentage of first-order streams Patton and Baker (1976)

PL1 Percentage of first-order stream lengths Blyth and Rodda (1973)

*Variables previously used in regional hydrological frequency analysis studies, but not used with the Quebec data base
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Horton’s law (1945) of stream length that indicates the

existence of a direct geometric relationship between the

mean length of the streams of a given order and the next

lower order. The RL between successive stream orders

changes under the effect of the topographic and slope

variability, and has a significant relationship with surface

runoff and the erosional stage of the watershed (Sreedevi

et al. 2005).

2.5 Mean bifurcation ratio (MRB) and weighted
mean bifurcation ratio (WMRB)

The bifurcation ratio (RB) is defined as the ratio between

the stream’s number of a given order and those of the next-

higher order in a drainage network. It permits the charac-

terization of the impacts of the geological structures on the

drainage network. Strahler (1957) indicated that the RB

shows a slight range of variation for different regions

except where the impact of the geological control is

important. Chow (1964), Strahler (1964) and Verstappen

(1983) indicated that, in general, the geological structures

have a negligible impact on drainage networks, if the mean

bifurcation ratio (MRB) of the watershed is comprised

between 3 and 5. A higher value of this variable indicates a

sort of geological control (Agarwal 1998). This variable

can also characterize the watershed’s shape. A high RB

value is, generally, associated with an elongated basin,

while a low RB value is likely to be associated with a

circular basin (Gajbhiye 2015; Taofik et al. 2017). Strahler

(1953) proposed a more representative bifurcation number

measure, called weighted mean bifurcation ratio (WMRB).

It consists in multiplying the ordinary RB identified for

each successive order by the total number of streams

involved in the ratio and subsequently taking the mean of

these values. Schumm (1956) used this approach to deter-

mine the WMRB of the drainage system of the Perth

Amboy (N.J). Pareta and Pareta (2011) and Bajabaa et al.

(2014) also used this variable in hydrologic and morpho-

metric analysis studies.

2.6 RHO coefficient (q)

The RHO coefficient (q) is defined as the ratio between the

RL and the RB of the watershed. It characterizes the rela-

tionship between the physiographic development of the

watershed and the drainage density, and permits the

assessment of the storage capacity of the drainage network

(Horton 1945). This variable is affected by several cli-

matic, geologic, biologic, geomorphologic and anthro-

pogenic factors (Mesa 2006).

2.7 Drainage density (DD)

The drainage density (DD) was introduced by Horton

(1932) in the hydrological literature as the total length of

stream networks per unit area. DD express the closeness of

the spacing of streams, and provides a quantitative mea-

surement of landscape dissection and runoff potential

(Magesh et al. 2011). It is a result of interacting factors

controlling the surface runoff such as, the infiltration

capacity, the climatic conditions and the vegetation cover

of the watershed (Máčka 2001; Patton 1988; Reddy et al.

2004; Verstappen 1983).

2.8 Stream frequency (FS)

The stream frequency (FS) is the number of stream seg-

ments of all orders per unit area (Horton 1932, 1945). It

depends on the rock characteristics, infiltration capacity,

vegetation cover, relief, amount of rainfall and subsurface

permeability (Hajam et al. 2013), and reflects the texture of

the drainage network (Magesh et al. 2011). In general, a

high FS is associated with impermeable subsurface, sparse

vegetation, high relief conditions and low infiltration

capacity (Reddy et al. 2004; Shaban et al. 2005).

2.9 Infiltration number (IF)

The infiltration number (IF) is defined by Faniran (1968) as

the product of the DD and the FS. It allows the charac-

terization of the watershed infiltration capacity (Hajam

et al. 2013). This variable is inversely proportional to the

infiltration capacity of the basin. The higher the IF values,

the lower will be the infiltration and the higher will be the

runoff (Pareta and Pareta 2011).

2.10 Ruggedness number (RN)

The ruggedness number (RN) is often used to evaluate the

flood potential of streams (Patton and Baker 1976) and it

usually combines the impact of slope steepness with its

length (Strahler 1964). This variable allows describing the

structural complexity of the terrain. Watersheds charac-

terized by high RN values are highly subject to erosion and

therefore susceptible to an increased peak flow (Sreedevi

et al. 2013).

3 Theoretical background

In this section, we briefly present the statistical approaches

adopted in the present work. We define a RFA model as a

two-step procedure beginning with a neighborhood
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identification method and then performing regional esti-

mation. We hereby consider two different methods for each

step, which are described below.

3.1 Delineation of homogeneous regions

3.1.1 Canonical correlation analysis (CCA)

CCA method is detailed in Ouarda et al. (2001) in the

context of RFA, and commonly used in this context to

identify group of basins having the same hydrological

response. This method consists of space reduction by

establishing pairs of canonical variables based on a linear

transformation of two groups of random variables. Let two

sets of random variables X ¼ X1;X2; . . .;Xmð Þ and Y ¼
ðY1; Y2; . . .; YnÞ containing, respectively, the m physio-

meteorological variables and the n hydrological variables

of N gauged sites. Based on these variables, the linear

combinations Vi and Zi of the variables X and Y and the

canonical correlation coefficients k1, …, kp (with ki = corr

(Vi, Zi)) can be computed.

Using the CCA method, the considered basins can be

represented as points in a spaces of the uncorrelated

canonical variables (Vi, Zj); where i = j. Then, it will be

possible to examine the similarity of the point patterns in

these spaces, i.e., the ability of the physio-meteorological

canonical variables to predict the hydrological variables.

The point patterns that are sufficiently similar are associ-

ated with sub-group of basins that belongs to the same

statistical population and vice versa. The similarity

between the basins are measured based on a Mahalanobis

distance.

3.1.2 Region of influence (ROI)

As the CCA, the ROI method (Burn 1990) allows the

identification of a hydrological neighborhood for a given

target-site based on a Euclidean distance, generally a

weighted Euclidean distance. This distance determines the

similarity of watersheds in a multidimensional space of

physio-meteorological variables. A more detailed descrip-

tion of the approach can be found for example in Burn

(1990) and GREHYS (1996).

3.2 Regional estimation approaches

3.2.1 Linear regression model

The linear regression model or the log-linear regression

model (LLRM) is commonly used to find a linear rela-

tionship between the hydrological variable (such as the

flood quantile QT corresponding to a return period T) and

the physio-meteorological characteristics of a watershed

(X1, X2, …, Xm), and it is defined as (e.g. Girard et al.

2004; Pandey and Nguyen 1999):

log E Y=Xð Þð Þ ¼ b0 þ
Xm
j¼1

bj logðXjÞ þ e ð1Þ

where X is a matrix whose columns correspond to a set of

m explanatory variables, b0 and bj are unknown parameters

to be estimated using the least-square method (Pandey and

Nguyen 1999) and e is the model error.

3.2.2 Generalized additive model

GAM was developed by Hastie and Tibshirani (1987). It is

an extension of the generalized linear model (GLM). This

model allows for a response distribution other than Gaus-

sian and for a non-linear relationship between response and

explanatory variables through smooth functions (Hastie

and Tibshirani 1987; Wood 2006), which may lead to a

more close description of the hydrological processes

involved. The GAM formula is given by Wood (2006):

g E Y=Xð Þð Þ ¼ b0 þ
Xm
j¼1

SjðXjÞ þ e ð2Þ

where g is a monotonic link function and Sj are smooth

functions of explanatory variables Xj.

The estimation of the smooth functions Sj is carried out

using splines, which are piecewise polynomial functions

linked at points named knots. Generally, the smooth

functions Sj are defined as follows:

Sj xð Þ ¼
Xq

i¼1

bjibjiðxÞ ð3Þ

where bji are unknown parameters and bji are the spline

basis functions.

4 Methodology

4.1 Regional models

In this study, we apply all combinations of the two DHR

methods (CCA, ROI) in conjunction with the RE models

(LLRM and GAM) presented in Sect. 3. The RE models

are also considered with all stations (i.e. without defining

any neighborhood). This result in six possible combina-

tions for each dataset (STA and EXTD). Thus, the fol-

lowing regionalization approaches are evaluated (Fig. 1):

• ALL/LLRM (STA and EXTD): LLRM used without

neighborhoods (all stations) and with variables selected

from the STA and the EXTD datasets using the

backward stepwise procedure.
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• ALL/GAM (STA and EXTD): GAM used without

neighborhoods (all stations) and with variables selected

from the STA and the EXTD datasets using the

backward stepwise procedure.

• CCA/LLRM (STA and EXTD): LLRM used with

neighborhoods identified by the CCA method and with

variables selected from the STA and the EXTD datasets

using the backward stepwise procedure.

• CCA/GAM (STA and EXTD): GAM used with neigh-

borhoods identified by the CCA method and with

variables selected from the STA and the EXTD datasets

using the backward stepwise procedure.

• ROI/LLRM (STA and EXTD): LLRM used with

neighborhoods identified by the ROI method and with

variables selected from the STA and the EXTD datasets

using the backward stepwise procedure.

• ROI/GAM (STA and EXTD): GAM used with neigh-

borhoods identified by the ROI method and with

variables selected from the STA and the EXTD datasets

using the backward stepwise procedure

The CCA and ROI methods are used in the DHR con-

sidering two different sets of physio-meteorological vari-

ables. The first group includes variables from the STA

dataset, namely the area (AREA), mean basin slope (MBS),

percentage of the area occupied by lakes (PLAKE), mean

annual total precipitation (MATP), mean annual degree

days below 0 �C (DDBZ) and the longitude of the centroid

of the catchment (LONGC). The second one comprises

variables from the EXTD dataset, which are PLAKE,

MATP, DDBZ, LONGC, RT and RC. The selection of

these variables is carried out based on their correlation

level with the hydrological variables (Table 3) as the

principle of the CCA is based on correlations. For the aim

of simplicity and to be consistent with the CCA, variables

selected for the ROI are also based on correlation levels.

The classical procedures of ROI and CCA lead to

neighbourhoods with highly variable sample sizes from a

target site to another. Indeed, considering a given threshold

value, sites located near the centre of the cloud of points

determined by the Euclidean space for ROI and the

canonical space for CCA are expected to include more sites

within their neighbourhoods than sites located on the edge

of the cloud of points (Leclerc and Ouarda 2007). Since the

accuracy of the estimates obtained by regression models is

sensible to the sample size, it was decided to fix the

neighbourhood size for all target stations. This size is

chosen with a standard jackknife procedure and optimized

using the optimization procedure of Ouarda et al. (2001)

developed in the Matlab environment.

LLRM and GAM are used in this study as RE models.

GAM was developed based on the R package mgcv (Wood

2006). In this work, the thin plate regression spline is

considered as basis bji (.) in the smoothing function Sjð:Þ in
Eq. (3). This basis function is considered due to its

advantages. The thin plate regression spline is character-

ized by its reduced calculation time, its flexibility and it

comprises a lower number of parameters compared to other

STA/EXTD

DHR 

• ALL/LLRM/STA

• ALL/GAM/STA

• CCA/LLRM/STA

• CCA/GAM/STA

• ROI/LLRM/STA

• ROI/GAM/STA     

+ RE = Regional models

• ALL 

• CCA

• ROI

• LLRM

• GAM

• ALL/LLRM/EXTD

• ALL/GAM/EXTD

• CCA/LLRM/EXTD

• CCA/GAM/EXTD

• ROI/LLRM/EXTD

• ROI/GAM/EXTD

Fig.1 Different combinations and considered models

Table 3 Correlation between hydrological and physiographical

variables

QS10 QS50 QS100

AREA - 0.46 - 0.45 - 0.44

MBS 0.47 0.46 0.46

PLAKE - 0.67 - 0.65 - 0.63

MATP 0.68 0.64 0.62

DDBZ - 0.60 - 0.60 - 0.59

LONGC 0.47 0.45 0.44

RT - 0.53 - 0.52 - 0.51

RC 0.68 0.66 0.65
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smoothing functions (Wood 2006). The considered link

function g in (2) is the identity function since the log-

transformed quantiles are approximately normal (as in

Ouali et al. (2017)).

4.2 Selection of explanatory variables

Variable selection procedure is different for the two RFA

steps; a correlation-based selection is considered for DHR

and a stepwise method is used for RE as a standard

approach in the RFA studies. Based on correlation level

between physio-meteorological variables and hydrological

variables (Table 3), six variables are identified for DHR

(see above).

For the RE step, four variable selection methods are

firstly tested namely forward, backward, stepwise and

shrinkage approaches (Heinze et al. 2018) in this study.

Table 4 presents the results obtained from each variable

selection approach applied for QS10 that can be considered

as the most reliable quantile. It can be seen that, regardless

of the considered selection method, several new variables

are selected in the final model. This suggests that new

variables in the EXTD are potentially useful for RFA.

To evaluate whether the new variables are predictive of

target quantiles, the backward stepwise selection procedure

is adopted for both LLRM and GAM. It has already been

successfully applied previously with the same dataset

(STA) and in the same context by Chebana et al. (2014),

Ouarda et al. (2018) and more recently by Msilini et al.

(2020). Backward stepwise selection procedure consists in

a progressive elimination of variables having the highest p

value (based on the hypothesis that the coefficients in

Table 4 Variables selection results for QS10 case (with different methods)

Variables Models

STA EXTD

LLRM GAM LLRM GAM

Fd Bd Sw Sh Fd Bd Sw Sh Fd Bd Sw Sh Fd Bd Sw Sh

AREA * * * * * * * * * * * *

MCL * * * * *

MCS * * *

MBS * * * * * * * *

PFOR * * * * * * * * * * * * * * *

PLAKE * * * * * * * * * * * * * * * *

MATP * * * * * *

MALP * * * * * * * * * * * * *

MASP * * * * *

MALPS * * * *

DDBZ * * * * * * * * * * * *

LATC *

LONGC * * * * * * * * * * * * * *

RT * * * * *

RC * * * * *

MRL * * * * * * * *

MRB * * * *

WMRB * * * * * * *

qWMRB

DD * * * * * * * *

FS * *

IF * * *

RN * * * * * * *

PN1 * * *

PL1 * *

Fd is Forward; Bd is backward; Sw is stepwise selection and Sh is shrinkage approach selection
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Eq. (1) for LLRM or the smooth terms in Eq. (3) for GAM

are null) from an initial model comprising all available

variables. The procedure stops when the number of vari-

ables remaining in the model drops below a specific

number (Fig. 2). This number is chosen as the one mini-

mizing the RRMSE estimated by jackknife.

4.3 Models validation

For each RFA model, a jackknife procedure (also called

leave one-out cross validation procedure) is used to eval-

uate its performance. It consists in considering, in turn,

each gauged site as an ungauged one and comparing

thereafter the regional estimate to the observed value. This

comparison is performed through several criteria: first, the

Nash criterion (NASH) gives an evaluation of the degree of

adequacy and a global assessment of the prediction quality.

Second, the root mean squared error (RMSE) provides

information about the accuracy of the prediction in an

absolute scale, and the relative RMSE (RRMSE) removes

the impact of each site’s order of magnitude from the

RMSE values and gives information about the accuracy of

the prediction in a relative scale. Finally, the bias (BIAS)

and the relative bias (RBIAS) give a measure of the

magnitude of the systematic overestimation or underesti-

mation of a model. The formulations of these criteria are

given as follows:

Nash:

Select a significant level P-value: 
usually p-value =0.05 and/or select 

maximum number of variables to be 
retained in the model (Nmax).

Fit the model with all available 
explanatory variables

Identify the explanatory variable with 
the highest p-value (less significant)

Is the highest p-value > the 
significant level and/or the number of 
remain variable > Nmax

Remove this variable and re fit the 
model with the remaining explanatory 

variables

YES

NO

DONE !

Fig.2 Backward elimination process
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NASH ¼ 1�
PN

i¼1ðyi � ŷiÞ2PN
i¼1ðyi � yÞ2

ð4Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyi � ŷiÞ2
vuut ð5Þ

Relative root-mean-square error:

RRMSE ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyi � ŷiÞ
yi

� �2
vuut ð6Þ

Mean bias:

BIAS ¼ 1

N

XN
i¼1

ðyi � ŷiÞ ð7Þ

Relative mean bias:

RBIAS ¼ 100
1

N

XN
i¼1

ðyi � ŷiÞ
yi

ð8Þ

Fig. 3 Geographical location of the studied stations in Quebec, Canada

Table 5 Descriptive statistics of new physiographical variables

Variable Min Mean Max SD

DD (Km-1) 2.41 2.96 4.73 0.34

FS (Km-2) 7.34 9.74 11.86 0.97

IF (Km-3) 17.69 29.26 67.09 6.56

RT (Km-1) 8.09 32.11 131.84 21.41

MRB 1.67 2.40 17.27 2.08

WMRB 1.95 2.08 4.14 0.24

MRL 0.85 0.97 1.11 0.05

qWMRB 0.23 0.47 0.55 0.04

RN 0.20 1.89 7.48 1.03

RC 0.06 0.18 0.46 0.08

PN1 (%) 50.12 50.41 52.50 0.30

PL1 (%) 44.09 52.89 66.36 4.10
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where yi and ŷi are, respectively, the local and regional

quantile estimates at site i, y is the mean of the local

quantile estimates, and N is the number of stations.

5 Case study and datasets

The data used in this study includes two datasets, the STA

and the EXTD, covering 151 stations located in the

southern part of Quebec, Canada (Fig. 3). The STA was

considered in previous studies with geographical coordi-

nates of the stations and commonly used physio-meteoro-

logical variables (e.g. Durocher et al. 2015; Shu and

Ouarda 2007; Wazneh et al. 2016). The EXTD dataset

combining STA dataset with less common variables rep-

resenting drainage network properties. The stations are

operated by the Ministry of Sustainable Development,

Environment, and Fight Against Climate Change.

The considered hydrological variables (Y in the theo-

retical background) are at-site quantiles standardized by the

basin area (specific quantiles), denoted by QS10, QS50 and

QS100 with 10, 50 and 100 are the return periods.

Descriptive statistics of hydrological and physio-meteoro-

logical variables of the STA (not presented here to avoid

repetition) can be found for example in Durocher et al.

(2015). The hydrological variables were identified in

Kouider et al. (2002a) using a local Frequency Analysis in

each gauged site. Data series with at least 15 years of

measurement were considered for the analysis. The basic

assumptions of stationarity, homogeneity and indepen-

dence were verified and the appropriate statistical distri-

butions were fitted to data. The appropriate probability

distributions identified, are mainly the inverse gamma and

Log-Normal with two parameters. For more details about

this study, reader may refer to the report of Kouider et al.

(2002b). The new physiographical variables, considered in

the EXTD, are summarized in Table 5. These variables are

identified from drainage networks extracted using the D8

method based on the DEMs (Jenson and Domingue 1988;

O’Callaghan and Mark 1984). This technique is imple-

mented in Arc Gis (Arc Hydro).

The D8 method is based on a digital elevation model

(DEM) which is basically a grid of elevation values. For

each cell, it is considered that water flows in direction of

the steepest slope among the eight neighbors of a given

DEM cell. The direction grid can then be used to estimate

flow accumulation which is obtained by summing the

weight of all grid cells following into each downslope cell

in the output grid, i.e. simulating the flow path. Based on

the obtained flow accumulation grid, the drainage networks

can be extracted with the stream head locations corre-

sponding to accumulation values below a constant thresh-

old value (see for instance (Tarboton et al. 1991)).

In this work, the DEMs were hydrologically corrected

based on information from the National Hydro Network

(NHN). This correction was carried out using the DEM

Reconditioning process, which is an implementation of the

‘‘AGREE’’ method. It consists in adjusting the DEM by

imposing linear features as a reference. The reference in

this case is the (NHN).

The used DEMs have a spatial resolution of * 20 m

grid cells and are obtained from the Natural Resources

Canada database (https://www.nrcan.gc.ca/earth-sciences/

geography/topographic-information/download-directory-

documentation/17215). Note that, drainage networks of six

cross-border watersheds are extracted using the United

Table 6 Explanatory variables selected for the various regression models

Regional models Quantile Selected predictor variables

ALL/LLRM/STA,CCA/LLRM/STA,ROI/LLRM/STA QS10

QS50

QS100

AREA, MBS, PFOR, PLAKE, MALP, DDBZ, LONGC

AREA, MBS, PFOR, PLAKE, MALP, DDBZ, LONGC

AREA, MBS, PFOR, PLAKE, MATP, MALP, LONGC

ALL/LLRM/EXTD,CCA/LLRM/EXTD,ROI/LLRM/EXTD QS10

QS50

QS100

AREA, PFOR, PLAKE, MALP, DD, MRL, LONGC

AREA, PFOR, PLAKE, MALP, DD, MRL, LONGC

AREA, PFOR, PLAKE, MALP, DD, MRL, LONGC

ALL/GAM/STA,CCA/GAM/STA,ROI/GAM/STA QS10

QS50

QS100

AREA, MBS, PLAKE, MALP, MASP, DDBZ, LONGC

AREA, MCL, MBS, PLAKE, MALP, DDBZ, LONGC

AREA, MCL, MBS, PLAKE, MALP, DDBZ, LONGC

ALL/GAM/EXTD,CCA/GAM/EXTD,ROI/GAM/EXTD QS10

QS50

QS100

MCL, PLAKE, MATP, DDBZ, DD, RN, LATC

MCL, PLAKE, MALP, DDBZ, DD, MRL, LONGC

MCL, PLAKE, MALP, DDBZ, DD, MRL, LONGC

Variables dealing with drainage network characteristics are in bold character
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States Geological Survey (USGS) data distributed

with * 30 m grid cells (https://earthexplorer.usgs.gov/).

CCA requires the normality of all variables. Hence,

some variables need to be transformed. The normality of

each variable is visually assessed with a normal probability

plot. This technique plots empirical quantiles versus theo-

retical Gaussian quantiles and should be approximately

linear in the case of actual normality. The logarithmic

transformation is considered for the hydrological variables,

AREA, MBS, MATP, DDBZ and RT, and a square root

transformation for PLAKE and RC. The LONGC is used

without transformation since it is approximately normal.

6 Results and discussion

A correlation analysis is carried out in order to investigate

the relationships between variables. Table 3 shows the list

of the variables selected for the DHR step based on their

high correlation level with the hydrological variables. One

can see the existence of relatively high negative correla-

tions between the hydrological variables and the AREA,

PLAKE, DDBZ and RT. We also note the presence of

important positive correlations between the response vari-

ables and the MATP and RC variables. The linear corre-

lation coefficients between the variable RT, which is one of

the most important new variables, and the specific quantiles

QS10 and QS100 are -0.53 and -0.51 respectively. However,

those between the RT variable and the at-site flood quan-

tiles Q10 and Q100 are 0.87 and 0.86 respectively. Positive

and high correlation values indicate that the increase in RT

is associated with a relatively fast and high hydrologic

response and consequently an increased risk of erosion.

This is consistent with what is stated in Ameri et al. (2018).

The second important new variable in terms of correlation

level is the RC characterizing the basin shape. Higher RC

values (close to 1) are associated with circular basins with

low concentration time and high hydrological response

hence the positive correlation.

Fig. 4 Relative errors associated to the local quantile QS100 calculated with ROI/GAM/STA and ROI/GAM/EXTD

Fig. 5 Relative errors associated to the local quantile QS100 calculated with CCA/GAM/STA and CCA/GAM/EXTD
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The identification of the neighborhood requires the

determination of the optimal number of stations to be used

in the RE step. To this end, the optimization procedure of

Ouarda et al. (2001) is used. Based on a selected criterion

such as RMSE, RRMSE, BIAS or RBIAS the optimal size

of neighborhoods can be identified. The optimal size of the

neighborhoods should be large enough to ensure that RE

can be carried out effectively, but not too large in order to

maintain an acceptable degree of homogeneity within the

neighborhoods. In this study, we obtain nopt (STA) = 85

sites and nopt (EXTD) = 78 sites with respect to the

RRMSE, which is the most important criterion (Hosking

and Wallis 2005), for the CCA approach. For the ROI

method, the obtained optimum sizes are nopt (STA) = 54

sites and nopt (EXTD) = 44 sites with respect to the same

criterion.

The backward stepwise selection method is considered

for each quantile (QS10, QS50 and QS100) and for each

model (LLRM and GAM). In the present study, the optimal

number of variables in GAM, which is the most complex

model, is found to be seven. Table 6 shows the seven

selected variables for each quantile and model combina-

tion. We note the selection of three new variables (RN,

MRL and DD).

The jackknife procedure results for all considered

combinations are presented in Table 7. The best overall

performances are obtained with the EXTD, especially with

ROI/GAM/EXTD followed by the CCA/GAM/EXTD

approaches. Based on the high NASH values (0.79) and the

lowest RRMSE values (29.24% for QS100), the ROI/GAM/

EXTD combination gives the most precise estimates

compared to all other approaches. According to RBIAS, all

models underestimate flood quantiles but the least biased

model is ROI/LLRM/EXTD (-1.38% for QS100). However,

compared to the ROI/GAM/EXTD approach, the differ-

ence is low (around -1.8% for QS100).

Note that, GAM applied to EXTD (with and without the

neighborhoods) outperforms LLRM applied to EXTD and

STA. This may be explained by the ability of GAM to take

into account the possible nonlinear connections between

predictor and response variables, and also by the important

impact of the new variables.

We also notice that the use of the EXTD leads to even

more important improvements when adopting the ROI

method compared to the CCA approach. Wazneh et al.

Fig. 6 Relative errors using ROI/GAM/STA and ROI/GAM/EXTD as a function of QS100

Fig. 7 Specific regional quantile versus local estimates using ROI/

GAM/STA and ROI/GAM/EXTD approaches for QS100
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(2016) have also obtained better results with the ROI than

with the CCA approach.

To further explain the previous results, the relative

errors as a function of the stations ordered according to

their area corresponding to the best combinations (ROI/

GAM and CCA/GAM) are given in Figs. 4 and 5 respec-

tively. It can be seen that the EXTD performs well espe-

cially for large basins. Indeed, for the large watersheds the

relative errors decrease considerably with the EXTD. This

result may also be confirmed by Fig. 6, where one can note

that the lowest specific quantiles, which are usually asso-

ciated to sites with large basin areas, are well estimated

with the EXTD. A significant improvement can also be

seen for some specific sites that have exceptionally large

relative errors with STA. Four such sites (030401, 030402,

041903 and 042607) were identified previously by Chok-

mani and Ouarda (2004), Durocher et al. (2015) and Ouali

et al. (2017) as particular stations with underestimated

areas. The integration of more accurate variables dealing

with the drainage network, improves considerably the

quantile estimates corresponding to these sites.

Jackknife estimates using the ROI/GAM and CCA/

GAM approaches (for QS100) are illustrated, respectively,

in Figs. 7 and 8. One can see that these models combined

with the EXTD show better performances compared to the

STA. The points associated to the scatter diagram of the at-

site and regional estimates are less dispersed when using

the EXTD than the STA. In addition, the coefficient of

determination R2 values show that the linearity between the

local and the regional specific quantile estimates is better

explained when using the EXTD than the STA.

Results also indicate that sites with high specific quan-

tile values (more than 0.7 m3/s.km2), which are generally

associated to small basins with an area less than 800 km2,

are underestimated using the two datasets. This may sug-

gest the usefulness of developing specific regional models

for small basins. This result can be explained by the fact

that traditional neighborhood approaches (CCA and ROI)

lead to an underestimation for sites with small basin areas

as shown in Wazneh et al.(2016). This may be the cause of

the obtained negative RBIAS values in this work.

Figures 9 and 10 present the smooth functions of the

response variable log(QS100) as a function of the STA and

the EXTD explanatory variables respectively. We notice

that the variables PLAKE, DDBZ, AREA and DD show a

complex nonlinear relationship (nonlinear smooth function

curves and high edf values), while the variables LONGC;

MALP, MCL, MBS and MRL present linear relations.

A particular case of interest from the EXTD that can be

observed concerns the relationship between the hydrolog-

ical variable and the DD values. One can see that the higher

the DD values are the lower the hydrological response will

be. This result is in contradiction with what is commonly

observed in practice (Melton 1957). In fact, the correlation

between the DD variable and specific quantile is negative (-

0.11) while the correlation between flood quantile and the

variable DD is positive (0.13). Thus, this variable depends

on the size of the watershed, for this reason its effect is

reversed in this study case because the specific quantile is

used.

We also notice that the MRL and MCL variables are

found to be inversely proportional to the hydrological

response. An increase of these variables is associated with

a decrease of the MBS and hence a decrease of the

hydrological response.

It can also be seen that the relationship between

log(QS100) and PLAKE is decreasing for the majority of

PLAKE values, but increases for the highest values of

PLAKE. However, the number of points is very limited in

the high PLAKE range and more effort will be required to

understand the effect of this variable on the flow regime for

this range. In general, lakes act as a sponge absorbing the

excess water during extreme events, which explains the

decreasing relationship between log(QS100) and PLAKE.

The LONGC in this study is an indicator of the station

proximity to the Atlantic Ocean and thereafter reflects the

influence of the ocean on the local climate. Finally, the

variability in the relationship between the DDBZ values

and the hydrological response may indirectly reflect the

seasonality impact of the temperature on the flow regime.

The same patterns were observed previously by Chebana

et al. (2014) for the DDBZ and PLAKE variables.

Fig. 8 Specific regional quantile versus local estimates using CCA/

GAM/STA and CCA/GAM/EXTD approaches for QS100
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7 Conclusions

Through a case study in the province of Quebec, the pre-

sent study shows the relevancy of considering drainage

network characteristics for quantile prediction in RFA.

This result is outlined by the variable importance in RFA

models which shows that five new variables, namely RT,

RC, DD, MRL and RN are found particularly useful for the

specific case of Quebec. Prediction accuracy is also

improved using the new variables, especially when

considering small neighbourhoods and nonlinear models as

shown by the superior accuracy of the ROI/GAM/EXTD

combination. This result seems also more important for

large basins.

By focusing on the drainage network and basin shape,

the new physiographical variables allow integrating more

information about the underlying hydrogeological flows

and thus, indirectly, to make the link between the

groundwater and the surface water flows. This added

information allows for a better description of the

Fig. 9 Smooth functions of QS100 for the predictor variables included in the regional models ALL/GAM/STA, CCA/GAM/STA and ROI/GAM/

STA. The dotted lines represent the 95% confidence intervals. The vertical axes denote the spline of each explanatory variable
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hydrological dynamics involved and consequently to better

flood quantile estimates.

The present study paves the way for several perspec-

tives. In particular, drainage network characteristics should

be evaluated further in a wider variety of settings including

different climate and catchment geology. The increasing

complexity of databases used in RFA to which this

research participate, also outlines the need for method-

ological development that allow a more efficient use of this

extensive information, as classical approaches may be

limited in this regard. Future research should thus focus on

studying how to take advantage of the interaction between

the newly proposed variables on quantile estimation, as

well as the potential nonlinear impact of the considered

variables.
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