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Abstract
Climate change is a major concern the world over more so for a predominantly agrarian country like India. In this paper we

analyze the time horizon dynamics of crop and climate variables at the regional level in India. We also analyze the co-

movements of crop yields with temperature and rainfall to observe the coherence across heterogenous time horizons. We

employ Bai-Perron structural break and Continuous wavelet transform methods on yearly data of seven crop yields and

climate variables. Observed variables are analyzed from 1956 to 2010 for the un-divided state of Andhra Pradesh, India.

Breakpoint analysis shows an increase of around 1.0� temperature with two observed break points. Rainfall depicts no

systematic change with fluctuations being largely random. The framework of wavelets-based time–frequency analysis

employed in this study captures climate and crop dynamics at heterogeneous time horizons, allowing one to study the

impact of climate and crop yields at both short and longer time-horizons. Wavelet based coherence analysis exhibited

significant co-movement between climatic and crop variables. Given shifts in climate patterns and subsequent shifts in co-

movements across time horizons at the regional level, policy makers and crop scientists should design time specific and

locally viable adaption and mitigation policies to tackle the impact of climate change on crops and livelihoods.

Keywords Climate Change � Structural break � Crop yields � Bai-Perron � Wavelets � Time horizon � Coherence �
Co-movements

JEL Classification C13 � Q10 � Q15 � Q50 � Q54

1 Introduction

Climate change, attributed largely to the anthropogenic

(Johns et al. 2003; Kaufman et al. 2011; Hansen and Stone

2016; Ambade et al. 2021) increase in greenhouse gas

emissions is no longer a distant scientific prognosis but is a

hard reality. The concentration of global atmospheric car-

bon dioxide, a greenhouse gas (GHG) largely responsible

for global warming, has increased from a pre-industrial

value of about 280–391 ppm in 2011. Similarly, the global

atmospheric concentration of methane (CH4), nitrous oxi-

des (N2O) and other important GHGs has also increased

considerably (IPCC 2013). Adequate evidence suggesting

change in climatic parameters can be observed from

increased global average temperatures and change in

rainfall patterns during the twentieth century. Eleven of the

twelve years between 1995 and 2006 rank among the

twelve warmest recorded since 1870 (IPCC 2007).

Climate variability is a major concern for India given its

size and demographic dependence. Studies show a marked

rise in temperature over the last century in India both at the

national and regional level (GOI 2010; Kothawale et al.

2010; Patni et al. 2020). The annual mean temperature

during 1901–2019 showed an increasing trend of 0.61 �C/
100 years, with significant increasing trend in maximum

temperature at around 1.0 �C per 100 years (GOI 2020).

This is found to be mainly contributed by the post-mon-

soon and winter seasons, even as the monsoon
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temperatures do not show a significant trend (Kumar et al.

1994; Mondal et al. 2015). However, rainfall fluctuations in

India have been largely random over a century with no

systematic change detected in summer monsoon season

(Prasad and Kochher 2009). Yet at regional level rainfall

has exhibited changes in the last century, with areas around

West coast, North Andhra Pradesh, and North-West India

found to exhibit increasing trend and East Madhya Pradesh,

Orissa and North-East exhibiting declining trend (Kumar

et al. 1992; GOI 2008).

Estimates show India’s climate to become warmer, with

a predicted increase in annual mean maximum and mini-

mum temperature of 0.7 �C and 1.0 �C over land in the

2040s with respect to the 1980s and increase of 1–1.4 �C
and 2.23–2.87 �C area average annual mean warming by

2020 and 2050 respectively (Lal et al. 1995, 2001). The

temperature rise is likely to be much higher during the

winter (rabi) rather than in the rainy season (kharif). The

warming is more pronounced over land areas with a

maximum increase over Northern India. These changes are

likely to increase the pressure on developing countries like

India (Rosenzweig and Parry 1994; Mendelsohn 2008)

given their greater dependence on agriculture, in addition

to the ongoing stresses of yield stagnation, competition for

land, water and other resources and globalization (Paroda

and Kumar 2000).

The state of Andhra Pradesh, now divided into two

separate states, namely (i) Telangana and (ii) Andhra

Pradesh, was the fifth largest in the country both in terms of

population (84.6 million) and geographical area (27.4

million hectares). The undivided state of Andhra Pradesh

has a tropical climate with moderate to subtropical weather

and exhibits diverse climatic patterns across different agro-

climatic zones (Padakandla 2020). Humid to semi humid

conditions prevail in the Coastal areas while arid to semi-

arid situations are prevalent in the interior parts, particu-

larly Rayalaseema and some districts of Telangana

(Government of Andhra Pradesh 2011b). The state receives

rainfall from South-West (June–September) and North-

East (October- November) monsoon. However, there is

large variation in the distribution as coastal areas generally

receive the highest rainfall, while regions of Rayalaseema

and Telangana fall in the precarious and modest rainfall

category (Government of Andhra Pradeskh 2011a). The

undivided state of Andhra Pradesh is primarily agrarian in

nature and is the third largest producer of rice and

groundnut and second largest producer of cotton and sun-

flower. The impact of climate on this state is more intense

not only because of its dependence on agriculture but also

due to diverse impact across different climatic regions

(Padakandla 2020).

The effect of climate is heterogeneous in both spatial

and temporal dimensions (Gornall et al. 2010; Leng and

Huang 2017; Zhao et al. 2017; Kukal and Irmak, 2018;

Kumar and Kaur 2019; Chang et al. 2019; Kurths et al.

2019; Ray et al. 2019). It is well documented in literature

that Indian agricultural growth is highly dependent on the

spatial and temporal distribution of monsoon rainfall and

temperature (Kumar et al. 2004; Asada and Matsumoto

2009; Shukla et al. 2018). In view of the above, we analyze

the heterogeneous impact of climate change on crop yields

in the undivided state of Andhra Pradesh, India over dif-

ferent time horizons.

The rest of the article is structured as follows. Section 2

provides a brief review of literature and research motive for

the study. In Sect. 3, we present the methods used for

analysis along with the data sources. The results are dis-

cussed in Sect. 4 and the concluding remarks are provided

in Sect. 5.

2 Review of literature

There is a plethora of literature on the dynamics of climate

and crop yields and its impact. Though some experimental

and simulation studies demonstrate elevated CO2 in the

atmosphere help crops favorably (Baker et al. 1992;

Kimball et al. 2002; Krishnan et al. 2007), related impact

of increased temperature, changing patterns of rainfall and

extreme weather events is likely to increase risks in crop

production (Matthews et al. 1997; Parry et al. 2004; Fofana

2011; Pal and Mitra 2018; Nath and Mandal 2018; Gun-

tukula and Goyari 2020). Apart from the physical impact of

climate on crop yields (Selvaraju 2003; Gupta et al. 2014;

Zhang et al. 2017), there is a fair amount of literature on

monetary impact of climate on yields (Kumar and Parikh

2001; Kumar 2009; Guiteras 2009; Fishman 2012). Studies

have also estimated impact of climate change on land value

or net revenues (Mendelsohn et al. 1994; Massetti and

Mendelsohn 2011; Mishra et al. 2016).

The method of breakpoint analysis, primarily to test for

stationarity and instability in time-series data is extensively

used in financial and economic analysis (Kim et al. 2005;

Bajo-Rubio et al. 2008; Chen and Zivot 2010; Kar et al.

2013). However, studies on crop-climate dynamics are

limited, especially in the context of India. Arora et al.

(2005) and Jhajaria and Singh (2011) employed non-

parametric test to detect monotonic trends in annual aver-

age and seasonal temperature over India and North-East

India respectively. Alternatively, Paul et al. (2014)

employed CUMSUM and Chow test to discover an

observed breakpoint around 1970–1980 both at the country

and regional levels. Similarly, Mondal et al. (2015)

employed Mann-Kendall test and Sen’s slope to analyze

the trend magnitude and Mann-Whitney-Pettitt to test

probable break point detection in the series.

1690 Stochastic Environmental Research and Risk Assessment (2022) 36:1689–1701

123



Wavelet based analysis of climatic time series is rela-

tively a new area of study where multiresolution analysis is

applied to climatic variables at varying time horizons. For

example, Zhang et al. (2014) using Haar wavelets, discover

regime shift in Arctic oscillation. Similarly, Morlet wavelet

is used to study the phenomenon of runoff in Yangtze

River at varying time horizon by Qian et al. (2014). In the

same vein, Xu et al. (2009) decomposes the time series

weather data into multiple time horizons to study the

impact of climate change in the Tarim river basin of China.

More recently, Yang et al. (2021) and Abahous et al.

(2021) used wavelet-based methods to analyze climatic

impact on crop yields in inner Mongolia and northwestern

Africa, respectively. In the Indian context, Ratinasamy

et al. (2019) employed wavelet coherence to detect sig-

nificant interannual and interdecadal oscillations in

monthly precipitation extremes across India and their

teleconnections to three prominent climate indices.

Survey of existing literature show majority of studies

either analyzed time series dynamics of climate and crop

variables either independently or examined their relation-

ship only in time domain, whereas studies examining the

simultaneous localization of information from both time

and frequency domains are practically non-existent. Given

that there is increasing variability of climate across spatial

and temporal horizons, the present analysis will bridge the

gap in the existing literature by analyzing the climatic

impact on crop yields across time horizons.

3 Materials and methods

3.1 Structural change

Tests for parameter instability and structural change in

regression models have been an important part of applied

econometric work dating back to Chow (1960) who tested

for regime change at a prior known date using an

F-statistic. This was further modified by Quandt (1960), to

relax the requirement that the candidate break-date be

known and consider the F-statistic with the largest value

over all possible break-dates. Later, Andrews (1993) and

Andrews and Ploberger (1994) derived the limiting distri-

bution of the Quandt and related test statistics. Bai (1997)

and Bai and Perron (1998, 2003) provide theoretical and

computational results that further extend the Quandt-An-

drews framework by allowing for multiple unknown

breakpoints.

We employed Bai Perron test to identify the trend and

breakpoints across different climate and crop yields. The

methodology to detect multiple breakpoints follows the

work by Bai and Perron (1998). The data generating pro-

cess is given by

Y ¼ Xb0 þ �Z0d0 þ U ð1:1Þ

where the true value of the coefficient at time t is given by

the subscript 0. The data is divided into m partitions and

the following global minimum is computed

cT1 ; . . .. . .cT2

� �

¼ argminT1;.........:;Tm
ST T1; . . .. . .; Tmð Þ

ð1:2Þ

where ST represents the sum of squared residuals, and is

given by

ST ¼
X
mþ1

i¼1

XTi

t¼Ti�1þ1
½yt � x

0
b� z

0

tdi�
2 ð1:3Þ

The next procedure in the algorithm is to compute the

statistic is derived from the sup F test as detailed in

Andrews (1993). The null hypothesis of no breaks is

checked against the alternative of m = k breaks after

computing the following statistic.

F k1; ::. . .; k; qð Þ ¼ T � k þ 1ð Þq� p

kq

� �
bd

0

R
0
R ZMxZ
� ��1

R
0

� ��1

Rbd

SSRk

2

6

4

3

7

5

ð1:4Þ

where.

Tt ¼ Tki½ �

Rdð Þ
0
¼ ðd0

1 � d
0

2; . . .; d
0

k � dkþ1Þ

MX ¼ I � XðXXÞ�1X

In the above algorithm, an assumption is made at the

number of breaks (m = 0,1,…,k) in the first stage. Subse-

quently, the time series is divided into m segments (T1, …,

Tm) which minimizes the sum of squared residuals, St. The

final step in the algorithm involves the computation of an F

test which compares the assumption of no breaks with the

occurrence of k breaks. The said number of breaks as

assumed in the first step is said to occur if the computed

statistic is above the critical value.1 All computations were

implemented in R statistical environment using the algo-

rithm developed by Zeileis and Kleiber (2005).2.

Alternatively, we employ continuous wavelet transform

method to test the robustness in the trends and breakpoints

and observe the co-movements between crop and climate

variables across different time horizons. The advantage of

1 Refer Bai and Perron (2003) for the details of algorithm that

identifies the break dates.
2 This package implements a large collection of methods for the

analysis of structural change, as well as methods for the dating and

monitoring of structural breaks. Both the R system and the struchange

package are freely available under the terms of the GNU General

Public License (GPL) from the Comprehensive R Archive Network

(CRAN), at http://CRAN.R-project.org/.
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wavelet method is that they can decompose the yearly

series into different time horizons starting with yearly. For

yearly time horizon the wavelet analysis gives results that

is also seen in structural break analysis, but the drawback

of structural break analysis is that it cannot give informa-

tion for higher time horizons i.e. more than two years.

Analysis over the time horizon is basically the vantage

point of this study. Since climate is a long run phenomenon

and its impact on crop yields occur over different long-run

time horizons, we use wavelets to decompose the trend and

to measure the impact. The detailed methodology is

explained in the following section.

3.2 Wavelets

Wavelets are small waves,3 with varying oscillations, that

vanish after some time interval. Wavelet analysis allows

one to decompose the time series data into both time and

frequency components simultaneously. This is advanta-

geous as traditional time-series methods cannot capture

frequency information which is related to time-horizon of

study. Therefore, wavelets can filter data based on com-

ponents from varying time-horizon starting with smallest

horizon, or short-run, and capturing information from

longer time horizons too. Computations are based on the

continuous wavelet methodology as described in Grinsted

et al. (2004) and Bhandari and Kamaiah (2019).

3.2.1 Continuous wavelet transform

The estimator used to analyze co-movements between two

time-domain variables, is given by wavelet coherence

which is based on the continuous wavelet transform. A

wavelet is a real valued function wð:Þ defined on R such

that
Z

R

wðtÞdt ¼ 0 ð2:1Þ
Z 1

�1
wðtÞj j2dt ¼ 1 ð2:2Þ

Wavelet analysis is performed by choosing a reference

wavelet known as mother wavelet wb;s, which is defined as

wb;sðtÞ ¼
1
ffiffi

s
p w

t � b

s

	 


ð2:3Þ

where s= 0 and b are real constants. The parameter s is the

scaling parameter (used to determine window widths),

whereas the parameter b denotes the translation parameter

(used to determine the position of the window).

The ‘‘continuous wavelet transform’’ (CWT) of a time

signal xðtÞ is defined as

WXðb; sÞ ¼
Z 1

�1
xðtÞwb;sðtÞ dt ð2:4Þ

provided the following admissibility condition4 is satisfied

Cw ¼
Z 1

�1

WðxÞj j2

xj j dx\1 ð2:5Þ

where WðxÞ is the Fourier transform5 of the mother

wavelet wa;bðtÞ. The square of the absolute value of the

CWT is known as the wavelet power and is given by

WXðb; sÞ
�

�

�

�

2
, where the complex argument ofWXðb; sÞ gives

the local phase. Analogous to the boundary problem

encountered in discrete wavelet methods, CWT too suffers

from edge effects as the transform is incorrectly computed

at the initial and end points of the time-series. Edge effects

can be taken into consideration by introducing a Cone of

Influence (COI). It is the area in wavelet spectrum where

wavelet power at the edges generated by some disconti-

nuity has fallen by a magnitude of e�2 of the edge’s value.

Wavelet coherence diagram helps one to distinguish

between significant short and long-term correlations.

Information from timescales ranging from around 2–16

years is given in the left vertical axis of coherence plot.

Morlet wavelet is used as the ‘‘mother wavelet’’ in com-

puting wavelet coherence and the significance is deter-

mined by Monte Carlo methods. The cone of influence

(COI), where the coherence map is affected by boundary

problem, is shown in a lighter shade. Statistically signifi-

cant areas in the coherence plot, with 5% significance level,

are denoted by bold black borders. The color-coded

coherence map reveals strongest power at regions with red

color whereas blue regions reveal low power.

3.3 Data sources

State level data on temperature (maximum, minimum and

average temperature), rainfall (average rainfall, South-

West monsoon rainfall and North-East monsoon rainfall)

and yield of seven principal crops (rice, jowar, maize,

cotton, groundnut, sugarcane and tobacco) from 1956 to

2010 is used for the analysis. Crop yield data is collected

from various volumes of season and crop reports of Andhra

Pradesh. Data on rainfall is collected from ‘‘A profile of

rainfall statistics 1951–2004’’ and various yearly editions

of season and crop reports, published by Directorate of

economic and statistics, Government of Andhra Pradesh.

3 Refer Percival and Walden (2000) for a more detailed exposition of

wavelets in time-series analysis.

4 The admissibility allows the reconstruction of xðtÞ from the CWT.
5 The Fourier transform of the wavelet function wðtÞ is

WðxÞ ¼ r
1
�1wðtÞ e�ixtdt:
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Data on temperature variables is taken from Indian water

portal and different volumes of Statistical abstracts,

Government of Andhra Pradesh.6 The erstwhile state of

Andhra Pradesh has been bifurcated in 2014 into two new

states, Andhra Pradesh and Telangana. Hence our analysis

is limited to 2010 due to unavailability of combined state

level data of climate and crop variables.

4 Empirical results

In this section we discuss the trend and time frequency

dynamics of climate and crop yields and the co-movements

across time horizons derived from our analysis.

4.1 Crop climate trends in the undivided state
of Andhra Pradesh

Figure 1 depict the trend and structural breaks of different

temperature parameters for the undivided state of Andhra

Pradesh during 1956–2010. The break years have been

depicted by the dotted vertical on the x axis. All results are

Fig. 1 Temperature dynamics in the undivided state of Andhra Pradesh

Fig. 2 Rainfall dynamics in the undivided state of Andhra Pradesh

6 Though the station level data as captured by the IMD (Indian

metrological department) is available from as early as 1955, the

presence of large gaps across the time, coupled with the absence of

stations in many districts during the earlier years has restricted the use

of this data set.
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at 95% significance level. From the results we observe a

steady increase of around 1.0� in annual average, annual

maximum and annual minimum temperatures across break

points over the study period. All the three temperature

variables depict two similar breaks in 1978 and 2002,

however annual minimum temperature exhibited a break in

2000. We can observe that the uptick in trend is more

visible and pertinent in the later part of the last decade

especially around late 1990s to 2000s. This is in line with

all India trend that depicts greater warming activity

observed in the last 40 years (1971–2010), and particularly

attributed to the intense warming in the last decade

(1998–2007) (Kothawale et al. 2010).

With reference to rainfall in the state (Fig. 2), we

observe that the trend is steady for all the three variables i.e

annual average, South-West and North-East rainfall over

the study period. As in the case with all India trend (Kumar

et al. 1992; Prasad and Kochher 2009), rainfall fluctuations

in Andhra Pradesh with no identified break, have been

largely random with no systematic change over the study

period. However, in line with all India trend (Kumar et al.

1999a,b; Gadgil et al. 2002), actual rainfall depicts oscil-

lating pattern over the years, with regional differences and

multi-decadal variations

Yields of major principal crops have recorded positive

increase as depicted in Fig. 3. However, yield trends of

sugarcane and groundnut show volatility with no signifi-

cant upward trend. Regarding break points, all crops except

sugarcane and groundnut have recorded three or more beak

points. While rice exhibited four breaks at 1969, 1977,

1987 and 1999, jowar (1976, 1991, 2002), maize (1971,

1991, 2002), cotton (1972, 1980, 2002) and tobacco (1976,

Fig. 3 Yield dynamics of major crops in the undivided state of Andhra Pradesh
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Fig. 4 Coherence of crop yields with temperature
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1987, 1999) exhibited three breaks each. For all crops,

except jowar and tobacco, the first observed break point is

around early part of 1970s, while the last observed break

for all the crops is around 1999–2002. We can observe that

the last observed break point of temperature is around the

same time period as of yields. Even regarding rainfall, the

last decade shows an increasing oscillating pattern,

implying higher inconsistencies across the years. It must be

mentioned here that though yields of major crops are

increasing, there is however a deceleration in the yield

growth over time (Padakandla 2016). This phenomenon is

more visible especially in the last two decades, which

coincidentally is the time during which the state has

experienced uptick in temperature patterns.

4.2 Wavelet co-movement

Having analyzed the trends in climate and crop yields, we

employed continuous wavelet transform method to validate

our results and to understand coherence between crop and

climate variables across different time horizons. Figure 4

shows the wavelet coherence between temperature and

seven crops. It can be seen from the figure that concen-

tration of power or high coherence of average temperature

with tobacco, rice, jowar, groundnut and sugarcane, given

in red color code, at yearly time horizon manifests around

1995. Overall, high coherence or co-movement between

average temperature and the crop yields under study seems

to be significant at yearly time horizon and time interval

between 1995 and 2000. However, coherence between

average temperature and crops changes when the time

horizon increases. For example, significant coherence

between rice and average temperature can be observed at a

time horizon of four years for the time interval 1967–74.

The same phenomenon can be observed if we look at the

coherence of average temperature with tobacco and sug-

arcane but not for the other remaining crops under study.

This can be attributed to similarity in climatic dependence

of rice, sugarcane, and tobacco on crop yield. Furthermore,

groundnut and sugarcane seem to exhibit high coherence

with average temperature when we consider higher time

horizon of six-eight year during the time interval

1990–2000. For these two crops, yield show high co-

movement with average temperature during 1990–2000,

time interval, but only at much longer time horizon i.e. six-

eight-year horizon. No immediate impact can be seen from

the analysis, but there seems to be a definite high negative

impact on the yield patterns of these two crops over the

long run. Therefore, except for yearly time scale, coher-

ence tends to change when the time horizon increases. The

results obtained in Fig. 4 is also in consonance with results

obtained from structural break analysis which shows

observable breaks in temperature and yields around

1995–2000 and in line with decelerating yield growth

observed during the same period (Padakandla 2016). Fig-

ure 5 reports coherence between rainfall and the seven

crops under study. One can observe from the figure that

there exists high coherence of actual rainfall with rice,

jowar, maize and sugarcane during 1975–80 at yearly time

horizon. Similarly, significant coherence of actual rainfall

with rice, tobacco, and maize can be observed during

1995–2000 at yearly time horizon. One can observe sig-

nificant coherence of actual rainfall with rice, maize, and

tobacco during 1995–2000 at two to three-year horizon.

However, coherence of actual rainfall and the crops under

study changes when we look at higher time horizons. For

example, the coherence of actual rainfall with cotton,

maize, and rice seems to be significant during 1985–1994

at six-year time horizon. Though rainfall pattern does not

observe any specific structural change in our analysis,

coherence of rainfall with crop yields is in line with the

existing literature in the context of India (Parthasarathy and

Pant 1985; Parthasarathy et al. 1992; Selvaraju 2003;

Kumar et al. 2004).

4.3 Coherence analysis of co-movement
across time horizons

The wavelet-based coherence analysis of co-movement

between climatic and select crops yields reveal the exis-

tence of high coherence of average temperature with crops

under study during 1995-2000 at yearly time horizon.

However, co-movement among climatic and crop yield

tend to vary as we move towards longer time horizon. This

is evident when we look at the coherence of average

temperature with rice, tobacco, and sugarcane during

1967–74 for four-year time horizon. The coherence further

varies, for groundnut and sugarcane, if we look at longer

time horizon of six-eight year during the time interval

1990–2000. On the other hand, coherence of rainfall with

crops like rice, jowar, maize, and sugarcane is significant

during 1975–80 at yearly time horizon. The same is also

true for rice, tobacco, and maize during 1995–2000. Sim-

ilarly, coherence of rainfall with rice, maize, and tobacco is

significant during 1995–2000 if we look at the short-run

horizon of two-three year. The phenomenon of rising co-

movement during long-run time horizons is also evident in

the case of rainfall where there exists strong coherence of

actual rainfall with cotton, maize, and rice during

1985–1994 at six-year time horizon. The crop-wise cli-

matic coherence for all variables under study is summa-

rized in Table 1.
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Fig. 5 Wavelet Coherence between crops and rainfall
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5 Conclusions

Results show that observed variables exhibit multiple

structural break points implying significant changes in

climatic and crop yield patterns over the years in the

undivided state of Andhra Pradesh. Results also depict a

convergence of break points for most of crop and climate

variables. Wavelet based coherence analysis that map the

time-horizon specific dynamics of climate and crops with

time periods exhibited significant co-movement between

climatic and crop variables. This mapping, however, can-

not be explored with traditional time-series methods. The

framework of wavelets-based time-frequency analysis

employed in this study captures climate and crop dynamics

at heterogeneous time horizons. This allows one to study

the impact of climate and crop yields at both short and

longer time-horizons. Furthermore, we show that climate-

induced crop variations change with varying time-horizons

even at the sub-national level which has not been captured

in existing literature.

Climate adaption and mitigation strategies across the

world and more so in developing countries are predomi-

nately static in nature and do not incorporate changing

time-horizons into consideration. Incorporating the effects

of climatic changes in climate-induced crop yields at

varying timescale will allow to formulate dynamic adap-

tation strategies and may help gauge the impact of adverse

future climatic events on crop yield. The substantial vari-

ation in climate-induced crop yields across the geography

under study and across timescales as unraveled by our

empirical analysis provides an exciting perspective for

researchers engaged in forecasting climate-induced crop

variabilities. The time varying impact of climate on crop

yields as evidenced in our study helps policy makers and

crop scientists to design time specific and locally viable

adaption and mitigation policies to tackle the impact of

climate on crops and livelihoods. The information, data,

and maps provided can serve as an assessment guide for

planners, managers, and policy and decision makers to

prioritize agricultural resilience efforts and resource allo-

cation or re-allocation in the regions that exhibit risk from

climate variability.

The limitation of the study stems from the fact that our

dataset consists of only fifty-five yearly time-series obser-

vations which can limit the robustness of the model.

Similarly, the absence of phase analysis which helps in

analyzing the lead-lag behavior between climatic and crop

variables is outside the purview of our analysis and can be

potential scope of future study along similar lines.
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