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Abstract
The working world is undergoing profound changes, and occupational accidents are always a global concern due to

substantial impacts on productivity collapse and workers’ safety. To address this problem, Failure Mode and Effects

Analysis (FMEA) has been widely implemented to assess such risks. This, however, fails to provide reliable results because

of some shortcomings of the risk priority number score of the FMEA including neglecting the weight of risk factors, having

doubtful formulation, and performing poorly in distinguishing risks. This study presents a two-phase approach to identify

and prioritize Health, Safety and Environment (HSE) risks to focus on critical risks instead of diverting organizational

efforts to non-critical ones and overcoming the shortcomings of the traditional score. In the first phase, potential risks are

identified, and after determining the value of risk factors using the FMEA technique, Fuzzy C-means (FCM) algorithm is

applied to cluster these risks. Then, the weight of risk factors is calculated based on the Fuzzy Best–Worst Method

(FBWM), and following this, clusters are labeled based on weighted Euclidean distance. In the second phase, a hybrid

Multi-Criteria Decision-Making (MCDM) method is proposed based on the FBWM and combined compromise solution to

prioritize risks belonging to the critical cluster. This is to create a distinct priority for risks and facilitate the implementation

of corrective/preventive actions. This approach is applied in the automotive industry, and results are compared with other

FMEA-based MCDM methods to validate findings. Eventually, a sensitivity analysis is designed to show the ability and

applicability of the proposed approach.

Keywords HSE risk prioritization � Failure mode and effect analysis � Fuzzy C-means � Fuzzy best–worst method �
Combined compromise solution � Automotive industry

1 Introduction

Human resources as a crucial factor in production indus-

tries and services are always threatened by several factors

that one of the most important of which is occupational

accidents. Every year, millions of people succumb to such

accidents or work-related diseases, which correspond to the

loss of existing human resources (Moatari-Kazerouni et al.

2015). Such incidents are bound to result in disastrous

economic consequences for workers and their families,

employers, insurance companies, and the community

(Smith et al. 2015). Aside from this, occupational accidents

can be associated with mental and psychological problems

as well as financial problems for individuals that disability

or death of the worker can exacerbate the gravity of the

situation. In terms of global economic effects, withdrawal
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of active labor from the production cycle and reduction in

the global Gross Domestic Product (GDP) by 4–6% or even

more can be remarked as the important ones (Soleimani

and Fattahi 2017; ILO 2019). According to the Interna-

tional Labour Organization (ILO) report, annually, occu-

pational accidents and work-related diseases account for

2.78 million deaths that 86.3 percent of which (2.4 million)

are disease-related, and this corresponds to 5 to 7 percent

of mortality around the world (ILO 2019). Figure 1

demonstrates the common occupational disease which

results in death by continents. In addition to this issue, 374

million workers suffer damages caused by non-fatal

occupational accidents every year (Hämäläinen et al.

2017). Due to the mentioned points, implementing Health,

Safety, and Environment (HSE) management systems has

been increasingly recognized as a significant priority

among industries and organizations.

Since the automotive industry generally consists of

various sections like assembly, painting, mold making, etc.

lines, workers are in danger of being poisoned by lots of

toxic chemicals and injured by physical activities. Some of

these factors are chemicals inhalation, high-frequency

sound, electricity shocks, poor ergonomics, falling mold or

parts during work, etc. which are liable to result in dan-

gerous accidents or disease (Yousefi et al. 2018). This issue

manifests the necessity of implementing the HSE man-

agement system. That is to say; this system brings about a

significant mitigation in the likelihood of risk factors

occurrence by improving health and safety levels and rising

environmental awareness in all the organizational levels

(Rezaee et al. 2020). This systematic framework provides

methods and guidelines to identify hazardous risks, and

consequently control or alleviating the side-effects of such

threats in the workplace (Pourreza et al. 2018). Hence, how

to carry out an efficient risk assessment process has

received significant attention from managers and

researchers.

There is a diverse array of risk assessment approaches

that Failure Mode and Effects Analysis (FMEA) is one of

the standard techniques used widely. This technique which

has a proactive nature is used in identifying, evaluating,

preventing/eliminating causes or effects of potential fail-

ures in a system (Liu 2016). Despite having numerous

shortcomings, in most studies, the FMEA technique has

been applied based on the conventional Risk Priority

Number (RPN) score (Liu et al. 2019a; Huang et al. 2020).

This score is derived from multiplying three risk factors as

Severity (S), Occurrence (O), and Detection (D). There is,

however, no scientific logic behind this multiplication, and

risk prioritization based on this score cannot be reliable

(Kutlu and Ekmekçioğlu 2012). In addition to this, in real-

world applications SOD factors do not have equal impor-

tance, and should not be assumed the same in the ranking

of risks/failure modes. At the same time, the conventional

RPN score neglects the relative importance of risk factors

(Chanamool and Naenna 2016). Indeed, this score, in terms

of improvement efforts, places a premium on a risk that has

a higher priority. Although, this risk may have a lower

severity than other risks which have a lower RPN (Baghery

et al. 2018). As another critical defect, the conventional

RPN fails to distinguish risks with the same RPN score,

while the value of risk factors is different (Rezaee et al.

2018b). Furthermore, in the RPN formula, other essential

factors such as risk occurrence cost which can play a

critical role in risk assessment are not considered (Rezaee

et al. 2017a). On the other hand, the traditional FMEA

technique cannot provide a framework to compare risks

based on the value of risk factors, directly instead of

multiplication of these (Tay et al. 2015). A risk assessment

approach should provide decision-makers with outputs

with high separability and reliability. These features can

Fig. 1 Work-related mortality

rate derived from occupational

disease by continents

(Hämäläinen et al. 2017)
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empower managers to plan corrective and preventive

measures accurately due to limited organizational resour-

ces and prevent them from focusing on non-critical risks.

Therefore, an effective approach is needed to identify

critical risks more appropriately.

This study aims to present a novel approach that can

address the mentioned shortcomings of the traditional

FMEA technique. The proposed plan is performed in two

main phases using FMEA, Fuzzy Best–Worst Method

(FBWM), Fuzzy C-means (FCM) algorithm, and Com-

bined Compromise Solution (CoCoSo) method. In the first

phase, risks are identified through the FMEA technique.

After determining the value of risk factors, including SOD

and the other two main managerial criteria, FBWM is

applied to calculate the weight of these factors. The reason

for using this method is threefold (Guo and Zhao 2017):

firstly, to cover the weighting problem in the traditional

FMEA technique; secondly, to cover uncertainty derived

from ambiguous and equivocate opinions given by experts

in this technique. Finally, having less pairwise comparisons

compared to Analytic Hierarchy Process (AHP), and higher

consistency ratio compared to conventional Best–Worst

Method (BWM), and also solving the complexity of

applying tailed scales (e.g. 1–9 scale) in expressing pref-

erences. After reaching the final weight of risk factors, the

unsupervised FCM algorithm is used to cluster recognized

risks into distinct risk categories. In fact, in this phase,

instead of calculating the RPN score, it has been tried to

compare risks based on risk factors, directly, and draw a

sensible and detailed comparison among risks. In other

words, risks clustering enables Decision-Makers (DMs) to

reach a quick comparison of them without losing any piece

of information, especially when there are resource or time

limitations (Zhang et al. 2018; Duan et al. 2019).

After clustering risks, to determine the critical cluster by

considering the relative importance of risk factors,

weighted Euclidean distance is calculated in such a way

that the more distance a cluster has, the more critical it is.

Each cluster has a different number of risks which may be a

large number, especially in large-scale problems. Since

providing corrective/preventive actions for all risks

belonging to the most critical cluster is likely to be time or

cost-consuming, so DMs would face a challenging issue to

prioritize risks. To address this issue, the CoCoSo method

in the second phase as a novel powerful ranking method

(Yazdani et al. 2019) is used to increase separability among

risks priority and reliability of results in comparison with

the FMEA. The weights derived from the FBWM in the

first phase are applied in the calculation process of this

method. To illustrate the applicability of the proposed

approach, it is used in a manufacturing company.

Although, various ranking Multi-Criteria Decision Making

(MCDM) methods have been proposed, in this study the

results of some other methods are provided to make a

comparison with this method, and to manifest the robust-

ness of this. The main contribution of the proposed

approach is to focus on critical risks through clustering and

prioritizing them to reduce the negative effects of these

risks on the system significantly, compared to the FMEA

technique and other similar approaches. Additionally, other

contributions of this study are applying different weights to

risk factors to determine the critical cluster using the FCM-

FBWM approach and considering these weights and

uncertainty of experts’ opinions in the risk prioritization

process to increase reliability and separability of outputs.

It should be noted that since uncertainty in the FMEA

team members’ opinions on risk factors is an

inevitable issue; the fuzzy form of BWM is applied. Fur-

thermore, regarding the studies using clustering algorithms

in the FMEA technique, it can be seen that prioritization of

risks in the critical cluster has not been implemented; while

due to the resource and time limitations, determining the

most critical one is of cardinal importance. To solve this

problem, in this study CoCoSo method as one of the newest

and more robust MCDM techniques (Ulutaş et al. 2020) is

used to determine the order of risks in the critical cluster to

increase separability among risks priority and reliability of

results compared to the FMEA.

The rest of this study is organized as follows: Sect. 2 is

dedicated to reviewing some studies about FMEA appli-

cations. In Sect. 3, supplementary explanations of the FCM

algorithm, FBWM, and CoCoSo method are presented. In

Sect. 4, the proposed approach is explained in detail. In

Sect. 5, results are presented and discussed comprehen-

sively along with a comparison with other methods and

sensitivity analysis. Finally, in Sect. 6, concluding remarks

and suggestions for future studies are presented.

2 Literature review

FMEA as a proactive group-oriented technique for risk

assessment and reliability analysis has been successfully

applied in a wide range of real case studies (Liu et al. 2018;

Rastayesh et al. 2019). To implement this technique, it is

first necessary to create a multi-disciplinary team in the

field of study (Carpitella et al. 2018). After that, the fol-

lowing stages are often executed (Yousefi et al. 2018):

(I) identifying potential failures in a system and deter-

mining the value of those failures in the form of SOD

factors by the FMEA team; (II) calculating the RPN score

for each failure and prioritization of those; (III) scheming

corrective/preventive actions for failures which have pri-

ority. According to the growing number of carried out

studies on FMEA, the number of developed or modified

methods and applications is significantly increasing. Some
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of these methods have been presented using artificial

intelligence algorithms (Jee et al. 2015; Adar et al. 2017;

Rezaee et al. 2017b; Renjith et al. 2018; Yousefi et al.

2020), and mathematical programming (Garcia et al. 2013;

Chang et al. 2013; Behraftar et al. 2017; Rezaee et al.

2017a; Bakhtavar and Yousefi 2019). Since the conven-

tional RPN cannot show acceptable performance in risks

prioritization, and due to the existence of multiple risk

factors in the FMEA technique, MCDM techniques are

required to solve this problem (Liu et al. 2019a; Huang

et al. 2020; Karunathilake et al. 2020).

Various MCDM methodologies have been integrated

with the traditional FMEA technique that some of which

are as follows. Helvacioglu and Ozen (2014) presented a

combined approach based on the Technique for Order

Preference by Similarity to Ideal Solution (TOPSIS) and

trapezoidal fuzzy numbers for ranking failure modes in the

yacht system design process. Ilangkumaran et al. (2014)

adopted fuzzy AHP to prioritize critical risks in the paper

industry. Liu et al. (2015) in their study, utilized fuzzy

AHP, and entropy method with the purpose of weighting

risk factors, and applied the VIekriterijumsko KOm-

promisno Rangiranje (VIKOR) method to order failure

modes. Tooranloo and Sadat-Ayatollah (2016) surveyed

uncertain concepts and insufficient data in failure mode

analysis. They used fuzzy linguistic terms and intuitionistic

fuzzy hybrid TOPSIS to assign the weight of risk factors

and ranking failure modes, respectively. Safari et al.

(2016), instead of using the conventional RPN score,

applied fuzzy VIKOR for risks prioritization. Liu et al.

(2016) applied expert judgment and entropy method to

weight risk factors and used the ELimination Et Choice

Translating REality (ELECTRE) method to rank those

risks. Wang et al. (2017) proposed a house of reliability-

based rough VIKOR approach to determine the order of

failures and considering the ambiguity in stated opinions

by the FMEA team. Bian et al. (2018) took advantage of

the D-number theory to handle the uncertainty of the

FMEA team members’ opinions and then applied TOPSIS

to rank the identified failures. Tian et al. (2018) presented a

hybrid approach using the FBWM, relative entropy, and

VIKOR methods to order failures.

Sakthivel et al. (2018) employed multiple methods to

achieve an acceptable risk prioritization. They used AHP

for determining the weight of risk factors, and fuzzy

TOPSIS, and fuzzy VIKOR methods for ranking. To

improve the risk assessment process using the FME tech-

nique, Liu et al. (2019b) used the AHP method with the

aim of weighting risk factors, fuzzy Graph Theory, and

Matrix (GTM) approach, and the DEcision-MAking Trial

and Evaluation Laboratory (DEMATEL) technique to pri-

oritize failure modes in their study. Yazdi (2019) presented

an interactive risk assessment approach based on AHP and

entropy methods. He modified the conventional RPN score

based on the fuzzy set theory. Dabbagh and Yousefi (2019)

in their hybrid approach, utilized fuzzy cognitive map and

Multi-Objective Optimization based on Ratio Analysis

(MOORA) method to rank risks that in which the former

method was used to weight decision criteria with consid-

ering their casual relationships, and the latter applied to

determine the order of risks. Ghoushchi et al. (2019)

investigated combining Z-theory with the FMEA technique

to consider both the uncertainty and reliability concepts in

the risk assessment process. They used FBWM to weight

SOD factors and the MOORA method based on the

Z-theory to determine critical failure. In the more recent

study, Lo et al. (2020) presented an integrated approach

based on the DEMATEL technique and the TOPSIS

method to determine the critical failure mode. Yucesan and

Gul (2021) introduced a holistic FMEA approach based on

the FBWM method and fuzzy Bayesian network to deter-

mine the weight of risk factors and assess the occurrence

probabilities of the identified failure modes in an industrial

kitchen equipment manufacturing facility. Celik and Gul

(2021) extended an approach using BWM and Measure-

ment of Alternatives and Ranking to Compromise Solution

(MARCOS) methods under the context of interval type-2

fuzzy sets to assess dam construction safety. Yucesan et al.

(2021) developed an extended version of the FMEA tech-

nique based on neutrosophic AHP to address the short-

comings of the RPN score in a case study of the textile

industry.

Nowadays, applications of machine learning and data

mining techniques due to their inherent characteristics have

been widespread in various fields, including energy

(Faizollahzadeh Ardabili et al. 2018; Shamshirband et al.

2019; Fan et al. 2020), environment science (Wu and Chau,

2013; Taormina and Chau 2015), aquaculture (Banan et al.

2020), medical science (Rezaee et al. 2021; Onari et al.

2021), manufacturing (Wang et al. 2020; Dogan and Bir-

ant, 2021),. In the meantime, one of the issues that can be

addressed using data mining techniques is clustering. In the

following, this study will focus on the applications of

clustering techniques along with the FMEA approach in the

risk analysis field. Tay et al. (2015) applied the fuzzy

Adaptive Resonance Theory (ART) technique to cluster

failure modes. In this study, first, the Euclidean distance-

based similarity measure was used to calculate the simi-

larity degree among failure modes. Then failure modes

were clustered. Chang et al. (2017) applied the Self-Or-

ganizing Map (SOM) to cluster corrective actions of failure

modes, and employed RPN interval to order the compo-

nents of each group. Duan et al. (2019) categorized failure

modes using the k-means clustering algorithm in such a

way that initially, Double Hierarchy Hesitant Fuzzy Lin-

guistic Term Sets (DHHFLTSs) were used to describe the
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FMEA team members’ linguistic opinions on failure

modes. After that, the weight of SOD factors was deter-

mined by maximizing the deviation method, and finally,

failure modes clustered into high, medium, and low-risk

groups.

As can be seen, a significant number of studies are

related to using RPN-based approaches, and as mentioned

in the previous section, the conventional RPN has numer-

ous shortcomings. As a viable alternative, presenting a

methodology based on the original values of risk factors

are likely to result in more compatible outcomes with

practical applications (Tay et al. 2015). On the other hand,

in real-world problems especially HSE risk assessment, in

addition to SOD factors, some other essential factors such

as treatment cost and duration resulting from the occur-

rence of each risk should be taken into consideration

(Yousefi et al. 2018). Additionally, limited studies have

paid attention to weight risk factors in the FMEA tech-

nique. To deal with such drawbacks, this study attempts to

provide a proper risks clustering approach using the FCM

algorithm based on SOD, C, and T (SODCT) factors. This

algorithm determines a membership degree for each risk

factor. It enables DMs to specify the number of risks in

each cluster based on this degree, according to the problem

studied (Zeraatpisheh et al. 2019). Also, in the presented

hybrid approach, the FBWM, which is one of the powerful

and latest weighting methods (Guo and Zhao 2017) is used

with the aim of weighting SODCT factors.

It should be noted that since uncertainty in the FMEA

team members’ opinions on risk factors is an

inevitable issue; the fuzzy form of BWM is applied. Fur-

thermore, regarding the studies using clustering algorithms

in the FMEA technique, it can be seen that prioritization of

risks in the critical cluster has not been implemented; while

due to the resource and time limitations, determining the

most critical one is of cardinal importance. To solve this

problem, in this study CoCoSo method as one of the newest

and more robust MCDM techniques (Ulutaş et al. 2020) is

used to determine the order of risks in the critical cluster to

increase separability among risks priority and reliability of

results compared to the FMEA.

3 Methodology

As stated, this study aims to present an approach to cluster

and prioritize critical HSE risks based on the FMEA

technique using FBWM, FCM algorithm, and CoCoSo

method. Further explanations of these methods are pro-

vided in the following subsections.

3.1 FBWM

Rezaei (2015) introduced a novel MCDM technique based

on pairwise comparisons. Determining the weight of

decision criteria by definitive values (1–9 scale), this model

cannot be implemented in case of existence uncertain

decision data. Guo and Zhao (2017) developed the BWM

and presented FBWM to model ambiguity and uncertainty

in human judgments. In this new method, DMs express

their opinions on the criteria in the form of linguistic

variables. This is done in such a way that Absolutely

Important (AI) indicates that in the pairwise comparisons,

one criterion is much more important than the other.

Equally Importance (EI) shows that there is the same

importance of the pair compared. In the FBWM, after

determining the decision-making criteria cj; j ¼ 1; 2; :::; n

the best and the worst criteria are represented as cB and cW ,

respectively. In this study, risk factors are considered as

decision-making criteria and pairwise comparisons

between these factors have been made. In the next step, the

fuzzy preference vector of the best criterion over others,

and the fuzzy preference vector of others over the worst

criterion are determined as ~AB and ~AW , respectively using

linguistic variables according to Table 1.

If ~AB ¼ ð~aB1; ~aB2; . . .; ~aBnÞ and ~AW ¼ ð~a1w; ~a2w; . . .; ~anwÞ,
the fuzzy performance of the cB over cj is represented as

~aBj ¼ ðlBj;mBj; uBjÞ. The fuzzy performance of the cj over

cW is represented as ~ajW ¼ ðljW ;mjW ; ujWÞ where l, m and u,

respectively indicate the lower, medial, and upper values. It

should be noted that a�
BB ¼ ð1; 1; 1Þ and a�

WW ¼ ð1; 1; 1Þ.
Considering �wj, �wW and �wB as fuzzy triangular numbers,

�wj ¼ ðlwj ;mw
j ; u

w
j Þ is used to define the fuzzy weights of cj.

After defining these needed items, the fuzzy weights

ð �w�
1; �w

�
2; . . .; �w

�
nÞ can be obtained by the following model

(Guo and Zhao 2017):

min ~n

s:t :
ð1Þ

Table 1 Transformation rules of linguistic variables of DMs (Tian

et al. 2018)

Linguistic Terms Membership function CI

Equally importance (EI) (1,1,1) 3.00

Weakly important (WI) (2/3,1,3/2) 3.8

Fairly Important (FI) (3/2,2,5/2) 5.29

Important (I) (5/2,3,7/2) 6.69

Very important (VI) (7/2,4,9/2) 8.04

Absolutely important (AI) (9/2,5,11/2) 9.35
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j ðl
w
B ;m

w
B ; u

w
BÞ

ðlwj ;mw
j ; u

w
j Þ

� ðlBj;mBj; uBjÞj � ðk�; k�; k�Þ ð2Þ

j
ðlwj ;mw

j ; u
w
j Þ

ðlwW ;mw
W ; u

w
WÞ

� ðljW ;mjW ; ujWÞj� ðk�; k�; k�Þ ð3Þ

Xn

j¼1

Rð �wjÞ ¼ 1 ð4Þ

lwj �mw
j � uwj 8 j; j ¼ 1; 2; . . .; n ð5Þ

lwj � 0; 8 j; j ¼ 1; 2; . . .; n ð6Þ

where ~n ¼ ðln;mn; unÞ and it is considered ln �mn � un and

supposed ~n� ¼ ðk�; k�; k�Þ; k� � ln. R is a set and a fuzzy

number ~a on R is defined as a triangular fuzzy number if its

membership function l ~aðxÞ : R ! ½0; 1� is equal to

Eq. (7).

l ~aðxÞ ¼

0 x 2 ð�1; lÞ
x� l

m� l
x 2 l;m½ �

u� x

u� m
x 2 m; u½ �

0 x 2 ðu;1Þ

8
>>>><

>>>>:

ð7Þ

Following achieving fuzzy weights, the Graded Mean

Integration Representation (GMIR)Rð~aÞ is used to trans-

form the fuzzy weights of the criterion to a crisp weight.

The GMIR Rð~ajÞ formula is as follow:

Rð~ajÞ ¼
lj þ 4mj þ uj

6
ð8Þ

In the final stage, the Consistency Ratio (CR) can be

computed based on the formula CR ¼ ~n�=CI to evaluate

the consistency degree of pairwise comparisons. In this

formulation, CR is the optimal solution of the FBWM and

the Consistency Index (CI) should not exceed the maxi-

mum possible CI shown in Table 1. It should be noted the

CR� 0:1 is acceptable (Tian et al. 2018).

3.2 FCM algorithm

Clustering is an automated data analysis process in which a

given data set is divided into different clusters in such a

way that data points with similar traits clustered in a group

are more diverse than those in other groups. In real-world

applications, however, some data points may belong to

multiple clusters. To solve this problem, fuzzy clustering

algorithms have been introduced, which can segregate

overlapping data points using fuzzy logic (Rezaee et al.

2018a). FCM algorithm is one of the common fuzzy

clustering algorithms presented by Duda (1973) for the first

time. During the implementation of this algorithm, each

data point can belong to more than one cluster with dif-

ferent membership degrees. Indeed, the membership of

data has a fuzzy (uncertain) nature and is a criterion

between 0 and 1. After defining the data point vector X ¼
ðx1; x2; . . .; xnÞT 	 R as input, and determining the number

of clusters, k, the FCM algorithm is implemented, and the

value of matrixes U and V are calculated. The matrix V ¼
ðv1; v2; . . .; vkÞT includes the cluster centers vector, and the

matrix U ¼ ½uij�j
n is the membership matrix. The objec-

tive function of this algorithm is as follows (Bezdek 2013):

min Jmðu; v; xÞ ¼
Xk

i¼1

Xn

j¼1

umij jj xj � v
i

jj2 ð9Þ

In Eq. (9), uij and v
i

represent the membership of xj in the i
th cluster, and the center of the i th cluster, respectively. Also,

jj xj � v
i

jj indicates Euclidean distance norm of xj and v
i

, and

m is a parameter which can be any real number greater than 1,

employed to fuzzify the memberships. It should be noted that
Pk

i¼1 uij ¼ 18j; j ¼ 1; 2; . . .; n. Equation (9) fails to be

minimized directly, so Alternating Optimization (AO)

algorithm, which is an iterative technique is used to do this.

Based on the AO, the optimal solution minimizing the

Jmðu; v; xÞ and the center of i th cluster, are shown in

Eqs. (10) and (11), respectively.

uij ¼
1

Pk
p¼1

jjxj�vijj
jjxj�vpjj

� �2=ðm�1Þ 1� i� k1� j� n ð10Þ

vi ¼
Pn

j¼1 ðuijÞ
mxjPn

j¼1 ðuijÞ
ð11Þ

3.3 CoCoSo method

The CoCoSo method has been newly proposed by Yazdani

et al. (2019) which can compete with other MCDM tech-

niques such as TOPSIS, COmplex PRoportional ASsess-

ment (COPRAS), VIKOR, and MOORA, and produce

more robust results. The final ranking of the CoCoSo

method is done based on three aggregator strategies. To

perform this method, first, it is needed to define alternatives

and related criteria. In this study, the identified risks and

five risk factors are considered as the alternatives and

decision-making criteria in the CoCoSo method, respec-

tively, to determine the priority of each critical risk. If xij
shows the value of the criterion j; j ¼ 1; 2; . . .; n, for the

alternative i; i ¼ 1; 2; . . .;m, the decision matrix is

xij ¼

x11x12. . .x1n

x21x22. . .x2n

. . .. . .. . .. . .

xm1xm2. . .xmn

2
6664

3
7775
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which is normalized using compromise normalization

equations as follows:

rij ¼
xij � min xij

i

max xij
i

�min xij
i

8i8j Positive benefitð Þ criterion

ð12Þ

rij ¼
max xij

i

�xij

max xij
i

�min xij
i

8i8j Negative costð Þ criterion ð13Þ

After obtaining the normalized matrix, the weight of each

criterion wj is determined by DM, then Si and Pi showing

the weighted comparability sequences and the exponential

weight of comparability sequences, respectively, are cal-

culated for each alternative by Eqs. (14) and (15).

Si ¼
Xn

j¼1

ðwjrijÞ8i ð14Þ

Pi ¼
Xn

j¼1

ðrijÞwj8i ð15Þ

It is needed to say that Eqs. (14) and (15) are based on

the aggregated Simple Additive Weighting (SAW) and

Exponentially Weighted Product (EWP) methods. In the

next stage, three aggregator strategies (kia, kib, kic) are

established to compute the relative weight of alternatives,

according to Eqs. (16) to (18).

kia ¼
Pi þ Si

Pm

i¼1

ðPi þ SiÞ
8i ð16Þ

kib ¼
Si

min Si
i

þ Pi

minPi
i

8i ð17Þ

kic ¼
kðSiÞ þ ð1 � kÞðPiÞ

ðkmax Siþ
i

ð1 � kÞmax
i

PiÞ
0� k� 18i ð18Þ

where k is determined by DMs (usually equals 0.5). The

final ranking is done based on Eq. (19) in such a way the

after calculating this score for each alternative, all these

scores are sorted in decreasing order, and the more sig-

nificant, the better.

ki ¼ ðkiakibkicÞ
1
3 þ 1

3
ðkia þ kib þ kicÞ 8i ð19Þ

4 Proposed approach

In this section, the presented a decision support system for

prioritization of critical HSE risks is explained in detail.

This approach is implemented in two combined phases: I)

FMEA, FBWM and FCM algorithm, II) FBWM and

CoCoSo. In the first phase, initially, the HSE risks are

identified, and the values of their risk factors are deter-

mined by the multi-disciplinary FMEA team, which is the

initial decision matrix. These factors include SOD factors,

and also two extra factors C and T representing the treat-

ment cost and treatment duration, respectively, are con-

sidered in this study due to their necessity in the HSE risk

assessment process. In addition to this, they determine the

best and the worst risk factors in terms of importance and

then drew pairwise comparisons between risk factors and

the best and worst factors using linguistic variables pre-

sented in Table 1.

In practical applications, the ambiguity in an individ-

ual’s judgment cannot be neglected, and ignoring this issue

may lead to unreliable results. To address this problem, the

FBWM model is employed in this phase. To perform this

model, first, the linguistic variables should be converted

into fuzzy values according to the defined fuzzy numbers

for each linguistic term shown in Table 1. After that, by

implementing the model described in subsection 3.1, the

weights of risk factors are obtained. Since calculated

weights are fuzzy numbers, Eq. (8) is utilized to achieve

crisp numbers. One of the main attempts of this study is to

provide a ranking approach based on the original values of

risk factors instead of the conventional RPN score.

Therefore, in the next stage of this phase, all risks are

clustered using an unsupervised algorithm. This is because

such algorithms can be implemented independently of

whether the data is labeled or not. The FCM algorithm is

employed due to its soft computations compared to the

k-means algorithm (Cardone and Di Martino 2020). By

performing this algorithm, the membership degrees of

identified HSE risks per cluster are obtained to enable DMs

to specify the number of risks in each cluster according to

the problem studied. Then, the Euclidean distance between

the center point of each cluster and the origin of the

coordinate system is calculated. Since the aim is to identify

the critical cluster based on the weight of SODCT factors,

the weighted Euclidean distance measure is computed, and

the more this measure is significant, the more the cluster is

critical.

In the second phase, risks belonging to the critical

cluster should be prioritized. This is attributed to several

reasons including time, financial budget, and human

resource limitations in taking corrective/preventive actions

for all risks. Therefore, prioritizing critical risks is of

considerable importance in reducing their negative impacts

on the system effectively. To this end, the new MCDM

technique, namely the CoCoSo method, which can produce

robust results in comparison with other similar techniques

(Yazdani et al. 2019) is applied. This MCDM technique is

implemented based on obtained outputs from previous
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steps. To put it precisely, this study considers the existing

risks in the critical cluster and their related five risk factors

as alternatives and evaluation criteria, respectively. In the

first step of the CoCoSo method, the decision matrix is

determined and normalized using Eqs. (12) and (13). Then

using the weights stem from the FBWM, the aggregator

strategies kia,kib and kic are calculated. As the final stage,

the score ki is achieved, and the more critical risk is rec-

ognized. This more clear prioritization enables DMs to

handle critical risks of a system in a more efficient way

regarding the resource. The implementation stages of the

proposed approach have been shown in Fig. 2.

5 The results analysis

The results of performing the presented approach for pri-

oritization of HSE risks in the studied company are dis-

cussed in subsection 5.1. To validate this approach, the

obtained results are compared with other similar methods

explained in subsection 5.2. In the last subsection, 5.3,

sensitivity analysis is carried to show the applicability of

this approach.

5.1 The results of performing the proposed
approach

As described in the previous sections, the proposed

approach is based on the FMEA technique, FBWM, FCM

algorithm, and CoCoSo method. The results of each phase

are explained in the three subsequent parts.

5.1.1 Risks identification by the FMEA technique

The proposed approach has been employed in a manufac-

turing company active in the automotive industry to pri-

oritize the identified HSE risks. Following the HSE rules in

the automotive industry is of importance because workers

are in danger of being exposed to lots of toxic chemicals

and physical hazards, such as unpleasant smells, chemicals

inhalation, high-frequency sound, inappropriate lighting,

electricity shocks, etc. These risks may lead to an accident

or chronic occupational diseases. Therefore, this study tries

to implement the proposed approach in this industry. The

62 risks in this field of study were identified by the FMEA

team (Yousefi et al. 2018), and the value of risk factors per

risk determined by them is shown in Table 2.

This Table, in addition to the value of three main FMEA

factors (SOD), illustrates the value of two extra factors C

and T given by the FMEA team. As can be seen, these

values are between 1 and 5 in such a way that if one of the

SOD factors of risk is equal to 1, demonstrates its very low

importance, and 5 demonstrates its very high importance.

That is to say, the rate 1 means the severity of injuries stem

from the related risk is very low, occurs rarely, and is

detectable. While the rate five means that the related risk

can cause death or permanent disability, it happens fre-

quently, and it is partially detectable. If the treatment cost

of risk is less than 5,000,000 or more than 20,000,000

currencies, its relative importance is equal to 1 and 5,

respectively (Dabbagh and Yousefi 2019). In terms of T,

rates 1 and 5 means that the treatment duration of risk is

less than a week and more than eight weeks, respectively.

5.1.2 Determining the weight of risk factors by the FBWM

To weight risk factors under the uncertain circumstance,

the FBWM have been used in this study. This model

enables DMs to determine the weight of decision criteria

more flexibly and achieve reliable and precise results than

the conventional BWM. According to the implementation

stages of the FBWM, firstly, the FMEA team determined

the best and the worst factors, and then made a pairwise

comparison using linguistic variables as shown in Table 1.

Risk factors S and O were selected as the best and the worst

criteria, respectively that the preferences of the best crite-

rion among the overall criteria ð ~AB ¼ a
�

SS

; a
�

SO

; a
�

SD

; a
�

SC

; a
�

ST

Þ and

all criteria over the worst criterion ð ~Aw ¼ a
�

SO

; a
�

OO

; a
�

DO

; a
�

CO

; a
�

TO

Þ

have been represented in Table 3. The linguistic terms of

risk factors can be converted into fuzzy numbers using

Table 1. Therefore, ~AB = [(1,1,1), (7/2,4,9/2), (5/2,3,7/2),

(3/2,2,5/2), (5/2,3,7/2)] and ~Aw = [(7/2,4,9/2), (1,1,1), (3/

2,2,5/2), (5/2,3,7/2), (2/3,1,3/2)]. Eventually, the FBWM

describe in subsection 3.1 was solved applying LINGO

17.0 software, and after achieving fuzzy weights, final crisp

weights were calculated based on Eq. (8). The results have

been illustrated in Table 3.

According to the results, risk factors S with the weight

of 0.4024, and O with the weight of 0.0935 have the

highest and the lowest weights, respectively as would be

expected. Also, risk factors C, D, T with the weights of

0.2397, 0.1465, and 0.1179 are in the next places, respec-

tively. Regarding the ~n� = (0.4258, 0.4258, 0.4258), and

based on the CI shown in Table 1, the CR = 0.4258/

8.04 = 0.053, which is less than 0.1 showing the accept-

able consistency rate.

5.1.3 Identifying the cluster of critical risks by the FCM
algorithm

According to the proposed approach descriptions, the aim

is to provide a more clear prioritization in comparison with

the traditional FMEA technique to reduce the implemen-

tation costs of corrective/preventive actions. Therefore, it is
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Fig. 2 The flowchart of the proposed approach
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required to cluster identified risks shown in Table 2 based

on the values of SODCT factors. The FCM clustering

algorithm can act more flexibly facing overlapping data

points, and each of these can belong to at least two clusters

with different memberships. Therefore, DMs can determine

the number of data points in each cluster based on different

minimum membership thresholds. To implement the FCM

algorithm, initially, the number of clusters is specified, and

then the values of SODCT factors for each risk are given to

this algorithm as inputs. In this study, four clusters were

considered, and the algorithm was implemented with the

help of MATLAB 2016a software.

The outputs were the membership degree of risks per

cluster. By determining the minimum membership thresh-

old, it can be specified which of these risks belong to the

cluster examined. Since the data used are of unlabeled type,

it should be determined which of the clusters is critical. To

this end, the center point of each cluster was calculated

based on Eq. (11), and then the Euclidean distance between

the center point and origin of the coordinate system was

computed per cluster. To providing a more compatible

clustering with practical problems, the weights of the

SODCT factors obtained from the FBWM were used to

compute the weighted Euclidean distance. These clusters

have been labeled based on this distance in four classes

Intolerable (unacceptable), Major, Tolerable, and Minor

(acceptable). The more this distance is significant, the more

risks of that cluster are critical. Clusters Intolerable and

Minor have the highest and the lowest weighted Euclidean

distance, respectively. This measure enables DMs to label

the clusters based on the importance of risk factors in a

system studied. The results have been listed in Table 4.

As can be seen, cluster four with the weighted Euclidean

distance 3.7816 includes intolerable risks; therefore, this

cluster was considered as the critical cluster. In the next

stage, risks belonging to this cluster should be determined

to be prioritized in the next phase of the presented

approach. To specify this, the minimum membership

threshold was considered equal to 0.45, and using mem-

bership degrees, risks of this cluster were determined

highlighted in Table 5.

5.1.4 Prioritizing the critical risks by the CoCoSo method

In this part, the results of the second phase are explained.

According to Table 5, there are 17 risks specified in the

critical cluster which have to be ranked by the CoCoSo

method. The method is implemented base on outputs of

both the FBWM and FCM algorithm in such a way that

alternatives of this method are those 17 critical risks, and

the weights of criteria are the weights of SODCT factors

obtained from the FBWM.

To implement this method, regarding subsection 3.3,

after forming the normalized decision-making matrix, the

weighted comparability sequence Si and the exponential

weight of comparability sequence Pi were calculated using

Eqs. (14) and (15) as follows.

Si ¼
X5

j¼1

ðwjrijÞ ¼ ðw1ri1 þw2ri2 þw3ri3 þw4ri4 þw5ri5Þ

¼ ðwSri1 þwOri2 þwDri3 þwCri4 þwTri5Þ8i¼ 1;2; . . .;17

Pi ¼
X5

j¼1

ðrijÞwj ¼ rw1

i1 þ rw2

i2 þ rw3

i3 þ rw4

i4 þ rw5

i5

¼ rwS

i1 þ rwO

i2 þ rwD

i3 þ rwC

i4 þ rwT

i5 8i ¼ 1; 2; . . .; 17

Afterward, three aggregators strategies kia, kib and kic
were computed based on the Eqs. (16) to (18), respectively,

as follows. It should be noted that, in this study k ¼ 0:5.

kia ¼
Pi þ Si

P17

i¼1

ðPi þ SiÞ

¼ Pi þ Si
ðP1 þ S1Þ þ ðP2 þ S2Þ þ � � � þ ðP17 þ S17Þ

8i

¼ 1; 2; . . .; 17

kib ¼
Si

min Si
i

þ Pi

minPi
i

¼ Si
minðS1; S2; . . .; S17Þ

þ Pi

minðP1;P2; . . .;P17Þ
8i

¼ 1; 2; . . .; 17

kic ¼
kðSiÞ þ ð1 � kÞðPiÞ

ðkmax Siþ
i

ð1 � kÞmax
i

PiÞ

¼ 0:5ðSiÞ þ 0:5ðPiÞ
0:5 maxðS1; S2; . . .; S17Þþ 0:5 maxðP1;P2; . . .;P17Þ

8i

¼ 1; 2; . . .; 17

After reaching these values, the final ranking score

ki8i ¼ 1; 2; . . .; 17 was calculated using Eq. (19). The

results have been demonstrated in Table 6.

As can be seen, the 17 identified risks that belonged to

the critical cluster, were prioritized in 14 ranks that risk

R10, risks (R17&R18) and risk R27 with the scores 2.1276,

2.05, and 2.027 have been placed in first, second and third

ranks, respectively. In addition to this, risks (R01&R38),

(R17&R18), and (R11&R51) have the same ranks due to the

equal value of SODCT factors (see Table 2). This more

clear prioritization allows DMs to manage critical risks

more effectively according to both human and financial

resources and also time limitation.
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Table 2 The identified HSE risks and the value of their risk factors

Symbol Identified risk S O D C T Symbol Identified risk S O D C T

R01 Falling part of mold when using a CNC

machine

4 3 2 4 3 R32 Heavy loads movements by

workers

3 3 4 1 3

R02 Burr/chip contacts with eyes when hand

machining of metals

5 3 2 1 1 R33 Failure to observe ergonomic

principles when using the

ultrasonic welding machine

3 4 4 1 2

R03 Burr/chip contact with eyes while grinding 5 3 3 1 1 R34 Microswitch failure when using

an injection machine

4 2 2 1 3

R04 Slipping in molding department 4 2 3 1 2 R35 Falling mould when using an

injection machine

4 2 3 1 3

R05 Electricity shocks during fixing switchboard 4 2 2 5 4 R36 Scratch of mould when greasing 3 3 4 1 3

R06 Burr/chip contacts with eyes while turning 4 3 2 1 2 R37 High temperature of molded parts 3 4 3 1 2

R07 Unpleasant smell in the mold making

department

5 2 4 1 1 R38 Fingers caught between the part

and the mold while picking up

the part

4 3 2 4 3

R08 Ergonomic problems when using the

computer in the mold making department

4 3 4 1 1 R39 Pouring the polymer materials

into the tank during the loading

the injection device

4 3 4 1 2

R09 Finger contact with grinding blades when

using grinding machine

4 4 3 2 4 R40 Improper use of cutter in burring 4 5 4 1 2

R10 Falling down radial drilling holder 4 4 2 5 5 R41 Plastic injection device electrical

charge

5 2 2 5 4

R11 Dealing with a fan when using and shifting

fan in the mold making department

4 3 2 3 5 R42 Ergonomic problems when using

an injection device

4 3 3 1 2

R12 Hand contact with milling blades 4 3 2 4 5 R43 Inappropriate lighting at injection

hall

2 4 2 1 2

R13 Inhalation of chemicals (thinner, paint,…)

when color spraying

3 4 2 1 1 R44 Skin contact with the polymer

material when loading the

injection device

2 5 3 1 1

R14 Inhalation of chemicals (Butadiene,

benzene, and vinyl chloride) during the

preparing surface to the plating

3 4 2 1 2 R45 Smoke and steam of injecting

device when loading and

injection

4 4 2 1 2

R15 Contact with chemicals (Butadiene,

benzene, and vinyl chloride) when

preparing the surface to the plating

3 3 3 1 3 R46 The excessively high temperature

in the injection hall

2 4 3 1 1

R16 High frequency sound when using

compressor

4 5 4 1 5 R47 Falling load when using the crane 4 3 2 2 4

R17 Electrical shock when using air compressor 4 3 2 5 5 R48 Ergonomic problems in

movements of product

3 4 2 1 3

R18 Electrical shock when using switchboard 4 3 2 5 5 R49 Contamination in washroom 2 4 3 1 1

R19 The excessively high temperature in the

painting department

3 3 3 1 1 R50 Fire in the injection production

line

4 3 2 5 4

R20 Dealing with a fan when using and shifting

fan in the painting department

4 2 3 3 5 R51 Dealing with a fan when using

and shifting fan in the injection

hall

4 3 2 3 5

R21 Improper use of cutter when pleating burr 2 4 4 1 2 R52 Inappropriate stairs of the

dressing room

3 2 3 1 3

R22 Welding machine heat when using a welding

machine

2 3 3 1 3 R53 Falling in working and footwork

in the injection hall

3 2 4 1 3

R23 Polymer materials smoke using a welding

machine

2 4 4 1 1 R54 Dealing with people and

equipment when driving lift

trucks in the injection hall

3 2 2 4 5

R24 Ergonomic problems in assembly stages 4 3 2 1 3 R55 Falling parts when lifting them 3 4 2 1 3

R25 Heatstroke at all stages of assembly 3 4 3 1 1 R56 Pallet falling down when load

transportation

5 2 3 2 4

Stochastic Environmental Research and Risk Assessment (2022) 36:919–938 929

123



5.2 Comparison with other methods

In this part, it has been attempted to compare the results of

the proposed approach with other conventional methods to

manifest the applicability of this approach. To this end, a

comparison has been drawn between the prioritization

results of the FBWM-CoCoSo and traditional FMEA and

some popular FMEA-based MCDM methods such as

TOPSIS, VIKOR, and MOORA. The results have been

shown in Table 7. To making a fair comparison, the

weights of risk factors SODCT obtained from the FBWM

have been applied in all MCDM-based risk prioritization

methods.

According to Table 7, risks R10 and R27 with the

RPN = 800 have been placed in the top priority, risk R17,

and R18 are jointly in the second, and risk R26 has been a

stand in the third priority. As can be seen, since the current

RPN score, do not consider the weight of risk factors,

unlike other methods, and relying merely on the multipli-

cation of these factors’ values, it failed to distinguish the

priority of risks. R10 and R27 have different S and D values

Table 2 (continued)

Symbol Identified risk S O D C T Symbol Identified risk S O D C T

R26 Dealing with a fan when using and shifting

fan in the assemble line

4 3 3 3 5 R57 Collision with personnel in

loading

5 1 2 1 2

R27 Electrical wires scattered on the floor during

the use of ultrasonic welding machines and

electrical equipment

2 4 4 5 5 R58 Lift truck collision with shelves

and falling of shelves

5 3 2 1 3

R28 High noise when using the ultrasonic

welding machine

4 4 3 2 5 R59 Ergonomic problems when using

the computer in the warehouse

4 3 3 1 2

R29 The spontaneous movement of the device

when using the ultrasonic welding

machine

4 3 2 1 3 R60 Fire in the warehouse 4 3 3 4 3

R30 The unintentional push of the start button on

the ultrasonic welding machine

3 3 3 1 2 R61 Falling parts when setting them 5 2 3 2 3

R31 Falling mold during the replacement of mold 3 4 2 1 3 R62 Dealing with people and

equipment when driving lift

trucks in the warehouse

3 2 3 4 5

Table 3 The FMEA team’s preferences and the weight of risk factors obtained by the FBWM

Risk Factor Severity Occurrence Detection Treatment Cost Treatment Duration

The best factor (Severity) EI VI I FI I

The worst factor (Occurrence) VI EI FI I WI

Fuzzy weights obtained from

the FBWM

l 0.3929 0.0913 0.1146 0.2167 0.1146

m 0.3929 0.0913 01438 0.2350 0.1147

u 0.4499 0.1046 0.1894 0.2807 0.1342

Final Crisp weights obtained from

the Equation (8)

0.4024 0.0935 0.1465 0.2397 0.1179

Table 4 Center points and weighted Euclidean distance per cluster

Cluster Risk factors Weighted Euclidean distance Risk category name

S O D C T

1 2.7181 3.8847 3.0381 1.0531 1.6635 2.5157 Minor (Acceptable)

2 3.9059 2.8837 3.0047 1.1278 2.2103 3.0200 Tolerable

3 3.8454 3.0030 2.5854 1.4283 3.1459 3.0707 Major

4 3.8829 2.8228 2.2430 4.2378 4.5556 3.7816 Intolerable (Unacceptable)
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while having the same priority showing the disability of

this score in distinguishing the rank of such risks. In other

words, this technique has created only 10 places for all

studied risks which can confound DMs in determining the

order of risks for implementing corrective/preventive

action regarding the resource limitations. For this reason,

drawing more distinctions among risks’ prioritization by

considering the weight of risk factors, and taking advantage

of the FMEA technique can boost the decision-making

power of DMs. In this regard, various researchers have

tried to modify or develop the FMEA technique using other

methods such as MCDM techniques. Most of these, how-

ever, failed to preserve the merits of this traditional tech-

nique for the FMEA team, including compatibility with its

opinions and practical applications. In other words, from

the viewpoint of the FMEA team, a method can be effi-

cacious in the risk assessment process that not only does

not make unrealistic changes when the weight of risk

factors is applied but also can create more separability

among risk priorities. To measure this, the RPN-Based

Spearman Correlation Coefficient (RBSCC) can be

exploited. The results of the four FMEA-based MCDM

methods in Table 7 show that all of these methods have

made a higher distinction than the traditional FMEA

technique. While the proposed approach with RBSCC =

0.96 indicates that the results, in addition to creating

greater separability among risks priority, have increased

reliability of the results compared to other methods because

of having a significant consistency with the nature of the

FMEA technique (See Fig. 3).

Table 5 Risks belonging to the critical cluster

Identified risk Membership Degree Identified risk Membership Degree

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2 Cluster 3 Cluster 4

R01 0.1018 0.1436 0.2032 0.5513 R32 0.2572 0.3732 0.3149 0.0547

R02 0.2223 0.4511 0.2583 0.0683 R33 0.6126 0.2228 0.1334 0.0312

R03 0.2141 0.5118 0.2189 0.0552 R34 0.0999 0.3303 0.5108 0.0590

R04 0.1052 0.6572 0.2071 0.0306 R35 0.0881 0.4306 0.4377 0.0435

R05 0.0479 0.0655 0.0881 0.7985 R36 0.2572 0.3732 0.3149 0.0547

R06 0.1546 0.5123 0.3004 0.0327 R37 0.8534 0.0844 0.0531 0.0091

R07 0.2107 0.4796 0.2338 0.0758 R38 0.1018 0.1436 0.2032 0.5513

R08 0.3103 0.4721 0.1728 0.0448 R39 0.1856 0.5996 0.1828 0.0319

R09 0.1388 0.2132 0.4953 0.1526 R40 0.4183 0.2967 0.2188 0.0661

R10 0.0588 0.0691 0.0986 0.7735 R41 0.0662 0.0964 0.1264 0.7110

R11 0.0646 0.0966 0.1897 0.6491 R42 0.0300 0.9205 0.0451 0.0043

R12 0.0143 0.0196 0.0321 0.9339 R43 0.6083 0.1761 0.1680 0.0476

R13 0.6047 0.2141 0.1427 0.0385 R44 0.6770 0.1556 0.1208 0.0467

R14 0.5436 0.2229 0.1971 0.0363 R45 0.2960 0.3629 0.2953 0.0457

R15 0.1847 0.3323 0.4488 0.0343 R46 0.7746 0.1186 0.0806 0.0263

R16 0.2230 0.2511 0.3460 0.1800 R47 0.0853 0.1684 0.5911 0.1552

R17 0.0261 0.0331 0.0476 0.8932 R48 0.3027 0.2410 0.3971 0.0592

R18 0.0261 0.0331 0.0476 0.8932 R49 0.7746 0.1186 0.0806 0.0263

R19 0.5412 0.3054 0.1246 0.0288 R50 0.0348 0.0444 0.0616 0.8592

R20 0.0819 0.1364 0.2316 0.5502 R51 0.0646 0.0966 0.1897 0.6491

R21 0.6551 0.1735 0.1303 0.0411 R52 0.1571 0.3799 0.4060 0.0570

R22 0.3679 0.2651 0.3004 0.0666 R53 0.2023 0.3972 0.3269 0.0736

R23 0.6718 0.1734 0.1139 0.0409 R54 0.0549 0.0723 0.1112 0.7615

R24 0.0723 0.2288 0.6695 0.0294 R55 0.3027 0.2410 0.3971 0.0592

R25 0.7982 0.1209 0.0643 0.0166 R56 0.1029 0.2618 0.4361 0.1991

R26 0.0783 0.1202 0.2227 0.5789 R57 0.1597 0.4043 0.3273 0.1086

R27 0.1555 0.1529 0.1938 0.4978 R58 0.1061 0.3284 0.4995 0.0660

R28 0.1415 0.1977 0.3910 0.2698 R59 0.0300 0.9205 0.0451 0.0043

R29 0.0723 0.2288 0.6695 0.0294 R60 0.1176 0.1705 0.2220 0.4900

R30 0.3908 0.4278 0.1606 0.0208 R61 0.1046 0.3561 0.4187 0.1206

R31 0.3027 0.2410 0.3971 0.0592 R62 0.0687 0.0913 0.1348 0.7052
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For example, risks R10 and R27, which were jointly in

the first place regarding the conventional RPN scores, have

been ranked in first and third places, respectively, based on

the proposed approach. Also, risks R12 and R50 have been

stood in two distinct ranks of fourth and fifth based on the

proposed approach instead of the joint fourth rank. On the

other side, based on the TOPSIS method, the critical risk

R27 is in the 13th priority, which was in the first order

based on the traditional FMEA technique. Although this

can be partly due to the applying risk factors weights in the

prioritization process, by examining the values of these

factors in Table 2, it can be seen that this risk has the

highest possible value of O, D, C, and T factors and the

determined rank is not following reality. This rank change

Table 6 The results of the

implementation of the CoCoSo

method

Identified risk Si Pi kia kib kic ki Priority

R01 0.4348 2.6336 0.0477 2.2271 0.6502 1.3854 13

R05 0.5669 2.7710 0.0519 2.6373 0.7073 1.5914 10

R10 0.7194 3.8495 0.0711 3.4806 0.9681 2.1276 1

R11 0.4329 2.7867 0.0501 2.2835 0.6822 1.4326 12

R12 0.5528 3.6336 0.0651 2.9459 0.8871 1.8535 5

R17 0.6726 3.7867 0.0694 3.3296 0.9449 2.0500 2

R18 0.6726 3.7867 0.0694 3.3296 0.9449 2.0500 2

R20 0.4594 2.7529 0.0500 2.3412 0.6807 1.4542 11

R26 0.5062 3.6901 0.0653 2.8434 0.8892 1.8145 6

R27 0.5976 4.0000 0.0715 3.2137 0.9742 2.0270 3

R38 0.4348 2.6336 0.0477 2.2271 0.6502 1.3854 13

R41 0.7010 2.9215 0.0564 3.0584 0.7676 1.8037 7

R50 0.6136 3.7082 0.0672 3.1395 0.9158 1.9524 4

R51 0.4329 2.7867 0.0501 2.2835 0.6822 1.4326 12

R54 0.3719 2.4897 0.0445 2.0000 0.6063 1.2616 14

R60 0.5081 3.5371 0.0629 2.7870 0.8571 1.7674 8

R62 0.4451 3.3931 0.0597 2.5599 0.8133 1.6434 9

Table 7 Comparison of the proposed approach and other MCDM-based risk prioritization methods

Symbol Conventional RPN FBWM-TOPSIS FBWM-VIKOR FBWM-MOORA FBWM-CoCoSo

Score Priority Score Priority S R Q Priority Score Priority Score Priority

R01 288 9 0.5477 10 0.6263 0.1724 0.4771 8 0.2273 11 1.3854 13

R05 320 8 0.5776 6 0.4788 0.1724 0.2806 5 0.2394 9 1.5914 10

R10 800 1 0.6113 2 0.3190 0.1724 0.0675 2 0.2614 2 2.1276 1

R11 360 7 0.5226 11 0.6132 0.2397 0.5910 11 0.2262 12 1.4326 12

R12 480 4 0.5653 8 0.5083 0.1724 0.3199 6 0.2399 8 1.8535 5

R17 600 2 0.6003 4 0.3735 0.1724 0.1402 3 0.2535 3 2.0500 2

R18 600 2 0.6003 4 0.3735 0.1724 0.1402 3 0.2535 3 2.0500 2

R20 360 7 0.5569 9 0.5911 0.2397 0.5616 10 0.2330 10 1.4542 11

R26 540 3 0.5724 7 0.5521 0.2397 0.5097 9 0.2408 6 1.8145 6

R27 800 1 0.3724 13 0.4024 0.4024 0.6280 12 0.2403 7 2.0270 3

R38 288 9 0.5477 10 0.6263 0.1724 0.4771 8 0.2273 11 1.3854 13

R41 400 6 0.7044 1 0.3064 0.1465 0.0000 1 0.2646 1 1.8037 7

R50 480 4 0.5931 5 0.4398 0.1724 0.2286 4 0.2472 4 1.9524 4

R51 360 7 0.5226 11 0.6132 0.2397 0.5910 11 0.2262 12 1.4326 12

R54 240 10 0.3360 14 0.6814 0.3066 0.8128 14 0.2068 14 1.2616 14

R60 432 5 0.6072 3 0.5652 0.1724 0.3958 7 0.2419 5 1.7674 8

R62 360 7 0.3798 12 0.6204 0.3066 0.7314 13 0.2215 13 1.6434 9

RBSCC – 0.48 0.46 0.76 0.96
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can be attributed to the value allocated to the severity

factor of risk R27 and the structure of the TOPSIS method.

This risk has the lowest severity factor, while this factor is

the most important in risk assessment (see Table 3). This

issue has led to RBSCC = 0.48 for the TOPSIS method,

while the VIKOR method has the RBSCC = 0.46. This

measure shows its more reduced performance compared to

other methods, and in addition to ranking risk R27 in the

12th priority, risk R26 (the third rank based on the FMEA

technique) has fallen to the 9th priority. Meanwhile, the

MOORA method has shown, to some extent, accept-

able performance with RBSCC = 0.76. Regarding risks

R26 and R27, the MOORA method assigned the 6th and 7th

priorities to these risks, respectively, while the VIKOR

method has assigned the 9th and 12th priorities, respec-

tively to these critical risks.

5.3 Sensitivity analysis

In this section, a sensitivity analysis has been designed to

evaluate the results of the proposed approach based on

weight (weights of SODCT factors) replacement scenarios.

For this purpose, three scenarios have been defined for each

risk factor in which the weight of the factor evaluated has

been increased by 0.05, 0.15, and 0.25, respectively,

compared to the original, and the weight of other factors

have been decreased by 0.0125, 0.0375 and 0.0625,

respectively. 15 scenarios arranged can be seen in Table 8,

and the results of implementing the proposed approach

according to these scenarios have been presented in

Tables 9 ,10, 11.

Due to the increasing trend in the weight of the factor S

(scenarios 1 to 3), it can be said that the Spearman Cor-

relation Coefficient (SCC) index has experienced a rela-

tively large decrease from 1 to 0.92 (see Table 9). This

reduction indicates the results of the original state show a

relatively high sensitivity to changes in the weight of factor

S, especially in Scenario 3. Possessing the highest weight

in the original state, factor S has led to a decrease in the

importance of other factors in the prioritization process by

experiencing a further increase in the weight. Additional

investigations show risk R27, which had the third priority in

the original state, has fallen to the 8th priority. Although

risk R27 has the highest values of O, D, C, and T factors,

due to the lowest value of factor S, making a further

increase in this value has resulted in falling its priority to

the 8th rank. By contrast, risk R41 has reached the third

priority in Scenario 3 due to having the highest value of the

factor S (see Fig. 4).

In terms of increasing the value of the factor O (sce-

narios 4 to 6 in Table 9), the SCC index has had a tolerable

decrease showing marginal changes in risk priorities based

on the proposed approach.

According to scenarios 7 to 9 (see Table 10) related to

weight replacement of factor D, it can be seen that the SCC

index has decreased from 1 to 0.93 after remaining static in

Scenario 7 despite an increase by 0.005 in the value of this

factor. To put it another way, although risk priorities based

on the proposed approach stayed at a steady level in sce-

nario 7, experienced considerable changes in Scenario 9.

Fig. 3 Separability and compatibility of the proposed approach

compared to the traditional FMEA technique

Table 8 Scenarios defined to evaluate the effect of weight changes in

risk prioritization

Risk factors

S O D C T

Original 0.4024 0.0935 0.1465 0.2397 0.1179

Scenario 1 0.4524 0.0810 0.1340 0.2272 0.1054

Scenario 2 0.5524 0.0560 0.1090 0.2022 0.0804

Scenario 3 0.6524 0.0310 0.0840 0.1772 0.0554

Scenario 4 0.3899 0.1435 0.1340 0.2272 0.1054

Scenario 5 0.3649 0.2435 0.1090 0.2022 0.0804

Scenario 6 0.3399 0.3435 0.0840 0.1772 0.0554

Scenario 7 0.3899 0.0810 0.1965 0.2272 0.1054

Scenario 8 0.3649 0.0560 0.2965 0.2022 0.0804

Scenario 9 0.3399 0.0310 0.3965 0.1772 0.0554

Scenario 10 0.3899 0.0810 0.1340 0.2897 0.1054

Scenario 11 0.3649 0.0560 0.1090 0.3897 0.0804

Scenario 12 0.3399 0.0310 0.0840 0.4897 0.0554

Scenario 13 0.3899 0.0810 0.1340 0.2272 0.1679

Scenario 14 0.3649 0.0560 0.1090 0.2022 0.2679

Scenario 15 0.3399 0.0310 0.0840 0.1772 0.3679
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Take R10 as an example; the priority of this risk in sce-

narios 8 and 9 has dropped to second place from the first

place in the original state, whilst risk R27 has jumped to the

first rank. As a reason for this issue, it can be said that by

making an increase in the weight of factor D, this factor has

been considered as the most important factor instead of the

Table 9 Risk prioritization based on the sensitivity analysis on factors S and O

Symbol Original Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Score Priority Score Priority Score Priority Score Priority Score Priority Score Priority Score Priority

R01 1.3854 13 1.4168 13 1.4770 13 1.5608 12 1.4192 13 1.5064 12 1.6345 10

R05 1.5914 10 1.6134 10 1.6544 9 1.7228 9 1.5961 10 1.6094 10 1.6352 9

R10 2.1276 1 2.1264 1 2.1191 1 2.1409 1 2.1953 1 2.3608 1 2.5902 1

R11 1.4326 12 1.4541 12 1.4943 12 1.5563 13 1.4557 11 1.5185 11 1.6165 12

R12 1.8535 5 1.8717 5 1.9039 5 1.9617 5 1.8783 5 1.9449 5 2.0497 5

R17 2.0500 2 2.0588 2 2.0720 2 2.1139 2 2.0722 3 2.1341 3 2.2353 3

R18 2.0500 2 2.0588 2 2.0720 2 2.1139 2 2.0722 3 2.1341 3 2.2353 3

R20 1.4542 11 1.4756 11 1.5157 11 1.5787 11 1.4515 12 1.4467 13 1.4481 13

R26 1.8145 6 1.8326 7 1.8650 6 1.9208 7 1.8362 6 1.8954 6 1.9903 7

R27 2.0270 3 1.9744 3 1.8622 7 1.7616 8 2.0799 2 2.2101 2 2.3939 2

R38 1.3854 13 1.4168 14 1.4770 13 1.5608 12 1.4192 13 1.5064 12 1.6345 10

R41 1.8037 7 1.8524 6 1.9467 4 2.0776 3 1.8105 7 1.8302 8 1.8663 8

R50 1.9524 4 1.9711 4 2.0044 3 2.0658 4 1.9813 4 2.0582 4 2.1767 4

R51 1.4326 12 1.4541 13 1.4943 12 1.5563 13 1.4557 11 1.5185 11 1.6165 12

R54 1.2616 14 1.2559 14 1.2430 14 1.2471 14 1.2598 14 1.2565 14 1.2577 14

R60 1.7674 8 1.7954 8 1.8479 8 1.9257 6 1.7998 8 1.8837 7 2.0090 6

R62 1.6434 9 1.6343 9 1.6134 10 1.6110 10 1.6400 9 1.6325 9 1.6296 11

SCC – 0.99 0.95 0.92 0.99 0.98 0.94

Table 10 Risk prioritization based on the sensitivity analysis on factors D and C

Symbol Original Scenario 7 Scenario 8 Scenario 9 Scenario 10 Scenario 11 Scenario 12

Score Priority Score Priority Score Priority Score Priority Score Priority Score Priority Score Priority

R01 1.3854 13 1.3965 13 1.4177 13 1.4398 12 1.3843 13 1.4400 11 1.5564 11

R05 1.5914 10 1.6013 10 1.6206 10 1.6421 11 1.6265 10 1.7758 8 2.0212 6

R10 2.1276 1 2.1217 1 2.1031 2 2.0758 2 2.1349 1 2.2434 1 2.4497 1

R11 1.4326 12 1.4330 12 1.4295 12 1.4205 13 1.3958 12 1.3701 13 1.3706 14

R12 1.8535 5 1.8570 5 1.8589 7 1.8550 8 1.8354 5 1.8688 6 1.9659 7

R17 2.0500 2 2.0516 3 2.0498 3 2.0427 3 2.0686 2 2.1952 2 2.4200 2

R18 2.0500 2 2.0516 3 2.0498 3 2.0427 3 2.0686 2 2.1952 2 2.4200 2

R20 1.4542 11 1.4844 11 1.5579 11 1.6585 10 1.4167 11 1.3930 12 1.3986 12

R26 1.8145 6 1.8430 6 1.9106 5 2.0010 5 1.7715 7 1.7411 9 1.7400 10

R27 2.0270 3 2.0870 2 2.2257 1 2.4040 1 2.0310 3 2.1166 4 2.2828 4

R38 1.3854 13 1.3965 13 1.4177 13 1.4398 12 1.3843 13 1.4400 11 1.5564 11

R41 1.8037 7 1.8162 7 1.8423 8 1.8740 7 1.8293 6 1.9751 5 2.2285 5

R50 1.9524 4 1.9604 4 1.9732 4 1.9835 6 1.9824 4 2.1262 3 2.3670 3

R51 1.4326 12 1.4330 12 1.4295 12 1.4205 13 1.3958 12 1.3701 13 1.3706 14

R54 1.2616 14 1.2642 14 1.2659 14 1.2631 14 1.2582 14 1.3010 14 1.3956 13

R60 1.7674 8 1.8065 8 1.8986 6 2.0197 4 1.7603 8 1.8118 7 1.9276 8

R62 1.6434 9 1.6742 9 1.7470 9 1.8437 9 1.6340 9 1.6726 10 1.7663 9

SCC – 1.00 0.97 0.93 1.00 0.95 0.90
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factor S in scenario 9. In this case, having the highest value

of factor D, risk R27 has reached the top priority.

Examining the increasing trend in the value of factor C

using scenarios 10 to 12 (see Table 10 and Fig. 5), it can be

seen that risk priorities have remained fairly stable in

scenario 10. After that, the order of risks has experienced

noticeable changes, and led to shrinking the SCC index

from 1 to 0.9; since in scenarios 11 and 12, the value of

factor C was more than other factors. Because of this issue,

risk R05 with C = 5 rose to 6th priority from 10th priority

in the original case, and risk R26 with C = 3 dropped to the

10th priority from 6th priority.

Eventually, according to scenarios 13 to 15 (see

Table 11) showing the changing trend of the factor T, it can

be said that the SCC index after staying the same in Sce-

nario 13, has gradually decreased from 1 to 0.94. These

changes illustrate a gradual sensitivity to increase the

weight of the factor T. The reason for this can be attributed

to the high value of the factor T per risk and the effect of

factors S and C in the risk prioritization process. These two

Table 11 Risk prioritization

based on the sensitivity analysis

on the factor T

Symbol Original Scenario 13 Scenario 14 Scenario 15

Score Priority Score Priority Score Priority Score Priority

R01 1.3854 13 1.3189 13 1.3128 14 1.3092 14

R05 1.5914 10 1.5246 10 1.5654 11 1.6278 12

R10 2.1276 1 2.0672 1 2.1702 1 2.3049 1

R11 1.4326 12 1.4270 12 1.5585 12 1.7225 10

R12 1.8535 5 1.8294 5 1.9590 4 2.1218 4

R17 2.0500 2 2.0041 2 2.1240 2 2.2774 2

R18 2.0500 2 2.0041 2 2.1240 2 2.2774 2

R20 1.4542 11 1.4459 11 1.5796 10 1.7467 9

R26 1.8145 6 1.7951 6 1.9205 5 2.0778 5

R27 2.0270 3 1.9724 3 2.0503 3 2.1540 3

R38 1.3854 13 1.3189 13 1.3128 14 1.3092 14

R41 1.8037 7 1.7172 7 1.7569 8 1.8201 8

R50 1.9524 4 1.8743 4 1.9065 6 1.9588 6

R51 1.4326 12 1.4270 12 1.5585 12 1.7225 10

R54 1.2616 14 1.2687 14 1.4082 13 1.5805 13

R60 1.7674 8 1.6869 8 1.6740 9 1.6626 11

R62 1.6434 9 1.6367 9 1.7703 7 1.9360 7

SCC – 1.00 0.97 0.94

Fig. 4 Risk prioritization

changes based on increasing the

weight of factor S
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factors have the highest weight compared to other risk

factors and play a significant role in risk prioritization

based on the FMEA team members. In this case, risk R12

despite the similarity in the value of SOD factors with risk

R50, only because T = 5 has risen to the fourth priority

from the fifth priority, and R50 has dropped to the 6th

priority from the fourth priority in the original state.

6 Discussion and conclusion

Occupational accidents and work-related diseases that, in

some cases, lead to death can produce short-term and long-

term undesirable outcomes in both individual’s life and

economic terms. In this regard, the HSE management

system can bring about significant prosperity in terms of

creating a healthy and safe workplace. To implement this

system more efficiently, it needs to determine potential

risks and control the critical risks to reduce their adverse

effects on the activities and workers. Although the FMEA

technique is one the most popular methods in the identifi-

cation of critical risks, its score namely conventional RPN

has numerous shortcomings such as failing to create a

distinct prioritization of risks, considering only SOD fac-

tors and the same importance for these. This issue in real-

world applications can baffle DMs when corrective/pre-

ventive actions are taken, and there are financial and

human resource limitations. Therefore, it is of cardinal

importance to propose a more efficient approach that can

address the mentioned shortcomings. This study aimed to

prioritize HSE risks based on the FMEA technique and

using the FCM clustering algorithm and a hybrid MCDM

method. This approach was implemented in two phases.

Firstly, after identifying the potential risks and determining

the value of SOD factors and two extra factors C and T, the

FCM algorithm was used to cluster risks, and the weighted

Euclidean distance measure calculated using the weights

obtained from the FBWM to specify the critical cluster.

Following this phase, the FBWM-CoCoSo model was

solved to prioritize the risks of the critical cluster. That is to

say, in this study in addition to considering the uncertainty

in the risk assessment process, critical risks were recog-

nized based on the value of risk factors instead of the RPN

score to boost the separability among risk priority. The

results of the implementation of the proposed approach in a

company active in the automotive industry show its high

separability and reliability of the risks prioritization in

comparison with traditional FMEA and other common

FMEA-based MCDM methods. Since this study considers

uncertainty in the critical risk prioritization process, future

research can simultaneously apply the uncertainty and

reliability concepts by developing the CoCoSo technique

based on the Z-number theory to increase the reliability of

outputs and separability among the priority of risks. Also,

in the case of the existing large data set, unlike the data set

used in this study, other clustering algorithms such as

density-based spatial clustering of applications with noise

can be applied to identify the critical cluster.
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