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Abstract
Fire is one of the most notorious hazards in Australia, with important economic impacts and damage to ecosystems. There

is a concern of worsening fire conditions under climate variability, but there is little understanding of the variability in fire

occurrence related to climate patterns. We present a statistical decomposition for spatio-temporal analysis of changes in fire

occurrence in Australia and its association with climate factors. We found evidence of variability in the trend results for fire

occurrence, and also some evidence that this variation is related to climate patterns. Our approach has applicability to other

climate-related issues, providing a useful tool to identify possible changes in the intensity of occurrence over time,

capturing long-term changes, and also seasonal and cyclical effects.
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1 Introduction

There are evidence that climate and weather are important

drivers of wildfire events, among different regions of the

world, such as North America (e.g., Gillett et al. (2004);

Westerling et al. (2006); Chen (2007); Le Goff et al.

(2009); Wotton et al. (2010); Gedalof (2011)), Europe

(e.g., Reinhard et al. (2005); Lozano et al. (2017)), as well

as in Oceania (e.g., Williams et al. (2001); Pitman et al.

(2007); Clarke et al. (2013)). In the most systems, it is

climate that controls the amount of fuel available to

burning, and also determines the flammability of the

available fuel and the continuity of the fire. Anthropogenic

factors may also exhibit influences on fire, directly by

starting and managing fires or indirectly through anthro-

pologically driven climate changes (Aldersley et al. 2011).

In Australian ecosystems, fire plays an important role,

influencing and determining the vegetation, due to factors

such as floral composition, topography, and climate (Rah-

man et al. 2018). In the savannahs of northern Australia,

intense fires dominate whereas massive fires in the arid

zone occur after periods with above-average rainfall, with

relatively less frequency. On the other hand, in the

temperate forests of the south, large and intense fires occur,

but is less extensive and also less regular (Moritz et al.

2014).

The relationship between fire occurrence and the climate

factors in Australia has been explored in the literature

(Verdon et al. 2004; Russell-Smith et al. 2007; Mariani

et al. 2016; Dowdy 2018). In particular, the most important

Australian climate drivers are the El Niño Southern

Oscillation (ENSO), Indian Ocean Dipole (IOD) and

Southern Annular Mode (SAM), causing spatio-temporal

variations of temperature and rainfall (Hendon et al. 2007;

Risbey et al. 2009), and therefore affecting the Australian

fire behaviour. Additionally, some studies have identified

some trends in the variables underlying fire indices. It has

been observed an increase in the temperature extremes in

Australia, with a particular increase in the number of

record warm days while the number of record cold days has

decreased (Alexander et al. 2007). Some studies have also

found that Australian rainfall patterns have changed, with a

significant decrease in rainfall in the southwest of Australia

and a signicant increase in the proportion of total precipi-

tation from extreme events in eastern Australia (Timbal

et al. 2006; Gallant et al. 2007).

As a consequence of climate patterns, current and

potential future changes in fire activity might pose threats

to ecosystems and human health (Abatzoglou and Williams

2016), and understanding the patterns of fire occurrence is

important to avoid loss and facilitate management deci-

sions. The fire weather index is a common methodology
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used to assess the fire danger and to explore the effects of

climatic indices in the Australian fire danger. In particular,

several studies have adopted the McArthur Forest Fire

Danger Index (FFDI) to find evidences of the variability of

fire weather in Australia, and also to assess the linkages

between climate drivers and FFDI (Verdon et al. 2004;

Clarke et al. 2013; Harris and Lucas 2019). However, there

is an important drawback related to the fire weather index

methods. Usually these indexes are calculated based on

weather monitoring station data, which may limit the

analysis due to the fact that this kind of data may not be

ideal for understanding the aspects of the spatial variability

(Dowdy 2018). In order to be complementary to previous

studies (Dowdy 2018) have proposed to assess the long-

term variations in fire weather conditions based on gridded

data, and have found that changes in fire weather condi-

tions in southern Australia are related to anthropogenic

climate change. However, while there is an increased

concern of worsening fire conditions under climate change

and variability, there is still little understanding of the

relationship between the spatio-temporal changes of Aus-

tralian fire occurrence and climate factors.

In order to contribute to this literature, we propose an

alternative way to verify the existence of changes in the

patterns of the fire activity, through the estimation of long-

term and periodic components, using statistical tools to

decompose the observed data into trend, seasonal, and

cycle components. In addition, since fire occurrence can be

associated with their spatial coordinates and temporal

instant, to take into account the spatial heterogeneity of

climate effects, we propose to combine elements of struc-

tural time series decomposition with spatio-temporal

models with continuous spatial random effects, which can

be thought as a process of decomposing geostatistical time

series into a sum of persistent and mean-reverting com-

ponents (Laurini 2019; Valente and Laurini 2020).

Therefore, in this study we will analyze the variability in

the patterns of the fire occurrence in Australia within

spatio-temporal point process framework, through a struc-

tural decomposition (e.g., Harvey (1990)) in spatio-tem-

poral point pattern data. In particular, we extent the trend-

cycle decomposition in spatio-temporal models to spatio-

temporal point pattern data, by proposing to use a dynamic

representation of a Log Gaussian Cox process (LGCP)

where the intensity function is modeled through the

decomposition of components into trend, seasonality,

cycles, covariates and spatial effects (Laurini 2019;

Valente and Laurini 2020). This is a useful formulation to

identify possible changes in the intensity of occurrence

over time, being capable to capture seasonal and cyclical

effects, and to identify long-term changes in the fire events,

that may be associated with climate variability.

We present here, the results of analyzing data for fires in

Australia, from 2003 to 2019, using two different model

specifications, with and without covariate effects, in order

to assess the relationship of the variability in the patterns of

fire events and climate factors. In addition to the above, we

were also interested in assessing the possible variability in

the maximum temperature and rainfall in Australia, evi-

dencing the relationship between the changes in patterns of

fire events and the seasonal, internannual and longer-term

climate variability. In summary, results indicate an increase

in the trend component of the fire occurrence, when the

covariate effects are not included. On the other hand, when

we included explanatory variables to control the main fixed

effect related to climate patterns, the trend component

remains relatively stable, which may suggests that the

variability in the fire occurrence is attributable at least in

part to climate factors. In addition, the results also give

support to the increase in the trend component of the

observed maximum temperature series.

2 Materials and methods

2.1 Data

We used daily data of fire occurrence in Australia from

MODIS (Moderate Resolution Imaging Spectroradiometer)

Thermal Anomalies/Fires product between January 2003

and December 2019 (Giglio and Justice 2015). The dataset,

provided by NASA, includes information like fire occur-

rences (day/night), fire location (geographic coordinates),

the criteria for the fire detection which are based on the

apparent temperature of the fire pixel and the difference

between the fire pixel and its background temperature, the

detection confidence value which ranges from 0% and

100%, and other layers describing fire pixel attributes

(Giglio and Justice 2015). In addition, in order to facilitate

the visualization of the results, we used a quarterly

aggregation of the daily data. To illustrate, we plot the

number of fire occurrences in Australia by quarter (see

Fig. 1) and the spatial distribution by quarter (see Fig. 2).

In general, fires are observed in all quarters in Australia,

although fire frequency is higher experienced during the

last quarter of the year (summer/dry seasons), especially in

Western Australia, Northern, and Queensland. The con-

sistency of fire occurrence throughout the year in wealthier

countries such as the United States and Australia is related

to fuel management practices occurring during the cooler/

wetter nonfire season, especially in highly populated areas

(Earl and Simmonds 2018).

We also included some covariates that could be

important in the fire observations since our data set

includes fire occurrences of different causes, such as
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human sources (deliberately or accidentally), and natural

causes, that can be influenced by climate variables. As

explanatory variables, we used monthly remote sensing

data of maximum temperature and rainfall from AusCover

data portal (http://www.auscover.org.au/) of Terrestrial

Ecosystem Research Network (TERN), the distance from

the geographic positioning of the sealed roads from

National Topographic Database of Australia (GEODATA

TOPO 250K series 3, available at https://data.-

gov.au/data/dataset/a0650f18-518a-4b99-a553-44f82f28b-

b5f), and the geographical latitude. Temperature, rainfall

and latitude are direct explanatory factors for the natural

occurrence of fires, while the distance to sealed roads is a

control for human influence in the occurrence of these

events.

2.2 Spatio-temporal log gaussian Cox process

One way to deal with spatio-temporal point pattern data

comes from spatio-temporal point processes. The Poisson

process is a common structure used to model point process.

However, this structure is limited even if one assumes a

inhomogeneous distribution in space through a function of

deterministic intensity. The limitations are related to the

lack of possible sources of uncertainty and the fact that the

Poisson process is conditionally independent. An alterna-

tive is to allow the dependency function to be a stochastic

function, known as Cox process. In this paper, we used the

structure of Log Gaussian Cox Process, which is a partic-

ular case of the Cox process, where the log-intensity

function is a Gaussian random field. Additionally, to

identify long term variability, and cyclical and seasonal

effects, we adopted a decomposition of the intensity

function into trend, seasonality, and cycle components

along with spatial random effects.

Therefore, the model used in this work is a spatio-

temporal formulation of point processes with stochastic

intensity, using a decomposition of the intensity function

into components that vary over time and space. The pro-

posed model (Valente and Laurini 2020) can be written as

follows:

Yðs; tÞ ¼ Poissonðjeðs; tÞjexpðkðs; tÞÞ;
kðs; tÞ ¼ aþ lt þ st þ ct þ zðs; tÞbþ nðs; tÞ

lt ¼ 2lt�1 � lt�2 þ gl

st ¼ st�1 þ st�2 þ . . .þ st�m þ gs
ct ¼ h1ct�1 þ h2ct�2 þ gc

nðs; tÞ ¼ Unðs; t � 1Þ þ xðs; tÞ

ð1Þ

where Y(s, t) is the number of occurrences in a region s in

time t, e(s, t) is the exposure offset for the region s, a is the

intercept, lt is the long term trend modeled as a second-

order random walk (RW2), which imposes a smoothness

structure that is able to identify the trend component. In

addition, the RW2 structure can be thought as a non-

parametric trend structure since it can be related to spline

models, which allows to identify in a more adequate way

the persistent patterns of long-term variability. The st
represents the seasonal components, ct is a cycle compo-

nent represented by an second-order autoregressive process

with possibly complex roots. This component allows the

reproduction of patterns with periodic (cyclic) components,

which are appropriate for effects that are repeated over

time (irregular periodicity) but eventually dissipate. In the

problem in question, the cycle component is interesting

since it allows to reproduce the effect of climatic variables

that generate periodic patterns that last for more than a

year, and thus climatic effects that are beyond pure sea-

sonal components. The zðs; tÞ is a set of covariates

observed in the location s and period t, gl, gc and gs are

nonspatial independent innovations with gl �Nð0; r2glÞ,
gc �Nð0; r2gcÞ and gs �Nð0; r2gsÞ. The nðs; tÞ are the spatial
random effects represented by the Gaussian process xðs; tÞ
continuously projected in space and given by

Cov xðs; tÞx s0; t0ð Þð Þ ¼
0 if t 6¼ t0

r2CðhÞ if t ¼ t0

�
for s 6¼ s0

where CðhÞ is a covariance function of the Matérn class

and r2 is the marginal variance. More detailed discussion

about the method are available in Supplementary

Information.

As the LCGP likelihood is analytically intractable, it is

necessary to approximate the likelihood. To do this, one

may use the SPDE approach (Lindgren et al. 2011), by

using the approximation of SPDE solution as follows:

xðs; tÞ � ~xðs; tÞ ¼
Xn
j¼1

wjujðs; tÞ ð2Þ

Fig. 1 Fires in Australia by quarter—From 2003 to 2019
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where n is the number of vertices of the triangulation,

fwjgnj¼1 are the weights with Gaussian distribution and

fujg
n
j¼1 are the basis functions defined for each node on the

mesh. The idea is to calculate the weights fwjg, which
determine the values of the field at the vertices, while the

values inside the triangles are determined by linear inter-

polation (Lindgren et al. 2011).

Replacing the Gaussian Field (GF) xðs; tÞ by the

Gaussian Markov Random Field (GMRF) approximation

~xðs; tÞ in Eq. (1), and approximating the integral in the

LGCP likelihood by a quadrature rule, it results that the

approximate likelihood consists of ðnþ ntÞT independent

Poisson random variables, where n is the number of ver-

tices and nt is the number of observed point processes (see

SI appendix for details). In addition, according to (Simpson

et al. 2016), the LGCP formulation fits naturally within the

Bayesian hierarchical modeling framework and are latent

Gaussian models, therefore, it may be fitted using the

Integrated Nested Laplace Approximations (INLA)

approach of (Rue et al. 2009).

Fig. 2 Spatial distribution of fires in Australia—From 2003 to 2019
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3 Results

Our analysis is based on a statistical model to decompose

the temporal and spatial patterns of fire occurrence into

long-term changes and transient effects. The model con-

sists of a trend component, identifying persistent changes

in fire patterns, transient components capturing cyclical and

seasonal effects, and a spatial component capturing the

territorial heterogeneity in the occurrence of these events.

We performed the estimation of the parameters based on

two different specifications, with and without covariates

effects, which we call model M2 and M1, respectively. It is

important to note that the formulation of model M1 is able

to explain the spatio-temporal patterns of observed fire

occurrence. However, we were also interested in to assess

if the changes in the patterns of fire events can be related to

climate variability. While maximum temperature and

rainfall are related to climate factors, the location of the

sealed roads provides evidence of intentional fire, since

proximity to highways indicates accessibility and may

provide evidence of human-induced fires. We use alterna-

tive formulations using unsealed roads, and the combina-

tion of sealed and unsealed roads. The specification with

sealed roads had a slightly superior performance in terms

of model fit, and so it is the form maintained in the model.

We also included latitude as a covariate in this model, since

there is evidence pointing to the dependence of fires

regimes on this variable (Murphy et al. 2013; Williamson

et al. 2016).

First, we estimated the parameters described in Eq. (1)

without the effects of the covariates (model M1). In this

case, the estimated parameters are the intercept (a), the
precision of the trend component (1=gl), seasonal com-

ponent (1=gs), and cycle component (1=gc), the parameters

of the second-order autoregressive process of the cycle

(PACF1 and PACF2), the parameters of spatial covariance

(log s and logj), and the parameter of spatial time

dependence (U). The parameters log s and log j are due to

the parameterization proposed by Lindgren et al. (2011),

which are better defined in SI appendix. In the second

model specification (model M2) were included four

explanatory variables namely, maximum temperature,

rainfall, latitude, and sealed roads. In addition to the above,

in this case, the estimated parameters include the parame-

ters associated with the set of observed covariates (b).
The estimated precision parameters of trend, seasonal

and cycle components under model M1 (see Supplemen-

tary Table A2) show a high precision associated with the

seasonal component (estimated posterior mean equals

14267.626) as well as the trend component (estimated

posterior mean equals 8379.048), whereas the cycle com-

ponent shows a relatively minor precision (estimated

posterior mean equals 2.228). The partial correlation

parameters are related to the autoregressive parameters in

the AR(2) representation of the cycle. The estimated

parameters (0.194 and - 0.044) indicate the presence of a

cyclic component with the estimated period for the cycle

component being equal 5.88 quarters.

Based on the estimated trend, seasonality, and cycle

components of model M1 (posterior mean and 95%

Bayesian credibility interval; Fig. 3), the most notable re-

sult is the trend component, which shows that there was a

decrease in Australian fire occurrence from 2003 to 2010.

This was followed by an upsurge in 2011, previously dis-

cussed in the literature (e.g., Giglio et al. (2013); Dutta

et al. (2016); Earl and Simmonds (2017)). In addition, from

2011 to 2020, the fire levels exhibit a growth pattern. The

seasonal component is stable with very tight credible

intervals, which is consistent with the estimated precision

parameter.

In order to assess if the variability in the patterns of fires

can be associated with climate factors, we performed the

estimation of model M2, which were included four

explanatory variables. The estimated posterior means (see

Supplementary Table A1) indicate a negative relation

between fire events and rainfall (- 0.002), and the distance

from sealed roads (- 0.007), as expected, and a positive

relation between maximum temperature and fire occur-

rences (0.149). In addition, there are evidences of the

influence of the latitudinal gradient in the fire activity,

which is reflected in the weather conditions during the fire

events (Williamson et al. 2016; Murphy et al. 2013). Based

on these discussions, we included the geographical latitude

as a covariate, which exerts a positive effect on the fire

occurrence. It is possible to note that, under model M2

specification, the trend component is relatively stable after

the upsurge in 2011 (Fig. 4).

The spatial heterogeneity of the fire occurrences in

Australia can be seen through the estimated spatial random

effects under models M1 (see Supplementary Figure A2)

and M2 (Figs. 5 and 6). In addition, to show the importance

of the trend, seasonal and cycle components in the analysis

of fire occurrence, we plotted the observed total fire count

and the predicted value of fire count in each year given by

the sum of the estimated trend, seasonal, cycle and inter-

cept components of the models M1 (see Supplementary

Figure A3) and M2 (Fig. 7). The results provide evidence

that the latent components explain the most part of the

variability observed in the total fires count since the pre-

diction of the total count mostly lies inside the 95% cred-

ibility interval for the whole period. Also, the estimated

intensity function and the observed fire occurrence (black

dots) for models M1 (see Supplementary Figure A3) and

M2 (Supplementary Figure A4) shows that the estimated

log intensity function explains the spatio-temporal
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variation observed in the fire count, which suggests that the

proposed model has a good fit. Supplementary Table A3

shows some fit measures for the two models (mean error

(ME), root mean squared error (RMSE), mean absolute

error (MAE) and mean percentage error (MPE)). In gen-

eral, the models present a good fit in these measures, with a

small negative bias in both models, but of very low mag-

nitude, with mean percentual errors of - 0.332% and

- 0.327% for models M1 and M2, respectively.

In order to support the evidence that changes in fire

occurrences have been related to climate factors, we per-

formed a similar method for decomposition of trend, cycle

and seasonal components in spatio-temporal models to

investigate the existence of variability in the patterns of the

maximum temperature and rainfall from 2003 to 2019 in

Australia. In summary, the central idea of the method is to

decompose the time series in a similar way to a time series

structural decomposition, with the innovation process in

each location that contains an error component projected in

the spatial continuum (Laurini 2019). For the observed

maximum temperature our analysis show the presence of a

tendency from 2010 to 2019 (see Fig. 8), evidencing the

relationship between climate factors and fire occurrence in

Australia, in agreement with previous results (e.g., Hughes

(2003); Griffiths et al. (2005); Alexander et al. (2007)). On

the other hand, the results obtained through the modeling

carried out in this article do not indicate the presence of

relevant changes in the trend of rainfall series (see Sup-

plementary Figure A4). In addition, the proposed model

was not able to capture a significant cycle component.

4 Discussion

Before moving to discuss our findings, it is worth spending

a few words on what we consider the main limitations of

this study. There is a meaningful limitation related to the

selected covariates in our analysis. Since the proposed

model performs a spatio-temporal analysis for the occur-

rences of a process observed continuously in space, the

covariates must to be available at every location of the

interest region within the observation window. Due to this

methodological constraint, the number of available

covariates are limited. In particular, in our paper, we were

Fig. 3 Trend, Seasonal and Cycle decomposition of fire occurrence in Australia—Model without covariates (M1). The shaded areas in the graph

represents the 95% Bayesian credibility interval
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able to include only information in climatic patterns and

measures of human presence.

The second limitation is more significant and difficult to

overcome. As previously stated, our database contains only

16 years of data from fire occurrences in Australia and due

to the limited data sample the results demand our attention.

In other words, given data limitations, our results may be

sensitive to uncertainty and caution is required in its

interpretation. In fact, strongest results to provide baselines

for assessing the long-term changes in the pattern of fire

occurrence in Australia require longer time series.

Although, we believe that the problem addressed in our

paper is important and timely, and the proposed method

can give some new insights to this subject, significantly

contributing to the literature of statistical analysis of cli-

mate variability through spatio-temporal models. In addi-

tion, to highlight the potential of our approach, we discuss

here about the validity of using statistical modeling for the

analysis of relevant climate-related issues under data

availability limitations, and also how the model can pro-

vide compelling evidence (although not conclusive) of the

impact of climate patterns in the spatio-temporal variability

of Australian fire activity.

In fact, the most relevant issue is the separation between

long-term and transient effects of the fire occurrences,

which is central in the interpretation of the model results.

The trend component plays a crucial role, incorporating the

persistent changes in the fire occurrence. In our model, the

use of a random walk model imposes an statistical identi-

fication that ensures that the trend component only captures

long-term changes, isolating the effects of short-term

changes which are captured by the cycle and seasonality

components, and also the spatial patterns. Thus, we are

using interpretation features that are common to other

statistical models that try to identify possible long-term

movements in climate-related issues through non-station-

ary latent components, which comprises a rich literature of

statistical models to analyze climate changes (e.g.

Bloomfield (1992); Estrada et al. (2013); Laurini (2019);

Valente and Laurini (2020)). After all, the whole idea is

precisely imposing an identification structure that encom-

passes all the persistent changes in a common component,

which aggregates all changes with relevant long-term

Fig. 4 Trend, Seasonal and Cycle decomposition of fire occurrence in Australia—Model with covariates (M2). The shaded areas in the graph

represents the 95% Bayesian credibility interval
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effects, which is in turn a way of estimating patterns of

climate variability (or climate change, considering longer

observed time series) using temporal and spatio-temporal

models. In particular, in the presence of limited data it is

necessary to impose restrictions in order to be able to

separate long term and transient effects, which is also

necessary due to the non-stationary nature of the long-term

climate variability processes.

With these caveats in mind we move on to discuss the

findings. Our evidence suggests that there were an

increasing trend of the intensity of fire occurrence in

Australia since 2010. Yet, as previously discussed, math-

ematically, the estimated long-term component can be seen

as the accumulation of all shocks that occurred in the past

with non-transitory effects, and this is the reason why the

level shift would correspond to persistent changes.

Fig. 5 Spatial random effects—Model with covariates (M2)

2003–2011

Fig. 6 Spatial random effects—Model with covariates (M2)

2012–2019
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However, despite the evidence of long-term changes in fire

activity, given data limitation in this particular case, we

cannot state with confidence that the observed variability in

the estimated trend component corresponds to long-term

changes. Indeed, since the decadal climate variability and

climate change overlap, based on a short observed time

series, it is difficult to distinguish between the two effects.

Changes in fire weather over longer time scales have been

widely discussed in the literature, and it have been asso-

ciated with anthropogenic climate changes (Dowdy et al.

2016; Harris and Lucas 2019), but also with climate vari-

ability (e.g., Interdecadal Pacific Oscillation) (Verdon et al.

2004). On the other hand, it is worth noting that, for longer

time series, our proposed model could be considered as an

important tool to identify the distinct effects from climate

change and climate variability, given the model ability to

capture persistent and mean-reverting (seasonal and com-

ponents with irregular periodicity) terms, taken into

account the effects of covariates and the spatial

heterogeneity.

Given the mean-reverting and irregular periodicity nat-

ure of the cycle component, it was possible to capture the

effects of interannual and/or multi-year climate variability

in the fire activity. As an example, based on the results, it is

possible to observe that the estimated cycle component was

able to capture the considerable decrease in the fire activity

in 2010-11, which coincides with weak to moderate and

moderate to strong La Niña events1, being one of the

Fig. 7 Predicted fires by the sum of trend, seas and cycle components

and observed fires—Model with covariates (M2). Shaded areas in the

graph represent the 95% Bayesian credibility interval

Fig. 8 Trend, Seasonal and Cycle decomposition of maximum temperature
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wettest calendar years on record for Australia, and also the

lagged response from the same La Niña, which drove up

fuel loads in central Australia, which consequently increase

the fire activity.

By including covariates in the model we were able to

investigate the link between the increases in fire activity

and anthropological activities and climate factors over

time. Our findings suggest that climate patterns and human

activities are underlying factors that have driven the

upward trend of the fire occurrence. Fire requires sufficient

biomass, biomass available to burn, ambient conditions

conductive to spread, and ignitions (Bradstock 2010).

These factors influence the spatio-temporal fire activity,

and is strongly dependent on the meteorological conditions

and how these conditions interact with the vegetation, or

fuel, resulting in fundamentally different fire regimes

across Australia. The anthropological influence may further

complicate the influence of biophysical drivers, through

land-use modification, human ignitions, and fire suppres-

sion (Andela et al. 2017). Supporting the evidence that the

variability in the fire occurrence have been related to cli-

mate variability, our findings suggest a growth pattern of

the trend of maximum temperature. This result is in

agreement with some other studies, which have reported

that the variability in fire occurrence conditions are con-

sistent with observed changes in temperature and rainfall

throughout Australia (Russell-Smith et al. 2007; Clarke

et al. 2013; Dowdy 2018). On the other hand, the lack of

meaningful results related to changes in the trend of rainfall

series may be related to different patterns of precipitation

throughout Australia. Many studies have analyzed Aus-

tralian rainfall trends and have shown more regionally

dependent variations (Hughes 2003). Thus, since we

assessed the rainfall trend over a large area, it is too hard to

capture the presence of a tendency for rainfall.

In addition, by including the geographical latitude as a

covariate, our results corroborates previous analyses of

spatio-temporal variability in fire activity over the entire

country, pointing out the importance of the latitudinal

information in shaping temporal patterns of fire activity

(Murphy et al. 2013; Williamson et al. 2016). Our findings

suggest that the latitude has a positive effect on fire

intensity, in that by increasing the geographical latitude the

fire frequency is more intense. It is worth noting that as the

entire analyzed region is below the equator, the latitudes

are negative, indicating that the higher fire frequency is

concentrated along with the northern Australia. Indeed, as

discussed by Murphy et al. (2013), the variation in Aus-

tralian fire regimes is related to latitudinal gradient in

season rainfall, driven by summer monsoon activity in the

north and winter frontal activity in the south. The very

reliable dry-wet cycle in the north allows the high fire

frequencies to occur annually (mostly in the dry season,

from April to November), and thereby limiting maximum

fire intensities. On the other hand, in the south, as the

influence of the summer monsoon rainfall diminishes, fire

frequency becomes strongly constrained by the fire weather

and fuel moisture (Bradstock 2010), and the coincidence of

extreme fire conditions and abundant fine fuels might only

occurs every 5–10 years, which in turn increase maximum

fire frequencies, occurring mostly during the summer and

autumn. In the arid zones, the fire activity is constrained by

the lack of continuous fuels or slow vegetation grows, and

is characterized by intermittent periods of fire activity,

which occurs mainly after periods of high-rainfall, often

associated with La Niña events(Murphy et al. 2013).

From the spatial perspective, there is evidence of the

temporal variability of fire activity across different regions

of the country. Such a knowledge is important for man-

agement and planning applications that requires to consider

potential threats to human life and economic losses under

natural hazards. Based on our analysis it is possible to

observe that fire is most frequent in northern Australia,

where tropical monsoon climate dominates. On the other

hand, fire occurrence is less frequent in the arid (central)

and temperate (southern) zones. Indeed, it is possible to

observe an increase in the fire activity in the arid central

zones in 2011, which reflects the lagged response of the La

Niña event between 2010 and 2011, that caused periods of

high-rainfall. The temperate southern Australia is charac-

terized by infrequent but intense fires, which is associated

with severe drought. In particular, based on the spatial

random effects, it is possible to see that our model was able

to capture the intense fire activity in southern Australia

between 2003 and 2011, when the ‘‘Millennium Drought’’

(Van Dijk et al. 2013) was broken by the above average

rainfall in 2010 and 2011. It is worth noting that the results

of this spatio-temporal variability of the fire activity are

also useful to highlight the influence of the climate vari-

ability in this kind of event. In particular, is possible to

observe that spatio-temporal results are consistent with the

expected variations under Australian climate influences,

like the monsoon and the east to southeasterly winds in the

northern areas of Australia, and also the frontal systems

and blocking highs in the southern Australia. These kind of

climate drivers are capable to affect weather variables,

such as temperature and rainfall, influencing the fire

activity (Dowdy 2018). Therefore, the spatio-temporal

analyses of the variability of the fire events over Australia

is a useful tool to understand the general patterns and

temporal variability of the fire activity, and how climate

drivers can influence it over space and time.

Evidence that climate patterns are responsible for the

variability in fire occurrence in Australia has been1 See http://www.bom.gov.au/climate/enso/lnlist/index.shtml.
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previously reported in the literature, however our approach

provides a structural time series decomposition of fire

occurrence in Australia into a sum of trend, seasonal, and

cycle components plus the effect of additional covariates,

taking into account the spatial heterogeneity. Our method

reveals the fire occurrence behavior and its association with

climate factors avoiding some problems usually faced by

inference procedures on climate-related issues, such as the

dimensionality of the data and the difficulty to include

spatial information of climatic effects. Furthermore, our

results enable a more comprehensive understanding of the

variability of fire occurrences in Australia under climate

variability and can better inform the management and

policy decisions.

5 Conclusion

As a contribution to the understanding of Australian pat-

terns of fire occurrence, we propose to use a dynamic

representation of a Log Gaussian Cox process where the

intensity function is modeled through a decomposition of

components into trend, seasonality, cycles, covariates and

spatial effects, which is useful to identify persistent chan-

ges in the intensity of occurrences over time, and to capture

seasonal and cyclical effects, taking into account the spatial

heterogeneity. Within this framework, our findings sug-

gested the existence of the variability in the trend com-

ponent of Australian fire activity, suggesting that this

variation may be associated with anthropological activities

and climate factors over time. Furthermore, we find a

growth pattern of the trend of maximum temperature,

evidencing the relationship between the variability in the

fire occurrence have been related to climate patterns.
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