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Abstract
Adequate understanding of the temporal connections in rainfall is important for reliable predictions of rainfall and, hence,

for water resources planning and management. This research aims to study the temporal connections in rainfall using

complex networks concepts. First, the single-variable rainfall time series is represented in a multi-dimensional phase space

using delay embedding (i.e. phase-space reconstruction), where the appropriate delay time and optimal embedding

dimension of the time series are determined by using average mutual information and false nearest neighbors methods,

respectively. Then, this reconstructed phase space is treated as a ‘network,’ with the reconstructed vectors serving as

‘nodes’ and the connections between them serving as ‘links’. Finally, the strength of the nodes are calculated to identify

some key properties of the temporal rainfall network. The approach is employed independently to monthly rainfall data

observed over a period of 38 years (1979–2016) from 14 rain gauge stations in the Vu Gia Thu Bon River basin in central

Vietnam. Moreover, entropy values of the original rainfall time series are calculated for obtaining additional information

on the properties of the rainfall dynamics. The average node strengths are also examined in terms of the mean annual

rainfall, entropy of the time series, and elevation of the rain gauge station. The results indicate that: (1) while some adjacent

stations (i.e. networks) have somewhat similar strength (average node strength) values, several others that are geo-

graphically close show significantly different network strengths; (2) similar entropies for adjacent stations are found more

frequently than similar average node strengths; (3) there is generally a positive and proportional relationship between

average strengths of nodes and entropies; and (4) the average node strengths of different months have some distinct

temporal patterns (3-month, 4-month, and 6-month patterns) in rainfall dynamics, depending upon the specific region of the

study area. These results have important implications for prediction, interpolation, and extrapolation of rainfall data.
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1 Introduction

Rainfall is a key element of the hydrologic cycle and,

hence, has great significance for our water resources,

environment, and ecosystems. Therefore, it is vital to

adequately understand the dynamics of rainfall (Sivakumar

and Woldemeskel 2015; Ouallouche et al. 2018). However,

rainfall shows significant variability in both time and space,

which makes it extremely challenging to model and predict

(De Michele and Bernardara 2005).

Over the past century, numerous approaches and math-

ematical models have been proposed and applied to model

and predict rainfall (e.g., Johnson and Bras 1980; Folland

et al. 1991; French et al. 1992; Toth et al. 2000; Sivakumar

et al. 2001; Wong et al. 2003; Chau and Wu 2010; Wu

et al. 2015; Ali et al. 2018, 2020; Danandeh Mehr et al.

2019; Diop et al. 2020). Despite the encouraging outcomes

from such studies, our knowledge of the rainfall dynamics

remains largely inadequate.

Recent developments in the field of complex systems

science, especially complex networks (e.g., Watts and

Strogatz 1998; Barabási and Albert 1999), seem to offer

useful avenues to improve our understanding of the com-

plex dynamics of rainfall—A network is a set of points

(called nodes or vertices) connected by a set of lines (called

links or edges). As a result, applications of the concepts of

complex networks for studying the dynamics of rainfall are

gaining increasing attention (e.g. Scarsoglio et al. 2013; Jha

et al. 2015; Sivakumar and Woldemeskel 2015; Jha and

Sivakumar 2017; Naufan et al. 2018; Sun et al. 2018;

Tiwari et al. 2019). A brief account of such studies is as

follows.

Scarsoglio et al. (2013) analyzed the spatial dynamics of

gridded global precipitation over a period of seventy years

(1941–2010) by using the complex network theory. The

annual precipitation network was built based on the linear

correlation function to evaluate the possible links between

nodes, and the network was investigated through topolog-

ical properties of nodes, including degree centrality,

betweenness centrality, clustering coefficient, and weighted

average topological distance. The results revealed the wide

range of spatial variablility with highly connected and

barely connected regions. Sivakumar and Woldemeskel

(2015) employed the clustering coefficient and degree

distribution methods to analyze the spatial connections in

monthly rainfall dynamics over a period of 68 years

(1940–2007) in a rainfall network of 230 stations across

Australia. The results indicated that the network was not a

purely random graph but might be an exponentially trun-

cated power-law network. Jha et al. (2015) applied the

network theory to examine the spatial conncetions in

rainfall in two different areas in Australia (Western

Australia and Sydney catchment) by using clustering

coefficient. The clustering coefficient values were inter-

preted in terms of topographic factors and rainfall

properties.

Jha and Sivakumar (2017) applied the concepts of

complex networks to explore the properties of rainfall, in

terms of the spatial links, temporal scale, and network size

in the daily rainfall data. They employed the clustering

coefficient method to find rainfall properties at six temporal

scales (1, 2, 4, 8, and 16 days, as well as monthly) from a

large number of stations in the Murray-Darling basin in

Australia. The outcomes demonstrated that the nature of

spatial connections changes with temporal scale for dif-

ferent thresholds. They also suggested that identification of

a suitable threshold is essential to understand the connec-

tions in rainfall properties. Naufan et al. (2018) examined

the spatial connections in rainfall at different temporal

scales in the specific context of climate change. They

analyzed gridded rainfall data outputs (during 1961–1990)

from a regional climate model over Southeast Asia in

different temporal scales. They suggested that the scale-

free network is more fitting for very fine temporal scales

and small-world network is more fitting for very coarse

temporal scales, while their combination is more fitting for

intermediate temporal scales.

Sun et al. (2018) examined the structures of rainfall and

soil moisture extremes in Texas using complex network

analysis, with focus on spatial correlation patterns in

rainfall (P) and soil moisture (SM). Their analyses pro-

vided useful information on the dispersion, junctions, and

concurrency of extremes in daily rainfall and SM–P cou-

pling in this flood-prone region and could be used as a base

for rainfall-runoff events. Tiwari et al. (2019) implemented

the complex network to select neighbors in the inverse

distance weighting (IDW) approach and reconstruct the

rainfall data at a desired location. They proposed three

types of inverse distance weighting methods, including

nearest neighbor model, linked neighbor model, and clus-

ted neighbor model to study the spatial connections in daily

rainfall data from 430 rain gauges located in the Murray-

Darling Basin. The performances of proposed models were

evaluated by using cross validation method. They con-

cluded that in a natural system, a traditional IDW may be

more accurate than the network-based models but may not

be completely efficient in accounting for the spatial rainfall

variablitily.

While the outcomes of the above complex networks-

based studies on rainfall are certainly encouraging, it is

important to recognize one particular limitation of these

studies and the opportunities that exist for further

improvements. This is related to the way the construction

of the nodes and links is done for the rainfall network for

analysis. As Yasmin and Sivakumar (2018) pointed out, in
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their analysis of streamflow data using complex networks,

a fundamental task in complex networks analysis is the

construction of the network (of nodes and links). In this

regard, Yasmin and Sivakumar (2018) explored the utility

of the phase-space reconstruction concept (Packard et al.

1980), a basic concept in chaos theory, for construction of

the (streamflow) network; see, for instance, Sivakumar

(2017) for an extensive account of the phase-space recon-

struction concept and chaos theory applications to rainfall

(and other hydrologic time series). The phase-space

reconstruction concept offers a ‘‘multi-dimensional’’ view,

as opposed to the single-dimensional view offered by tra-

ditional network construction method based on time series.

Instead of treating each streamflow time series as a node in

the network, Yasmin and Sivakumar (2018) considered

each point or vector within the multi-dimensional recon-

structed phase space as a node. Yasmin and Sivakumar

(2018) applied this new network construction approach for

complex networks-based analysis of temporal streamflow

dynamics of the monthly streamflow time series observed

over a period of 53 years from 639 stations in the United

States. They used the distribution of the strength of nodes

for any given streamflow network or station (i.e. stream-

flow series) to identify the type of network associated with

that station. They also used the node strengths for the

different stations to classify the 639 stations.

Encouraged by the results reported by Yasmin and

Sivakumar (2018), the present study applies the coupled

phase space reconstruction–network construction approach

to investigate the temporal dynamic behavior of rainfall in

central Vietnam. Daily rainfall data observed over a period

of 38 years (1979–2016) from 14 rainfall stations in the Vu

Gia Thu Bon River basin in central Vietnam are analyzed.

Each station is considered as a network—there is a total of

14 networks. For each of these rainfall networks, the

strength is calculated to examine the network properties.

Entropy values of the original rainfall time series are also

calculated for obtaining additional information on the

properties of the rainfall dynamics.

The rest of this paper is organized as follows. First,

Sect. 2 describes the concepts and methodology, including

network construction using phase space reconstruction and

procedure for calculation of strength and entropy. Sec-

tion 3 provides details of the study area and the rainfall

data considered for analysis. The analysis and results are

presented in Sect. 4. Finally, Sect. 5 provides some

conclusions.

2 Methodology

2.1 Network construction using phase space
reconstruction and strength calculation

A network or a graph is a set of points that are connected

by a set of lines. The points are called vertices or nodes and

the lines are called edges or links. The existence/non-ex-

istence of links in a network is identified based on a

measure that represents the strength of the links (e.g. dis-

tance or correlation between the nodes). For instance, node

pairs that have strengths exceeding/below a certain

threshold value may be assigned links.

With these basics, construction of the rainfall network to

represent the temporal dynamics and the strength proper-

ties of the network are described below. The procedure

involves three steps. First, the single-variable rainfall time

series is represented in a multi-dimensional phase space

using delay embedding (i.e. phase-space reconstruction).

Next, this reconstructed phase space is treated as a ‘net-

work,’ with the reconstructed vectors serving as the ‘nodes’

and the connections between them serving as the ‘links.’

Finally, the strength of each node in the network is deter-

mined using a distance metric (i.e. distance of a given node

with every other node).

Let us assume a rainfall time series Xi, where

i ¼ 1; 2; . . .;N, and the objective is to identify the temporal

connections using network analysis. Here, for network

construction, we adopt the method proposed by Yasmin

and Sivakumar (2018), which offers a ‘‘multi-dimensional’’

view. We use the concept of phase space reconstruction

(e.g. Packard et al. 1980), where a multi-dimensional phase

space is reconstructed using only a single-variable time

series Xi, where i ¼ 1; 2; . . .;N, through delay embedding

(e.g. Takens 1981), as follows:

Yj ¼ Xj;Xjþs;Xjþ2s; . . .;Xjþ m�1ð Þs=Dt
� �

ð1Þ

where j ¼ 1; 2; . . .;N � m� 1ð Þs=Dt; m is the dimension

of the vector Yj(embedding dimension); and s is an

appropriate delay time taken to be some suitable integer

multiple of the sampling time Dt.
There are several methods and guidelines to choose an

appropriate delay time s for phase space reconstruction,

including autocorrelation function method, mutual infor-

mation method, and correlation integral method. In this

study, we use the average mutual information method

(Fraser and Swinney 1986). This method defines how the

measurements Xi at time i are connected, in an information-

theoretic fashion, to measurements Xiþs at time iþ s
(Abarbanel 1996). The average mutual information (AMI)

is defined as:
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I sð Þ ¼
X

Xi;Xiþs

P Xi;Xiþsð Þ log2

P Xi;Xiþsð Þ
P Xið ÞP Xiþsð Þ

� �
ð2Þ

Here, P Xið Þ and P Xiþsð Þ are individual probabilities of the

measurements Xi and Xiþs, and P Xi;Xiþsð Þ is the joint

probability density for measurements P Xið Þ and P Xiþsð Þ.
The appropriate delay time s is defined as the first mini-

mum of the average mutual information I sð Þ. There are

many methods to estimate the optimal embedding dimen-

sion (mopt), such as the correlation dimension method and

false nearest neighbour algorithm. In this study, the False

Nearest Neighbor (FNN) algorithm, proposed by Kennel

et al. (1992), is used to determine the optimal embedding

dimension (mopt) for each of the 14 rainfall time series.

With this phase space reconstruction, for mopt, the dis-

tances (e.g. the Euclidean distances) between any two

nodes i and j, denoted as dij, can be calculated. Once the

distances dij are obtained, the strength of the node j can be

calculated as follows:

Si ¼
1

1
Nd

PNd

i ¼ 1

i 6¼ j

dij
ð3Þ

where Nd is the total number of node distances.

2.2 Entropy measure

The average of uncertainty and randomness associated with

the probability distribution in each a series can be quanti-

tively measured by using the entropy theory (Kawachi

et al. 2001; Mishra et al. 2009). Several entropy measures,

such as Shannon, approximate, Renyi, and Tsallis, exist to

quantify the randomness in a system. According to Remya

and Unnikrishnan (2010), the best entropy for detecting

dynamical complexity is the Tsallis entropy. The Tsallis

entropy is given by:

Sq Pið Þ ¼ 1

q� 1
1 �

X

i

Pq
i

 !

ð4Þ

where q is a real number and Pi represents the probability

of an event. Taking the limit as q ! 1, we obtain the

Shannon entropy as:

S ¼ S1 Pð Þ ¼ �k
X

i

Pi lnPi ð5Þ

The highest value of entropy occurs for uniform probability

distribution. The entropy value decreases with the

increasing number of constraints and increases with their

decreasing number (Kawachi et al. 2001).

3 Study area and data

The Vu Gia Thu Bon River basin lies between latitudes 14�
550 N to 16� 040 N and longitudes 107� 150 E to 108� 200 E

in central Vietnam. This river basin is located in the Da

Nang and Quang Nam provinces and has an area of

10,350 km2. The topography of this region varies between

narrow mountainous in the upstream region and flat coastal

areas in the downstream region. According to DEM-

SRTM-90 m data (Digital Elevation Model derived from

Shuttle Radar Topography Mission with 90 m spatial res-

olution) (Jarvis et al. 2006), the altitude of the study area

ranges from - 14 m to 2583 m MSL (Fig. 1).

The total annual rainfall in this basin is relatively high,

varying from 2000 to 4000 mm, and increases from north

to south. The rainy season spans 4 months from September

to December and provides around 70–75% of the total

rainfall. The dry season lasts 8 months from January to

August and accounts for around 25–30% of the total

rainfall. Approximately two to four typhoons strike this

region every year, which bring abundant rainfall. Flooding

is also a significant challenge for water resources man-

agement of this river basin (Souvignet et al. 2014). Drought

is very frequent during the dry season (Vu et al. 2017).

There has also been significant saline intrusion in coastal

areas, which leads to water shortage problems (Ribbe et al.

2017).

Rain-gauge stations in the Vu Gia Thu Bon River basin

are sparse. There are only 14 rain gauges in this area

(Fig. 1). Table 1 presents a general description of the 14

stations in the basin. For this study, measured monthly

rainfall data from these stations over a period of 38 years

(1979–2016) are considered. These data have been pro-

vided by the Vietnam National Centre for Hydro-Meteo-

rological Forecasting (NCHMF). Figure 2 presents the

monthly rainfall time series from these stations for the

period 1979–2016. The rainfall time series show remark-

able variations over the study period. Some of the key

statistics (mean, maximum, and coefficient of variation) of

the rainfall data from these stations are presented in

Table 1.

4 Results and discussion

In order to examine the strength of the nodes in the rainfall

network and entropy of the rainfall time series, the 14

monthly rainfall time series from central Vietnam are

analyzed using the methods described in Sect. 2. The

monthly rainfall time series are normalized between 0 and

1, and the analysis is performed on the normalized rainfall

data. For strength calculation of the nodes, first the phase
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Fig. 1 Distribution of hydro-meteorological stations in the Vu Gia Thu Bon catchment, central Vietnam

Table 1 General description of the 14 stations in the Vu Gia Thu Bon catchment considered in this study

ID Name X (m) Y (m) Elevation

(m)

Distance to sea

(m)

Average rainfal

(mm)

Max. rainfall

(mm)

Coefficient of

variation

1001 Da Nang 843,197.9 1,776,570 4.8 3236 183.9 1902.7 1.28

1002 Cam Le 843,145.7 1,773,024 11 5784 190.1 1367.9 1.06

1004 Cau Lau 851,232.8 1,756,198 2 8688 194.4 1496.6 1.27

1005 Giao Thuy 834,971.7 1,753,623 9 22,253 181.0 1436.9 1.31

1006 Ai Nghia 832,448.4 1,757,463 16 22,309 194.1 1510.2 1.29

1007 Hoi Khanh 812,691.6 1,751,973 44 38,447 182.5 1581.4 1.33

1008 Hien 783,302.4 1,761,549 490 45,176 254.2 1689.8 1.17

1009 Thanh My 803,562 1,745,203 25 49,551 251.8 1470.9 1.09

1010 Nong Son 825,115.7 1,738,082 27 39,822 266.5 2094.4 1.27

1011 Que Son 832,303.6 1,738,186 19 34,662 345.5 2450.2 1.16

1012 Hiep Duc 832,715.5 1,724,677 22 39,548 179.7 1355.4 1.35

1014 Tien Phuoc 854,134.8 1,714,474 55 27,772 263.7 1855.0 1.23

1015 Kham Duc 799,444.6 1,707,495 396 76,922 192.7 1386.8 1.32

1016 Tra My 847,159.3 1,699,633 123.1 40,650 217.2 1624.5 1.18

Some key statistics of the rainfall data are also included
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space is reconstructed using rainfall time series with the

normalized rainfall data and then the network is analyzed.

For the entropy calculation, the normalized rainfall data are

used.

4.1 Delay times and embedding dimensions

As mentioned earlier, the phase space reconstruction of the

rainfall time series depends largely on the selection of

delay time (s) and embedding dimension (m). Here, the

average mutual information (AMI) method, which

Fig. 2 Rainfall time series of the 14 stations across central Vietnam considered in this study
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determines both linear and nonlinear relationships between

the series, is used to find the optimal s. With the selection

of the optimal s, the optimal embedding dimension for

phase space reconstruction of each rainfall time series is

determined using the false nearest neighbor (FNN) algo-

rithm. Table 2 presents the optimal delay time values and

embedding dimensions obtained for the 14 rainfall time

series.

4.2 Network strength

Figure 3 shows the strengths of the nodes for each of the 14

rainfall networks across the study area. As seen, for each

network, the strengths of the nodes exhibit noticeable

variations, somewhat similar to those exhibited by the

rainfall time series. One particular observation, and per-

haps may be expected, is that the stations with smaller

delay time (sÞ values for the rainfall series, such as Cam Le

(S2), Cau Lau (S3), Giao Thuy (S4), Ai Nghia (S5), and

Tien Phuoc (S12) stations (all havting a delay time value of

1), which are located in the north-east and eastern parts of

the study area, have less variability in the strengths of the

nodes.

To obtain the frequency distribution of the strengths of

nodes for the 14 rainfall networks, we apply a smooth

kernel distribution. We use the function SmoothKer-

nelDistribution of Mathematica software (It uses, by

default, the Gaussian kernel and applies the Silverman’s

rule to determine the bandwidth or kernel radius). Figure 4

shows the frequency distribution of the strengths of nodes

for the 14 rainfall networks. As may be seen, rainfall time

series with low optimal embedding dimensions, such as

those from Stations 1, 2, 3, 6, 8, 9, and 10, seem to have

left-skewed density plots.

4.3 Strength and entropy distribution
across the study area

Figure 5a, b presents the average strength of the nodes of

each of the 14 rainfall networks and the entropy value for

each of the 14 rainfall time series, respectively. Figure 5c,

d presents the Voronoi maps for the same. The results, on

one hand, seem to indicate that some adjacent stations,

especially in the north and northeast of the study area, have

the same range of strength value (e.g., the Hoi Khanh and

Thanh My stations in the north, and the Ai Nghia and Giao

Thuy stations in the northeast). On the other hand, how-

ever, there are several stations that are geographically close

also show significantly different network strengths (e.g.,

the Que Son and Nong Son stations in the central part of

the study area); this may be attributed to the topography

and elevation of the rain gauges). In the case of entropy,

one can find similar entropies for adjacent stations more

frequently than that for similar average strengths, espe-

cially in the northeastern part of the study area. There is a

high entropy trend in the central part of the study area from

the north to the west that may be attributed to the rainfall

patterns. Therefore, the node strengths and entropy values

can be helpful not only for analyzing the temporal con-

nections in rainfall but also for the classification of rainfall

stations, even in small areas.

4.4 Mean strength versus mean rainfall, entropy
and elevation

For further information of the dynamic properties of rain-

fall in the study area, the following relationships are

examined: (a) average node strength of the temporal net-

work versus mean rainfall, (b) average node strength versus

entropy of the rainfall time series, and (c) average node

strength versus elevation of the rain gauge station. Fig-

ure 6a–c presents these relationships. The following major

observations are made from these results.

1. The station with the highest mean rainfall (Que Son,

with a mean annual rainfall of 345.5 mm) has the

maximum mean strength (10.2) and also has the

maximum entropy (3.05). However, significant varia-

tions in the mean strength of nodes (from 5.62 to 9.89)

are observed when the mean rainfall is low (less than

200 mm).

2. Generally, there seems to be a positive and propor-

tional relationship between the average strengths of

nodes of the network and entropies of the rainfall time

series, since stations with high average node strength

values have high entropy.

3. Stations with high elevations (about 400 m or more)

generally have low average node strengths (about 6 or

Table 2 Optimal delay times

and embedding dimensions of

the rainfall time series

Name Station s m

Da Nang S1 4 7

Cam Le S2 1 6

Cau Lau S3 1 7

Giao Thuy S4 1 12

Ai Nghia S5 1 13

Hoi Khanh S6 3 7

Hien S7 3 13

Thanh My S8 3 8

Nong Son S9 3 8

Que Son S10 6 6

Hiep Duc S11 3 13

Tien Phuoc S12 1 14

Kham Duc S13 3 11

Tra My S14 4 10

Stochastic Environmental Research and Risk Assessment (2021) 35:535–548 541

123



less), but stations with low elevations (less than 100 m)

have significantly varying ranges of node strengths

(from as low as 5.62 to as high as over 10).

4.5 Mean strength versus month

Figure 7 presents the average node strength for different

months of the year for the 14 stations. The results indicate

that there are some distinct temporal patterns in the node

strengths (Fig. 8), which are highlighted as follows.

Fig. 3 Strengths of nodes for the 14 rainfall networks
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Fig. 4 Frequency distribution of strengths of nodes for the 14 rainfall networks
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1. There is a cyclic pattern of strength, with an increasing

strength from the first month (January) to the third

month (March) and then a decreasing strength for the

fourth month (April), for Stations 7 (Hien), 8 (Thanh

My), 9 (Nong Son), 11 (Hiep Duc), 13 (Kham Duc),

and also, to some extent, for Station 6 (Hoi Khanh).

This observation seems to be consistent with the

seasonal patterns, with a delay time of 3 (s = 3),

obtained for the rainfall time series. These stations are

also located in the central and western part of the study

area.

2. There is a 4-month changing pattern in the node

strengths for Stations 1 (Da Nang) and 14 (Tra My),

which is due to a delay time of the stations (s = 4) in

the phase space.

3. Station 10 (Que Son) (s = 6) with the highest mean

rainfall and entropy have a 6-month changing pattern.

4. For Stations 2 (Cam Le), 3 (Cau Lau), 4 (Giao Thuy), 5

(Ai Nghia), and 12 (Tien Phuoc) located in east and

northeast part of the study area, there is no clear

temporal pattern, where the stations have the lowest

delay time (s = 1).

The results seem to indicate the importance of optimal

delay time detection in recognizing the temporal patterns of

rainfall stations regarding the strengths of nodes.

Fig. 5 a Average strength of nodes for the rainfall networks, b entropy of the rainfall time series, c Voronoi map for the strength of the nodes for

the rainfall networks and d Voronoi map for the entropies of the rainfall time series
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5 Conclusions

This study applied the concepts of complex networks to

examine the temporal dynamics of rainfall observed at 14

stations in central Vietnam. For each of the 14 rainfall time

series, phase space was reconstructed and the reconstructed

vectors were used for network construction, i.e. nodes and

links. For phase space reconstruction, the optimal delay

time was obtained using the average mutual information

method and the optimal embedding dimension was

obtained using the false nearest neighbor algorithm. With

such network construction, the strengths of the nodes were

determined. The entropy values of the rainfall time series

were also calculated.

The results showed that stations with smaller delay time

values (sÞ, which also happen to be in the north-east and

eastern parts of the study area, have less variability in the

strengths of nodes. The results also indicated that some

adjacent stations have the somewhat similar strength values

(or group); however, several stations, that are geographi-

cally close, show significantly different network strengths.

Stations with low embedding dimensions seem to have left-

skewed distribution in node strengths. In the case of

entropy, similar entropies for adjacent stations were found

more frequently than similar average node strengths,

especially in the northeastern part of the study area. There

is a high entropy trend in the central part of the study from

the north to the west that may be attributed to the rainfall

patterns of the study area.

Analysis of the relationship between average node

strength versus mean annual rainfall, entropy of the rainfall

time series, and station elevation indicated that (1) the

station with the highest mean rainfall has the maximum

mean strength and the maximum entropy as well; (2) in

general, there is a positive and proportional relationship

between average strengths of nodes and entropies; (3) the

Fig. 6 Relationship between strength of node in the temporal rainfall network and other rainfall/station properties: a average node strength

versus average rainfall, b average node strength versus entropy of rainfall series, and c average node strength versus elevation of station
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average strengths are low for stations with high elevations,

but they have a wide range for stations with low elevations.

Analysis of the average node strengths of different months

for the 14 stations indicated some distinct temporal patterns

(3-month, 4-month, and 6-month patterns) in rainfall

dynamics, depending upon the region of the study area.

These results indicate the importance of the optimal delay

time selection for phase space reconstruction and network

construction and recognizing the temporal patterns of

rainfall stations.

Fig. 7 Average node strengths for different months in 14 stations across central Vietnam
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