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Abstract
One of the main impact areas of climate change (CC), and land use and land cover change (LULCC) is the hydrology of

watersheds, which have negative implications to the water resources. Their impact can be indicated by changes on

streamflow, which is quantifiable using process-based streamflow modelling of baseline and future scenarios. Here we

include the uncertainty and associated risk of the streamflow changes for a robust impact assessment to agriculture. We

created a baseline model and models of CC and LULCC ‘‘impact scenarios’’ that use: (1) the new climate projections until

2070 and (2) land cover scenarios worsened by forest loss, in a critical watershed in the Philippines. Simulations of peak

flows by 26% and low flows by 63% from the baseline model improved after calibrating runoff, soil evaporation, and

groundwater parameters. Using the calibrated model, impacts of both CC and LULCC in 2070 were indicated by water

deficit (- 18.65%) from May to August and water surplus (12.79%) from November to December. Both CC and LULCC

contributed almost equally to the deficit, but the surplus was more LULCC-driven. Risk from CC may affect 9.10% of the

croplands equivalent to 0.31 million dollars, while both CC and LULCC doubled the croplands at risk (19.13%, 0.60

million dollars) in one cropping season. The findings warn for the inevitable cropping schedule adjustments in the coming

decades, which both apply to irrigated and rainfed crops, and may have implications to crop yields. This study calls for

better watershed management to mitigate the risk to crop production and even potential flood risks.
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1 Introduction

Impacts of climate change (CC) to the environment have

been evident and are forecasted to continue this century

and beyond, as mankind is experiencing climate and

weather abnormalities indicated by droughts, irregular

seasons and extreme typhoons among others (Watson et al.

1996). One main impact area of CC is the hydrology of

watersheds, where changes in precipitation and tempera-

ture directly affect the dynamics and supply of water

resources, and eventually the water stakeholders who will

struggle to meet their water demands (Arnell 1999).

A direct causal factor of climate change is land use and

land cover change or LULCC (Dale 1997). Carbon emis-

sions from LULCC were found 33% of the total anthro-

pogenic emissions from 1850–1990 (Houghton 1999) and

12.5% from 1990–2010 (Houghton et al. 2012). In a

watershed context, LULCC are often driven by socio-

economic pressure and lapses in land use management

(Overmars and Verburg 2005). Forest conversion is one of

the worst forms of LULCC. Forest loss in the form of

deforestation reduce the ecosystem services provided by

watersheds, primarily water supply and regulation (Rawl-

ins et al. 2017). LULCC and other factors that influence the

hydrologic system of watersheds can be modelled.

Hydrologic models based on the principles of physical

processes is called process-based models, first introduced

in the early 1960s (Fatichi et al. 2016). This model makes

use of model inputs with unique hydrologic parameters to

simulate rainfall-runoff models. Using land use, soil, slope

and climate data as main inputs, water resources are

quantified in the form of streamflow (Q) or river flows,

usually in m3/s. Process-based modelling has been the

state-of-the-art to assess the impacts of CC and LULCC in

watersheds by modifying climate (or weather) and land use

(or land cover) model inputs.

The impacts of both CC and LULCC on streamflow

changes can be assessed together. For instance, streamflow

decline over a 50-year period was attributed mostly to

climate parameters (70%) and the rest to LULCC

(Beguerı́a et al. 2003), while a recent study by Hung et al.

(2020) depicted the same trend on peak discharges chan-

ges, where 83% is attributed to the CC and 17% to the

LULCC. Though streamflow changes are more climate-

driven, the effects of LULCC is believed to effect the

seasonal streamflow (Kim et al. 2013). Scenario modelling

exercises revealed that deforestation is a causal factor of

drought and vice versa (Staal et al. 2020), while forests

converted to bare lands have resulted into abrupt runoff

during typhoon events, and hence higher flood risks

(Rawlins et al. 2017, Kim et al. 2019). As climate extremes

seem to be inevitable, and with the continuity of

deforestation-driven LULCC, modelling and understanding

their impacts to water resources of watersheds is becoming

imperative.

Watersheds are management units that have natural

hydrologic boundaries, from upland ridges to lowland

service areas. Managing watersheds should be a joint-re-

sponsibility of the stakeholders, not only by the govern-

ment, but also by the public (Cruz 1997). That notion gave

birth to the integrated watershed management (IWM), a

concept that accounts for both ecological and socio-eco-

nomic aspects of managing watersheds and its resources

collaboratively (Biswas 2004). In the Philippines, IWM is

implemented at major river basin levels. Each major basin

has a master plan enacted by the stakeholders, which

embeds short- and long-term management strategies on

water resources (Almaden, 2015). That includes accounting

the water resources of the basins and assuring policy-sup-

port on appropriate water uses. Special attention is given to

the agriculture sector being the major stakeholder of water

resources (Tabios et al. 2018); and to the energy sector due

to the hydropower potential of watersheds. An example

IWM is Abuan Integrated Watershed Management Project,

which provided CC adaptation strategies to agriculture and

livelihoods, while increasing disaster resiliency (USAID

2016). The project also acknowledged the risk to forest loss

and the importance of forests in water and soil regulation.

Watershed management is even integrated into land use

plans of local governments for bottom-up management

approach (Briones et al. 2016). This formulates an insti-

tutional framework to co-manage protected areas and

watersheds, and make sure that CC adaptation and miti-

gation strategies exist locally (Lasco et al. 2008). IWM and

efforts alike have strong demand on modelling CC-LULCC

impacts (e.g. water deficit) to serve as decision-support for

planning.

While the effects of CC and LULCC on water resources

of Philippine watersheds can be modelled (see Principe

2012; Rawlins et al. 2017; Balderama et al. 2019), mod-

elers and planners should assess the uncertainties not only

from streamflow models and its parameters, but also from

the climate projections used (Su et al. 2017). The Philip-

pine government published newer probabilities of rainfall

and temperature changes, which were not used during the

earlier river basin master planning between 2011 and 2016.

As of now, there is very limited information on how (and

how probable) water resources would change using these

new projections. For streamflow parameters with proba-

bility distribution, an uncertainty propagation is necessi-

tated, in parallel with streamflow model calibration

(Abbaspour 2013). The state-of-the-art for propagating

uncertainties from streamflow models is through the two-

step use of Soil and Water Assessment Tool and its Cali-

bration and Uncertainty Program (SWAT and SWAT-
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CUP). SWAT is a process-based model that discretizes

watersheds into smaller spatial units with unique hydro-

logic parameters for better water balance simulations,

while SWAT-CUP is an uncertainty propagation program

designed specifically for SWAT model calibration (Arnold

et al. 2012). In the end, CC and LULCC streamflow models

are calibrated to provide optimal streamflow simulations

with confidence intervals.

Taking into account the probability of streamflow

changes can provide better decision-support to the water

resources stakeholders (Sivakumar 2011, Ouyang et al.

2015). Better decisions in this context can be outcomes of a

robust impact assessment towards lowering climate change

risks through adaptation strategies e.g. for the agriculture

sector (Abbasi et al. 2020). Risk assessment has been

identified as the missing step after calibrating streamflow

models with uncertainties (Abbaspour et al. 2018). In this

context, we aim to implement not only the best practices in

streamflow modelling, but also risk assessment based on

probable streamflow changes caused by CC, and both CC

and LULCC. Our specific objectives are: (1) calibrate a

baseline streamflow model and create models of CC and

CC-LULCC (impact scenarios) using SWAT and SWAT-

CUP; and (2) assess the probability of water deficit or

surplus and calculate its associated risk to the agriculture

sector. We selected Abuan watershed as the study area for

being a critical watershed—with vast water resources for

agriculture, hydropower, and domestic use; but subject to

conservation and protection.

The succeeding sections starts with an overview of the

study area (Sect. 1), followed by the methodology section

(Sect. 1) with sub-sections about the workflow diagram;

SWAT and SWAT-CUP modelling; CC and LULCC

impact scenarios; and risk assessment. The results (Sect. 2)

start with the outcomes from calibration and validation;

sensitivity analysis of parameters; impacts indicated by

waters surplus and deficit; and the risk assessment to

agriculture. The discussion of the key findings (Sect. 3)

revolves around the magnitude of streamflow changes and

its impacts and the importance of uncertainty and risk

assessment, then leading to several concluding remarks

(Sect. 4).

2 Study area

Abuan watershed is one of the three watersheds (Abuan,

Bintacan, Ilagan) constituting Pinacanauan de Ilagan

basin, situated in Isabela Province, Philippines (Fig. 1).

Abuan has a size of 63,791 ha, where the largest part is

inside Sierra Madre Natural Park. Its mother basin, Pi-

nacanauan de Ilagan, is an elongated basin parallel to the

Sierra Madre mountains ranges, with vast remaining forest

cover and biodiversity. From the ridges of the mountains,

the western part of the watershed extends to the lowlands

with 373 ha built-up areas and 2,913 ha croplands (mostly

corn) farmed by 2900 households (Balderama et al. 2016);

while the east-bound area is oriented to the eastern sea-

board of the Philippines. Since Abuan is mountainous and

nearby the sea, the watershed and the rest of Isabela pro-

vince is receiving an average of 2430 mm of rain annually,

more or less distributed year-round (Type 4 climate), and

wettest around December because of the north-east mon-

soon. During monsoon season and typhoon events, Abuan’s

lowland are high-risk to flooding; while during dry season,

its croplands can also be prone to droughts (Balderama

et al. 2016).

3 Materials and methods

3.1 Workflow and main inputs

The workflow of this study (Fig. 2) has five main steps

starting from streamflow modelling, initial assessment,

calibration–validation, impact scenario building, and risk

assessment. The last step is an additional step, identified as

the missing piece towards comprehensive streamflow

modelling (Abbaspour et al. 2018). In terms of the main

inputs, weather data from local stations dated 1991–2010

and the climate projections were obtained from Philippine

Atmospheric Geophysical and Astronomical Services

Administration (PAGASA), the official weather office of

the country. The daily river discharge data (average of 3

daily readings) of Pinacanauan de Ilagan epoch

2003–2010 was obtained from Department of Public

Works and Highways, the office with extensive streamflow

database from nationwide gauge stations for water infras-

tructure designs. Soil data was downloaded from FAO

digital soil map at 9 km resolution (Batjes 2012) and paired

with the pre-formatted soil database from Soil and Water

Assessment Tool at Map Windows (MSWAT). Lastly, the

land cover data dated 2000 was produced using a super-

vised classification of Landsat satellite images at 30 m

resolution, having an overall accuracy of 95%. The suc-

ceeding sections sequentially follow the workflow in

Fig. 2.

3.2 Streamflow modelling using SWAT

To model streamflow, we used Soil and Water Assessment

Tool (SWAT), a semi-distributed model which perform

rainfall-runoff simulations among hydrological response

units (HRU) or unique combinations of soil, slope, and

land cover (Arnold et al. 2012). Hydrologic properties of

HRUs are then aggregated into watersheds or sub-basins of
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the main basin and assessed through a water balance

equation (Eq. 1).

SWt ¼ SW þ
Xt

i¼1

R� SR� ET � P� RFð Þ ð1Þ

where t is time in days, SWt is the final soil water content,

SW is the preliminary SWC, R is rainfall, SR is surface

runoff, ET is evapotranspiration, P is percolation and RF is

return flow. The unit of all parameters is mm.

Fig. 1 Study area (Abuan watershed) map inset to Pinacanauan de Ilagan basin, and the latter to the Philippines. A satellite image is shown also

to emphasize the river width

Fig. 2 Overall workflow of the study with five main steps, highlighting the risk assessment
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The number of sub-basins is mostly a user-choice during

the watershed delineation step of SWAT. We delineated

the sub-basins subjectively since Abuan watershed belongs

to Pinacanauan de Ilagan basin, and only that larger basin

has a gauge station (river discharge data or observed

streamflow for model calibration). A total of 109 sub-

basins were delineated, discretized to 817 HRUs. Figure 3

shows the sub-basin boundary, three soil types, six land

cover classes, five slope categories, and the boxplot of

observed streamflow. The map also highlights the geo-lo-

cation of the gauge station and the outlet of Abuan at sub-

basin 35. For the main inputs, majority is classified as

mountain soils while the rest are clay and sandy loam.

Overlapping with the mountain soils are forests as the

dominant land cover of Pinacanauan (81% of total) and

Abuan (92% of total). From mountains to lowlands, the

whole Pinacanauan and Abuan resemble the watershed

continuum form (upland-to-lowland) as shown by the slope

map. The boxplot of observed streamflow depicts skewness

or denser low flows.

For the weather data inputs, daily data of precipitation,

wind speed, relative humidity, solar radiation, and mini-

mum and maximum temperature were extracted from the

Cagayan Valley Integrated Agricultural Research Center

local weather station, located in the lowlands of the

watershed. For dates with missing data, weather data from

Isabela State University station was used (around 150 km

apart from Abuan). In days where the two local stations

have missing data, the average of global weather data from

four closest stations in the watershed were used originally

from NCEP or National Centers for Environmental Pre-

diction (NCEP 2014).

Fig. 3 Main inputs for SWAT

modelling including land cover,

soil, slope, and streamflow. The

river network and delineated

sub-basins which captures the

Abuan outlet (sub-basin 35) are

also shown
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The SWAT model requires a ‘‘warm-up period’’ to ini-

tialize the time-series simulations. We used a 12-year

warm-up period (1991–2002) not only to have a better

model tuning, but also to match with the coverage of the

observed streamflow. We run the SWAT model to produce

mean monthly streamflow from 2003 to 2010. Monthly

simulations are commonly used for CC impact assessments

to align with the monthly projections of climate models

(Teutschbein and Seibert 2010). In parallel, mean monthly

observed streamflow was derived from the original daily

data.

3.3 Uncertainty assessment and model
calibration using SWAT-CUP

Uncertainty assessment is a must in streamflow modelling

and must be explicit on the assumptions used for the

uncertainty estimates (Kiang et al. 2018). Both observed

and simulated streamflow have associated uncertainties.

However, uncertainty assessment has commonly been

implemented only for the latter because error distributions

from observed data are often unavailable (also for this

study). As such, we treated the observed streamflow as the

ground-truth. On the other hand, the uncertainties from

simulated streamflow of parametric models like SWAT are

commonly assessed using stochastic methods (Abbaspour

2013).

To assess the uncertainty of our streamflow model, we

used the Sequential Uncertainty Fitting (SUFI-2) of

SWAT-CUP (Abbaspour 2013). This uncertainty propa-

gation method simulates streamflow using a range of

parameters (instead of a single value) simultaneously. The

range gets narrower as the simulations are repeated every

after iteration until the ideal fit to the observed data is

attained. The simulations form an uncertainty range

(95PPU), expressed as the 2.5% and 97.5% confidence

interval of the cumulative distribution of the simulations.

The quality of the 95PPU is measured by P-factor or the

fraction of observed data inside, and the R-factor or the

thickness of the range. The 95PPU is optimized through a

user-defined objective function—we used Nash–Sutcliffe

efficiency (NSE) by Nash and Sutcliffe (1970). NSE in

Eq. 2 is commonly used as a comparative metric between

the observed Qo and simulated streamflow Qs where the

sum of the squared difference of the two from the simu-

lations (i) is divided by the sum of squared difference of a

simulation (i) Qo;i and the mean streamflow of all obser-

vations �
Qo

:

NSE ¼ 1�
P

i Qo � Qsð Þ2iP
i Qo;i � Qo

� �2 ð2Þ

Using SUFI-2, we performed the calibration from 2003

to 2007, with 5 iterations of 1000 simulations apiece. The

parameter range of the last iteration was used for validation

from 2008 to 2010, also with the same number of simu-

lations. The effect of calibration is measured by NSE and

coefficient of determination (R2) as shown in Eq. 3—

where the numerator corresponds to the regression sum of

squares and the denominator is the total sum of squares:

R2 ¼
P

i Qo;i � Qo

� �
Qs;i � Qs

� �� �2
P

i Qo;i � Qo

� �2P
i Qs;i � Qs

� �2 ð3Þ

Moreover, bias of the simulations was assessed using

percent bias (PBIAS, Eq. 4) or the % tendency of the

simulations to deviate with the observed data:

PBIAS ¼ 100 �
Pn

i¼1 Qo � Qsð ÞiPn
i¼1 Qo;i

ð4Þ

There can also be a temporal bias related to seasonal

flows e.g. underestimating the peaks and overestimating

the baseflow or low flows (Qiu et al. 2012). We then

compared the peak flows and low flows (10% and 15% of

total flows, respectively) between the uncalibrated and

calibrated model.

Model calibration is dependent on the choice of

parameters to calibrate (Paul et al. 2017). To determine the

correct choice, we first investigated the results of the

uncalibrated model compared with the observed data e.g.

based on low flows, peak flows, and discharge shifts (Ab-

baspour et al. 2015). We then selected 11 potentially sen-

sitive parameters, which included spatial parameters like

curve number (CN) and HRU-level coefficients; and non-

spatial parameters like ground water, river and soil

parameters (see Table 1). These parameters can be cali-

brated in three ways as implemented in SWAT-CUP: by

replacing, adding/subtracting, and weighing. Commonly,

we selected the weighing option for spatial parameters and

either of the two remaining options for non-spatial

parameters. The adjusted parameters of the last iteration

were used for validation using the same number of

simulations.

Aside from validating the calibrated parameters, we also

assessed their sensitivity to the streamflow simulations.

Using SWAT-CUP, a global sensitivity analysis was per-

formed, which quantifies the relative significance of a

parameter to the calibration process. Using multiple

regression, global sensitivity works by comparing the

average change of an objective function (e.g. NSE) when a

parameter is changed while the rest are constant. Sensi-

tivity is evaluated by T-stat equivalent to a precision

measure and P-value to indicate statistical significance.

The higher the T- stat and the lower the P-value, the better.
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3.4 The two impact scenarios

To implement the impact assessment, SWAT models of CC

and CC-LULCC were created separately using the cali-

brated parameters, but with modified weather data and land

cover inputs. For the former, we used the new precipitation

and temperature projections of the official weather

department of the government (PAGASA 2018). They used

Climate Information Risk Analysis Matrix (CLIRAM)

downscaled model, with baseline decades between 1970

and 2000, to project emission scenarios indicated by RCP

or Representative Concentration Pathways: RCP 4.5 (low)

RCP 8.5 (high) both for 2050 and 2070. The CLIRAM data

and projected precipitation in every emission scenario are

shown in Fig. 4.

The land covers 2050 and 2070 were generated using the

forest loss trend from the Global Forest Change data

(Hansen et al. 2013). We first derived the net forest cover

in 2018 and calculated yearly forest loss from 2000 to 2018

at 7%. Assuming continuity of trend, we estimated 12%

and 26% forest loss in 2050 and 2070, respectively. The

projection is reasonable given that the common forest

conversion in the study are patches of slash-and-burn cul-

tivations (Balderama et al. 2019). Using the two projected

forest loss, we created pseudo deforested pixels by ran-

domly populating points, and buffering them into 1 ha

pixel each point. These pixels and the forest loss from 2000

to 2018 were labelled into open barren. The land cover

maps 2000, 2050, and 2070 are shown in Fig. 5.

The impact scenarios were incorporated in the SWAT-

CUP models (updated weather and land use inputs). Then,

we proceeded with the streamflow simulations (1000 times)

in SWAT-CUP using the calibrated parameters, this time

including climate parameters namely CO2 (600–800 parts

per million), and the precipitation and temperature change

per emission and future year. In total, there were eight

scenarios namely c50a, c50b, c70a, c70b, l50a, l50b, l70a,

and l70b: where c = CC and l = LULCC; 50 = 2050 and

70 = 2070; and a = RCP 4.5 and b = RCP 8.5. We

obtained the monthly simulations with 95PPU particularly

for Abuan watershed (sub-basin 35).

After obtaining the CC and CC-LULC simulations for

Abuan watershed, we derived mean monthly streamflows

of 2050 and 2070 scenarios and measured the changes

(from the baseline model) using percent change (%

change). In Eq. 5, % change is computed by dividing the

difference of S2 or the scenario streamflow and S1 or

baseline streamflow, to S1, multiplied by 100. Then, two

impact indicators of streamflow changes were derived:

water surplus if there is water gain or S1 is lower than S2,

and water deficit if otherwise or there is water loss.

%change ¼ S2 � S1
S1

� 100 ð5Þ

Table 1 List of pre-selected SWAT parameters for SUFI-2 calibration and uncertainty assessment in SWAT-CUP. Options to modify parameters

is through replacing (r), adding/subtracting (a), and weighing (v)

Parameter* Description Unit Initial

Adjustment

Initial range Final range

r__CN2.mgt SCS curve number Coefficient Increase 0 to 0.5 0 to 0.40

v__ALPHA_BF.gw Baseflow recession constant or groundwater flow response to

changes in recharge

Coefficient Increase 0.2 to 0.8 0.25 to 0.39

a__GWQMN.gw Depth in shallow aquifer for percolated water to become

baseflow

mm Decrease - 100 to

- 2000

- 0.74 to

- 0.54

v__GW_REVAP.gw Water uptake from shallow aquifer to unsaturated zone

influenced by roots

Coefficient Decrease 0 to 0.4 0.16–0.20

v__ESCO.hru Soil evaporation compensation factor Coefficient Increase 0.6 to 1 0.86 to 1

a__REVAPMN.gw Threshold depth of water in the shallow aquifer for ‘‘revap’’

to occur

mm Increase 50 to 300 123 to 201

v__EPCO.hru Plant uptake factor Coefficient Increase 0.5 to 1 0.80 to 1

r__SOL_AWC.sol Available water on the first soil layer Coefficient Decrease - 1 to 0.1 - 0.74 to

- 0.44

a__SURLAG.bsn Runoff lag time Hours Increase 5 to 20 8.07 to 12.53

v__CH_K2.rte Effective hydraulic conductivity in main channel alluvium mm/hour Increase 0 to 400 297 to 371

v__CH_N2.rte manning’s roughness value for main channel Coefficient Decrease - 0.1 to

0.01

- 0.31–0.25

* SWAT-CUP name label
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3.5 Risk assessment to agriculture

For each impact and emission scenario, the next step was to

assess the risks associated from streamflow changes. In

context, risk is the potential monetary loss caused by the

impact scenarios relative to the uncertainties of streamflow

changes. In calculating loss (or gain) from CC and LULCC

impacts, the probability of streamflow changes (95PPU)

was used to determine how probable water surplus and

deficit are. For this study, we calculated the risk to crop

production (Risk) during the planting season from May to

August. First, we adopted the crop irrigation requirement

and production cost per hectare in the Philippine context

(Rawlins et al. 2017; BAS 2009). We then estimated the

potential irrigation water as 81.3% of the total water supply

(AQUASTAT 2009), and hence the potential irrigated

lands. Because of CC and LULCC, potential irrigated lands

may decrease, resulting to unproductive lands. As such, the

production cost for these unproductive lands cost(D) was

calculated and multiplied with the probability of water

Fig. 4 Projected effects of climate change to the mean daily

precipitation per month under two emission scenarios in 2050 and

2070. The subgraph is the provincial data per quarter, labeled by %

change in precipitation and quarter (e.g. DJF = December, January,

February); and with values of 10th (lower range), 50th (median, dot),

and 90th percentiles (upper range)

Fig. 5 Land covers in 2000, 2050, and 2070. The first land cover is

used to run the baseline SWAT model while the other two are part of

the impact scenarios. Note that the bare lands of 2050 and 2070 maps

come from 2000 to 2016 forest loss pixels and the randomly

distributed pseudo deforested pixels
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deficit Pr(D), see Eq. 6. The monthly amounts were aver-

aged and translated to million US dollars.

Risk ¼ Pr Dð Þ � cost Dð Þ ð6Þ

4 Results

4.1 Calibration–validation results

Figure 6 shows a hydrograph of the two streamflows (be-

fore and after calibration) relative to the observed data and

precipitation, while Table 2 shows the accuracy metrics,

and the peak and low flows also pre- and post-calibration.

In a glance, the hydrograph reveals that the simulated

streamflows were rainfall-responsive.

Accuracy metrics were consistently higher after cali-

bration and validation, except for a slightly lower R2

(validation). Improvement was higher for NSE since it is

used as the objective function in SUFI-2. The accuracy

increase was reflected in the seasonal flows, where under-

estimated peak flows improved by 164 and 235 m3/s (26%

and 30%), and low flows increased by 19 and 3 m3/s (63%

and 8%) after calibration and validation, respectively.

Despite the improvement, underestimation of the peak

flows still existed.

4.2 Sensitivity of key streamflow model
parameters

After calibration, the sensitivity of each streamflow

parameter was measured by P-values from the global

sensitivity analysis (Fig. 7). Parameters directly influenc-

ing the peak and low flows were the most sensitive (lower

P-values), including the coefficients on runoff (CN2 and

SURLAG), baseflow (ALPHA BF), soil evaporation

(ESCO), and soil depth for baseflow (GWQN). On the

other hand, insensitive parameters included hydraulic

conductivity (CH K2), available water in soil (SOL AWC),

and water uptake by plants (GW REVAP and EPCO)

among others.

4.3 Changes in monthly streamflow as impact
indicators

Monthly streamflows with uncertainty range of the two

impact and eight emission scenarios were generated using

all calibrated parameters (streamflow and climate). Table 3

summarizes the monthly streamflow of the baseline and

Fig. 6 Hydrograph showing observed and simulated streamflow from the calibration (2003–2007) and validation (2008–2010) relative to the

precipitation
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impact scenarios. Figure 8 shows that result but disaggre-

gated per emission scenario (x-axis of graph) of the two

impact scenarios (purple and gold), with reference to the

baseline model (dashed red line).

Streamflow of the impact scenarios both deviated from

the baseline streamflow in all months, on average. Water

deficit started from May until October (- 12.96%), while

water surplus happened in November, December, and April

(11.56%). LULCC contributed by - 4.23% to the deficit

and 8.63% to the surplus. Deficit was highest in May at

- 14.29%, while surplus was at peak in December 17.57%.

A more striking result was the average water surplus in

November and December from 1.95% (CC) to 12.79%

(CC-LULCC).

Among the eight emission scenarios, water deficit was

more evident in CC-LULCC scenarios, particularly in L70b

Table 2 Accuracy indicators of the calibration–validation process based on three accuracy metrics and how the peak flows and low flows change

Modelling phase R2 NSE PBIAS Peak flow bias (m3/s) % change Low flow bias (m3/s) % change

Pre-calibration 0.85 0.65 40.0 - 639.08 – - 31.77 –

Calibration 0.87 0.77 21.2 - 475.93 26% - 11.61 63%

Pre-validation 0.90 0.62 59.2 - 778.90 – - 56.19 –

Validation 0.86 0.72 36.3 - 541.40 30% - 51.43 8%
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Fig. 7 Sensitivity measures of

each pre-identified model

parameter during calibration

and validation, as indicated

statistically by P-values from

the global sensitivity analysis

using SUFI-2 in SWAT-CUP

Table 3 Summary of mean

monthly streamflows from the

baseline and streamflow impact

scenarios. Their differences

(deficit or surplus) and

probability are also shown

Month Monthly streamflow (m3/s) Water deficit or Water surplus (%) Probability

Baseline CC CC-LULCC CC (%) CC-LULCC (%) CC CC-LULCC

January 28.3 27.34 30.08 - 3.39 6.29 0.53 0.5

February 13.15 12.53 13.6 - 4.71 3.42 0.41 0.37

March 11.14 11.1 11.46 - 0.36 2.87 0.39 0.36

April 9.25 9.7 10.09 4.86 9.08 0.35 0.34

May 25.05 21.47 22.33 - 14.29 - 10.86 0.22 0.19

June 36.62 33.45 29.84 - 8.66 - 18.51 0.33 0.29

July 27.59 25.43 21.29 - 7.83 - 22.83 0.31 0.26

August 39.26 36.48 30.47 - 7.08 - 22.39 0.37 0.31

September 53.19 49.71 52.25 - 6.54 - 1.77 0.44 0.41

October 40.11 36.9 39.55 - 8.00 - 1.40 0.46 0.45

November 136.51 138.56 147.45 1.50 8.01 0.49 0.47

December 102.72 105.19 120.77 2.40 17.57 0.53 0.51
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(RCP 8.5, 2070) in May and L50b (RCP 8.5, 2050) from

June to October. Scenario L70b had the most water surplus

in November and December.

The uncertainty of emission scenarios was a function of

streamflow and more evident in months with higher flows

e.g. November and December. Moreover, the monthly

uncertainty of streamflow change (7–8th column of

Table 3) was consistently lower (higher probability) for CC

than the CC-LULCC impact scenario. The uncertainty

ranges had no clear seasonal trend, except for January

which was the least uncertain compared to a similar month

e.g. May.

4.4 Associated risk to agriculture driven
by streamflow changes

Risk to crop production along with other details of its

computation is shown in Table 4. The potential water

supply of Abuan in one cropping season (May–August)

was found to be sufficient to irrigate 16,824 ha of crop

lands. Both impact scenarios caused decrease on stream-

flow, and thus reduction of potential production areas.

Water deficit was higher at - 9.46% and -18.65% as

affected by CC and CC-LULCC, respectively. Because of

CC, there was 1,530 ha or 9.10% croplands at risk, and the

additional impact of LULCC doubled the risk at 19.13%

(3,219 ha). The respective monetary value of the risks was

0.31 and 0.60 MUSD.

5 Discussion

5.1 The effects of model calibration
and the sensitive parameters

Streamflow model calibration resulted into higher accuracy

and improved the simulation of peak and low streamflows

than the uncalibrated model. The model improvement

indicates that our calibration plan on which and how to

calibrate parameters of interest is effective (Abbaspour

et al. 2015). Specifically, parameters related to runoff,

groundwater and soil were pre-identified, calibrated, and

found sensitive to the model e.g. CN2, SURLAG, ESCO,

GWQMN and ALPHA BF (see Table 1). According to the

SWAT technical documentation (Neitsch et al. 2011), a

higher curve number (CN2) leads to a higher surface runoff

relative to the HRU; an increase in runoff lag time

(SURLAG) also increases the fraction of runoff leading to

the main stream in a day; and compensating for soil

evaporation (ESCO) retains soil moisture. Moreover,

Fig. 8 Mean monthly streamflow and their uncertainty for all emission scenarios relative to the baseline model. The graphs are scaled uniformly

(0–200 m3/s) to depict the seasonal patterns of streamflow
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decreasing the shallow aquifer depth (GWQMN), and

increasing the shallow groundwater recharge (ALPHA BF)

logically increases the low flows. The characteristics of

Abuan watershed’s mother basin complement these

adjustments. The basin receives rain all throughout the

year, without large groundwater extractions, and domi-

nated by old-growth forests, hence should have a more

regulated baseflows year-round (Rawlins et al. 2017).

Slower surface runoff though may also affect the simula-

tion of peak flows.

These improvements after calibration were proven in

similar watersheds in the tropics (Ndomba et al. 2008;

Thampi et al. 2010), as examples of many studies that

reported model limitations related to peak and low flows.

The commonality of the need for calibration in this context

may have been influenced by observed data scarcity in the

tropics, which limits the initialization or ‘‘warm-up years’’

by SWAT models (Nyeko, 2015), and the configuration of

SWAT itself, which is by default not in the tropical set-

tings. Tropical watersheds may need to further parame-

terize plant and soil inputs e.g. using remote sensing-

assisted plant parameters (Strauch and Volk 2013) and data

from local soil samples (Rawlins et al. 2017).

Despite the improvement, the calibrated peak flows

were still underestimated. The complexity of quantifying

peak flows is attributed to a combination, if not all, of the

following factors: watershed size and aggregation of

weather data (Lopez and Seibert 2016), the default CN

settings of SWAT (Qiu et al. 2012), and incorrect gauge

readings during typhoon events (Beschta et al. 2000).

5.2 Importance of uncertainty assessment
and remaining uncertainties

The remaining errors even after calibration may propagate

to further applications of the simulated streamflow. This

domino effect can be mitigated if uncertainties are not only

quantified, but also integrated to the said applications

(Tomkins, 2014; Abbaspour et al. 2018). Uncertainty

estimation using SUFI-2 comes in the form of 95% con-

fidence interval (95PPU) after several iterations of uncer-

tainty propagation among parameters. For this step, it is

worth reiterating that we propagated future precipitation

and temperate within the 10th and 90th percentiles instead

of using only the median value. After five iterations, we

obtained the desired 95PPU which are less uncertain

compared to the first iteration. From that iteration, the

95PPU for any sub-basin of the study area can be derived

(Abbaspour 2013).

The 95PPU of Abuan watershed (sub-basin 35) was

confidently used for analysis based on two reasons. First,

the basin where it belongs (Pinacanauan de Ilagan basin)

with the SWAT and SWAT-CUP models is mostly

unregulated. There are no huge dams in the study area that

could alter the calibration process if not integrated to the

streamflow model (Rahman et al. 2013). Second, Pi-

nacanauan de Ilagan is relatively a small basin (\ 3000

km2) having identical hydrologic parameters with Abuan

i.e., similarity on topography, land cover, soil (see Fig. 3)

as well as climate and climate projections. Relatively small

basins are calibrated for LULCC analysis at sub-basin

levels in the Philippine landscape (Briones et al. 2016). For

relatively large basins with diverse land-uses, further

regionalization or similarity assessment among sub-basins

may apply prior to SWAT modelling (Swain and Patra

2017). Watershed regionalization is applicable once

streamflow modelling in the Philippines is implemented at

major river basin scales (Araza et al. 2020).

The uncertainty range was further integrated to the risk

assessment of streamflow changes to agriculture, which is

the final step towards a successful and problem-oriented

modelling (Abbaspour et al. 2018). That allows more

Table 4 Streamflow changes, their probability, and the associated risk to crop production of the impact scenarios from May to August cropping

season

Cropping

month

Streamflow (m3/s) Probability Potential crop production area

(ha)

Loss in potential

crop production

area (ha)

Risk to crop

production

(MUSD)

Baseline CC CC-

LULCC

CC CC-

LULCC

Baseline CC CC-

LULCC

CC CC-

LULCC

May 25.05 21.47 22.33 0.22 0.19 13,117 1,875 1,424 0.28 0.18

June 36.62 33.45 29.84 0.33 0.29 19,176 1,660 3,550 0.37 0.69

July 27.59 25.43 21.29 0.31 0.26 14,447 1,131 3,299 0.23 0.57

August 39.26 36.48 30.47 0.37 0.31 20,558 1,456 4,603 0.36 0.95

Average 32.13 29.21 25.98 0.31 0.26 16,824 1,530 3,219 0.31 0.60

*MUSD = million US dollars

Italic values indicate the average of the four months above it
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conservative or realistic risk estimates, which is advisable

if projections from future scenarios are uncertain i.e. trends

in carbon inventory of countries (Grassi et al. 2008).

The remaining uncertainties from the streamflow model

may come from the observed data, which is not error-free

and thus needs an uncertainty estimate (Hamilton and

Moore 2012). However, that is uncommon in countries

with data scarcity and data sharing issues. In our case, we

obtained a preprocessed observed data, but without raw

data to derive a probability distribution of streamflow

values for uncertainty propagation. Uncertainties may also

come from the main inputs (soil, weather, and land cover

inputs). We are particularly concerned with the coarse soil

input used for this study, dominated by a single class. An

alternative would be to use finer resolution soil data e.g.

SoilGrids 250 m data, despite the longer preprocessing

time to make them SWAT-formatted. We also noticed in

Fig. 6 at least three peak flows that were not rainfall-re-

sponsive, which suggest that the error either comes from

the precipitation data or observed data. Moreover, there can

be uncertainties in LULCC inputs not only from the clas-

sification itself, but also the way SWAT uses one land

cover period while producing time series outputs (Araza

2018). Lastly, there can be uncertainties from the provin-

cial CC projections that can be substituted by spatially

explicit projections once available. Nevertheless, we per-

ceive that the uncertainties from the streamflow model

itself would be the largest uncertainty source.

5.3 In-depth impact assessment

The impacts of streamflow changes were indicated by

water deficit from May to October, and surplus in

November, December and April. The driving factor of the

deficit and surplus are the lowest projected rainfall in JJA

quarter and highest in DJF quarter, respectively. These

impacts were doubled after adding LULCC in the assess-

ment—worst cases were L70b (RCP 8.5, 2070) and L50b

(RCP 8.5, 2050) emission scenarios. Consequently, the

projected water deficit will surely affect the crop produc-

tion especially corn during May–August season. Some

months with water deficit included wet months (JJA). This

somehow deviates from the projections reported in Bal-

derama et al. (2017) and Tongson et al. (2017) where water

surplus was forecasted from the said months in the study

area. The discrepancy is mainly because of the newer CC

data used for this study e.g. with an average rainfall pro-

jection of - 17.2% in JJA quarter, RCP 4.5 in 2050

(Fig. 9). The CC projections originate from the CLIRAM

downscaled model, a spatially explicit climate model that

accounts for every uncertainty source from global to

regional scale (Daron et al. 2016). That cascaded uncer-

tainty is common in downscaled models, thus having

overly pessimistic or ‘‘risk-adverse’’ projections (Jones,

2000; Elsberry, 2002). We counteracted by setting a high

number of simulations (1000) during model calibration, but

could have been more e.g. 5000 to further narrow uncer-

tainties. Moreover, more localized climate projections can

be integrated to the streamflow model once the pixel-level

(25 km) CLIRAM projections are publicly available.

The consequence of the timing of water deficit would be

the cropping schedule changes for both irrigated and

rainfed croplands. The latter is foreseen to be more affected

in both wet and dry cropping season. However, slight

changes in cropping calendars may affect the yield sig-

nificantly (Lansigan et al. 2007). A direct solution for

possible water shortages is to store the surplus water in

November to December, but may need reservoirs for water

storage and even flood mitigation. Indirect solutions are

sustainable forest conservation and watershed

management.

On the other hand, the projected water surplus, partic-

ularly in November and December, may increase the flood

susceptibility of the study area. Those months showed the

highest probability of streamflow change with an increase

from 1.95% (CC) to 12.79% more surplus because of

deforestation-driven LULCC. This projection should catch

the attention of the government, given that most typhoons

pass through the study area in the last quarter and there

have been warnings of more intensive typhoons to come

(PAGASA 2018; Tolentino et al. 2016). Flooding during

typhoon events may worsen due to continuous of slash-

and-burn, increase in sedimentation (Balderama et al.

2019) and displacements of main streams within the study

area (Dingle et al. 2019). Towards flood modelling, our

SWAT model would need sub-daily data to have more

accurate peak flows simulations (Yang et al. 2016).
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Fig. 9 Comparison of average precipitation change (%) under 2050

4.5RCP scenario from the two climate downscaled models used in the

Philippines: PRECIS and CLIRAM models
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5.4 Risk to agriculture and flooding

During May–August cropping season, the impact scenarios

put at most 19.13% of potential crops lands at risk: 9.10%

was attributed to CC and 10.03% to LULCC. In monetary

terms, the risk of CC and CC-LULCC costed around 0.31

and 0.60 MUSD. These estimates, however, are based on

the potential irrigation water from Abuan watershed. In

reality, most of the corn fields in the study area are rainfed

(Lansigan et al. 2007), but gradually being modernized

because of the agriculture modernization plan (including

irrigation) in the Philippines (Inocencio et al. 2016). For

comparison, assuming the actual irrigated croplands as

1/10 of the total, the croplands at risk from CC-LULCC

would be lower at 8.98%. Nevertheless, rainfed crops

would still be at risk especially in the May–August crop-

ping season because of the projected average rainfall

decrease at - 17.2% rain during JJA quarter.

The estimation of flood risks was not included mainly

because of unavailable sub-daily data to accurately model

peak flows for flood modelling. For future attempts to

estimate flood risk, a two-step method similar to this study

can be adopted: hourly streamflow simulation (using

SWAT) and their probability (using SWAT-CUP), for both

baseline and impact scenarios. Then, using a dynamic flood

model i.e. agent-based or process-based, Monte Carlo

simulations using the probable hourly streamflow and

realizations of a Digital Elevation Model (DEM) will be

needed to derive probable inundated areas. Lastly, a dam-

age function based on inundation height for houses (and

crops) and their land valuation will be used to calculate the

risk to flooding (see Phil-WAVES 2016).

5.5 Entry points to management plans

Results of this study can be integrated from local to

national plans as basis for aligning programs, projects, and

activities (PPA). For instance, mainstreaming CC-LULCC

effects into local plans in a participatory manner would not

only allow active participation of every stakeholder, but

would also integrate impacts to crop yield (Balderama et al.

2016) and localize the risk calculations e.g. farmer-level.

Moreover, the results of this study can be contextualized

for ecosystem services (ES) accounting. Specifically, the

forest water regulation service to crop production and

flooding should be given attention considering the histori-

cal and current deforestation trends in Abuan watershed

(Van der Ploeg et al. 2011; Hansen et al. 2013). Moreover,

results indicated that the water supply of Abuan can irrigate

five times more than the actual crop lands (16,824 ha).

Such water supply can be tapped for hydropower as

renewable energy source. The ES context could spearhead

payment schemes like PES or Payment for Ecosystem

Services. PES is ideal for Abuan watershed given the ridge-

to-reef topography, high conservation priority, and high

risk to CC-LULCC—as shown by this study.

These recommendations are timely given that the

Philippine Land Use Act is soon to be legalized, providing

an opportunity to better plan and manage the Philippine

watersheds. As a final thought, we call the watershed

stakeholders (national and local government; non-govern-

ment organizations; upland and lowland locals) to be

proactive with the impacts of CC and LULCC.

6 Conclusions

This study aimed to associate the risks coming from

probable streamflow changes caused by climate and land

use change using SWAT and SWAT-CUP. We have five

concluding remarks to summarize the learnings from this

study. First, improvements of the simulations of the base-

line model, particularly peak and low flows, were attained

by knowing the right choice of parameters to calibrate and

why. Second, CC and LULCC were almost equal con-

tributors to the projected average water deficit, but water

surplus was more LULCC-driven – worst emission sce-

narios were RCP 8.5 in 2050 and 2070 at 26% deforesta-

tion. Third, the timing of water deficit from May to August

(around - 18.65%) is a warning on possible cropping

schedule changes, and water surplus in November to

December (12.79%) may affect the production of rainfed

corn lands and indicate higher flood susceptibility. Fourth,

at most 1/5 potential croplands are at risk amounting 0.60

MUSD based on the probability of water deficit. As a final

note, projection ranges from different climate models can

be very pessimistic and may vary from one model to

another, therefore their distribution should be part of the

uncertainty propagation of streamflow models and the risk

estimates should be conservative.
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