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Abstract
Precipitation fluctuations are continuously threatening the environment and may cause huge economic losses. In present

study, the precipitation over China has been evaluated under five principal shared socioeconomic pathways (SSPs)

scenarios during 2015–2099 based on eight CMIP6 models bias-corrected by the method of Equidistant Cumulative

Distribution Functions. The results showed that (1) the simulated precipitation in China was in good agreement with

observed precipitation for the eight CMIP6 models during 1961–2014, especially for the UKESM1-0-LL and MIROC6.

However, the simulated annual mean precipitation has been significantly overvalued in the Southwest River basin ([ 50%),

while it was undervalued in the higher elevations of the Northwest River basin (\ - 60%); (2) the annual mean

precipitation will show a fluctuating upward trend during 2015–2099 over China under all the SSPs scenarios for the eight

CMIP6 models. The rate of precipitation increase over north China will be higher than that in south China, especially in the

Northwest River basin (reach 57.44% in the 2090s under the SSP5-8.5 for the ensemble mean). This increase of the

precipitation in north China might alleviate the shortage of water there, but will not change the pattern of more rain in the

south and less in the north; (3) in the southeastern basins, the precipitation of the multi-model ensemble (MME) and

MIROC6 during 2011–2020 will be lower than that of 1961–2010 (- 6.53 to - 0.06%) under all SSPs scenarios. While the

precipitation will increase obviously under all the SSPs scenarios, especially for the SSP5-8.5 scenario after the year of

2060; (4) the bias of the MME was much lower than that of individual CMIP6 models, and the bias of lower SSPs scenarios

will be relatively lower. Generally, uncertainty ranges of precipitation fluctuations in north China (15.31–79.26%) will be

higher than those in south China (16.06–7.55%). These findings revealed the projections and uncertainties of CMIP6

precipitation over China, which will be helpful for a better understanding of the future evolution of precipitation in China at

large scale and in other regions of the world.
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1 Introduction

Climate change and associated precipitation fluctuations

can drastically influence human society, their surrounding

environment, and the ecosystem, mainly by triggering

extreme hydrological events like floods and droughts thus

damaging the natural environment resulting in huge eco-

nomic losses (Chen and Frauenfeld 2014; Zhou and Jiang

2017; Han et al. 2018). Therefore, robust precipitation

projection is highly important to ensure water resources

required for human survival and to safeguard water secu-

rity in the context of changing climate. Owing to a clear

understanding about physical processes of climate system

and recent development and progress in modeling, the use

of general circulation model (GCM) has become a major

and vital tool for precipitation change studies.

However, due to model structural errors and parame-

terization uncertainty, the results of climate model inte-

grations revealed substantial bias in the spatial and

temporal distribution of regional precipitation (Stein-

schneider and Lall 2015). Therefore, it is necessary to

select a model that could effectively simulate regional

climate in the past and future scenarios (Wu et al. 2017).

Recently, many researchers have evaluated the precipita-

tion variability in different areas of the world using the

Coupled Model Intercomparison Project (CMIP) datasets.

For instance, Chen and Frauenfeld (2014) reported that

they built a standard experimental protocol to estimate the

atmosphere-ocean GCMs and to evaluate future climate

predictions under different scenarios using the CMIP exe-

cuted by the World Climate Research Programme

(WCRP). Wang and Chen (2013a) revealed that the sys-

tematic error in reproducing precipitation was

8.1–88.5 mm based on the calendar months and the out-

comes from 35 CMIP5 models. Sun et al. (2015) found that

most CMIP5 models tended to overestimate precipitation

over China, and this overestimation might be more serious

in CMIP5 than that in CMIP3 (Chen and Frauenfeld 2014).

Recently, the advanced climate prediction data has been

provided by the sixth phase of the CMIP (CMIP6), and it

features an increase in institutions, enhancements in spatial

resolution, improvements in physical parameterizations

and inclusion of additional Earth system processes and

components (Eyring et al. 2019). A primary difference

between CMIP5 and CMIP6 is the set of future scenarios

used to project climate evolution (Editorial 2019). The

CMIP5 implemented four Representative Concentration

Pathways (RCPs). These four RCPs were a set of new

pathways developed for the climate modeling community,

which defined for the radiative forcing values reached by

2100 (van Vuuren et al. 2011). In contrast, the CMIP6

employed a new scenario framework rooted in

socioeconomic trajectories: the shared socioeconomic

pathways (SSPs), in which RCPs have been combined with

alternative pathways of socioeconomic development (Edi-

torial 2019; O’Neill et al. 2013). Also, the CMIP6 shows

advantages in the expansion and endorsement of Model

Intercomparison Projects (MIPs) focused on the bias, pro-

cesses, and feedbacks in climate models (Heinze et al.

2019). Hence, the future scenarios of CMIP6 seem to be

more reasonable in the new archive, especially the multi-

model ensemble (MME) result, necessitating more research

to evaluate their precipitation predictions.

Since the output of one single global climate model is

always biased and uncertain, it cannot predict the trend of

future climate accurately (Wu et al. 2017). Numerous

studies emphasized that the MME technique is an effective

way to reduce the uncertainty of independent models

thereby improving predictions and their credibility (Feng

et al. 2011; He et al. 2018; Sun et al. 2015; Katiraie-

Boroujerdy et al. 2019) described that simulated precipi-

tation of MME was much superior compared to the single

CMIP5 model. In another study, He et al. (2018) estimated

future extreme heat stress on rice in southern China, and

found that the trend of observations generated through

MME projections was much better than any individual

general circulation model. The performance of MME is

superior to the average single-model performance mainly

because of error cancellation and non-linearity of the

diagnostics (Hagedorn et al. 2005). Thus, interannual

variations are huge in independent models but suppressed

in the MME (Knutti and Sedláček 2013). As the number of

models used in the MME increases, the ensemble results

will be more accurate (Feng et al. 2011). Moreover, a

number of schemes were applied to optimize the MME

approach. Wang et al. (2014) explored the future patterns

of extreme climatic events under different emission sce-

narios through MME projections by using the Bayesian

Model Average method in the Haihe River Basin. Based on

the independent component analysis and regularized

regression approach, Lim et al. (2014) proposed an

improved MME method to predict future precipitation in

boreal summer over global and regional scales.

China is a vast country with complex terrain, and the

precipitation in China varies greatly over space and time.

Numerous country-scale studies have focused on the pre-

cipitation trend over China in the past decades. Gemmer

et al. (2004) analyzed the monthly precipitation trends of

160 stations in China during 1951–2002, and discovered a

clustering of trends in certain months, including distinct

trend belts especially in east and northeast China. Chen and

Frauenfeld (2014) indicated that precipitation increased

over parts of northwestern China and decreased over the

Tibetan Plateau throughout the twentieth century based on

observed data. An analysis of the spatiotemporal changes
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of precipitation extremes at 200 representative weather

stations of China during 1956–2015 revealed that daily

rainfall intensity showed a significant increasing trend

nationally (Zheng et al. 2019). However, Zhang et al.

(2017) identified that the precipitation in the upper Sang-

kan basin did not show any trend from 1957 to 2012 by

using the data from three weather stations located in Loess

Plateau, China. Besides the observed data with different

trends, the predicted precipitation trend of China in CMIP5

showed a consistently increasing trend, which is greater in

northern China than in southern China (Chen and Frauen-

feld 2014; Wang and Chen 2013a; Xu and Xu 2012). Based

on MME of eight climate models in the Fourth Assessment

Report (AR4) of the Intergovernmental Panel on Climate

Change (IPCC), Wu and Yan (2013) predicted that the

annual precipitation will increase during 2011–2040 over

Huaihe River basin. Furthermore, Chen and Frauenfeld

(2014) revealed that the RCP8.5 scenario showed the lar-

gest significant trend, while the RCP 2.6 scenario exhibited

the smallest increases across all of China.

Although, numerous studies have analyzed the fluctua-

tions in the past and future precipitation patterns in some

regions of China, only a very few studies have been con-

ducted to comprehensively visualize the spatiotemporal

distribution of precipitation at a large scale based on bias-

corrected CMIP6 models. Therefore, the goals of this study

were: (1) to evaluate the performance of the simulated

precipitation over China based on the latest GCM models;

(2) to project the patterns of the temporal and spatial dis-

tribution of future precipitation over China under different

SSPs scenarios using the bias-corrected CMIP6 data. The

outcomes of this study could improve the precipitation

forecasting in China that would be quite helpful for deci-

sion-makers to make precipitation-related disaster man-

agement plans, and the relevant methods and results also

have certain reference significance for other countries or

regions.

2 Data and methodology

2.1 Study area and data

China is located in eastern Asia and its climate is poten-

tially dominated by monsoon winds with clear precipitation

differences between winter and summer. Generally, most

of the precipitation is concentrated in the summer. Dif-

ferences in precipitation also appear concerning region

mainly due to the extensive territory and complex topog-

raphy in China. On the national level, precipitation

decreases from southeast to northwest (Zhang et al. 2011).

China is the third-largest country in area in the world.

The total length of China’s rivers is around 420,000 km,

and there are more than 1500 rivers with a drainage area of

over 1000 km2. There are nine large river basins in China,

which are shown in Fig. 1. The uneven distribution of

rivers in China is mainly attributed to the topography and

climate. Most of the rivers are situated in the wet eastern

monsoon climatic zone, directly flowing into the sea.

Contrary to that, northwestern China is dry with little

precipitation, where rivers are not connected to the sea

(Zhang et al. 2011).

The observed data used in this study was the monthly

gridded precipitation interpolated from 2472 meteorologi-

cal stations of China for the period 1961–2014 with a

spatial resolution of 0.5� 9 0.5� (http://data.cma.cn/site/

index.html). The modeled precipitation was from eight

CMIP6 models with r1i1p1f1 run under five principal

future emission scenarios (Table 1). The period 1961–2014

was designated as the historic period, and the period

2015–2099 was considered as the future period. The five

future scenarios were SSP1-1.9, SSP1-2.6, SSP2-4.5,

SSP3-7.0, and SSP5-8.5. The SSP1-1.9 scenario corre-

sponded to a very low forcing level, with a probability of

warming being below 1.5 �C in 2100 (Zhang et al. 2019).

The emission profile of the SSP1-1.9 scenario is charac-

terized by a rapid decline to zero and a long period of

negative emissions for CO2 (O’Neill et al. 2016). The

SSP1-2.6 scenario represented the low ending range of

future scenarios measured by its radiative forcing pathway.

This scenario will produce a multi-model mean of signifi-

cantly less than 2.0 �C warming by 2100, thus could sup-

port the 2 �C temperature rise target study (O’Neill et al.

2016; Zhang et al. 2019). The SSP2-4.5 scenario was

considered as a medium stabilization scenario, while the

SSP3-7.0 scenario corresponded to the medium to high end

of the range of future forcing pathways. The SSP5-8.5 was

a scenario that stabilizes radiative forcing at 8.5 Wm- 2 in

2100, and considered to be a high radiative forcing sce-

nario (O’Neill et al. 2016).

2.2 Methodology

Based on the bias between modeled and observed precip-

itation at each percentile, the Equidistant Cumulative

Distribution Functions (EDCDF) was used for the bias

correction of raw CMIP6 outputs. EDCDF assumes that the

difference between observation and simulated precipitation

in the training period maintains during the correction per-

iod for a given percentile (Su et al. 2018). The EDCDF

approach could be written as:

D ¼ F�1
oc Fms xð Þð Þ � F�1

mc Fms xð Þð Þ ð1Þ
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xcorrect ¼ xþ D ð2Þ

where x was precipitation; F referred to the cumulative

distribution function (CDF) and F- 1 referred to the inverse

CDF; oc was observations during the training period; mc

Fig. 1 Locations of the nine large river basins and meteorological

stations. (I) Songhuajiang and Liaohe River basin; (II) Haihe River

basin; (III) Yellow River basin; (IV) Huaihe River basin; (V) Yangtze

River basin; (VI) Rivers in Southeast China basin; (VII) Pearl River

basin; (VIII) Rivers in Southwest China basin; (IX) Rivers in

Northwest China basin

Table 1 List of 8 CMIP6 GCMs used in this paper and their spatial resolution

Code Model Modeling center Spatial

resolution

1 CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada 128 * 64

2 GFDL-

ESM4

Geophysical Fluid Dynamics Laboratory, USA 288 * 180

3 IPSL-

CM6A-

LR

Institut Pierre-Simon Laplace, France 144 * 143

4 MIROC6 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental

Studies, and Japan Agency for Marine-Earth Science and Technology, Japan

256 * 128

5 MIROC-

ES2L

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The

University of Tokyo), and National Institute for Environmental Studies, Japan

128 * 64

6 MRI-

ESM2-0

Meteorological Research Institute, Japan 320 * 160

7 UKESM1-

0-LL

UK Natural Environment Research Council centres and the Met Office Hadley Centre, UK 192 * 144

8 CAMS-

CSM1-0

Chinese Academy of Meteorological Sciences 320 * 160
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was model outputs during the training period; ms was

model outputs in a correction period.

All the bias-corrected series were downscaled statisti-

cally to a common grid of 0.5� 9 0.5� longitude and lati-

tude by the spatial disaggregation (SD) method. SD is

applied based on the fundamental assumption that the

statistical relationship will remain unchanged in the future

(Su et al. 2018; Wang and Chen 2013b). Firstly, 0.5�
gridded observed precipitation over China was interpolated

to CMIP6 coarse resolution using a bilinear interpolation

approach based on their multi-year averaged mean. Ano-

maly fields between the observed and bias-corrected model

outputs were defined as the ratio of CMIP6 output to

observation. Then, the coarse resolution anomaly fields of

precipitation were interpolated to 0.5� resolution using a

bilinear interpolation approach, and the interpolated

anomaly fields were applied to 0.5�gridded observed pre-

cipitation to get the downscaled CMIP6 outputs. Accord-

ingly, the CMIP6 models’ data hereafter shown in this

study are all bias-corrected. The bias correction and sta-

tistical downscaling could improve the accuracy of CMIP6

outputs in reproducing the observed spatial pattern and a

long-term average of precipitation (Su et al. 2018). Even

after bias correction, due to possible differences in the

internal structure of the models or the applied initial con-

ditions, the responses of the models are different to the

same internal variability (which is dominant for precipi-

tation) (Katiraie-Boroujerdy et al. 2019). To avoid this

problem, the arithmetic ensemble mean method was used

to calculate the MME mean of bias-corrected CMIP6

models.

The Taylor diagram was adopted to assess the simula-

tion of all the bias-corrected CMIP6 climate patterns. The

Taylor diagram could provide a concise statistical sum-

mary of how accurately patterns will match each other in

terms of their standard deviation, centered root-mean-

square (RMS) difference, and correlation (Taylor 2001).

The standard deviations r of observed data and models

were calculated as follows:

robs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

n¼1

Xobsn � Xobs

� �2

v

u

u

t ð3Þ

rmodel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

n¼1

Xn � X
� �2

v

u

u

t ð4Þ

where Xobs and X denoted the mean values of observation

and models, respectively.

The centered pattern RMS difference E was defined by

(Cheng 2016):

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

n¼1

Xn � X
� �

� Xobsn � Xobs

� �2
h i

v

u

u

t ð5Þ

The correlation coefficient r between observed data and

models was defined as:

r ¼ 1

N

X

N

n¼1

Xn � X
� �

Xobsn � Xobx

� �

" #

= rmodelrobsð Þ ð6Þ

The key to constructing such a diagram was to recognize

the relationship between the four statistical quantities of

interest here (Taylor 2001):

E2 ¼ r2obs þ r2model � 2robsrmodelr ð7Þ

3 Results

3.1 Evaluation of CMIP6 simulated precipitation
with observed data

Evaluation of annual mean precipitation simulations from

the ensemble and individual CMIP6 models against the

observed data indicated that the patterns of the simulated

precipitation based on the bias-corrected CMIP6 models

were similar to that of the observed precipitation over

entire China (Fig. 2). Note that the annual mean precipi-

tation in the southwestern edge of the Southwest River

basin has been significantly overestimated for all the bias-

corrected CMIP6 models, including the MME value

(Fig. 2b–j). Meanwhile, the precipitation has been over-

valued in Taiwan while undervalued in Hainan province.

Overall, the MME and all the CMIP6 models showed good

performance in China. On the national level, the annual

precipitation decreased gradually from the southeast

([ 1400.0 mm) to the northwest (\ 400.0 mm) from 1961

to 2014 (Fig. 2). The historical precipitation in the Haihe

River, Yellow River, Song-Liao River, and Northwest

River basins was lower than 700 mm, while the precipi-

tation over the Southeast River, Huaihe River, south

Southwest River, middle and lower Yangtze River, and

Pearl River basins was higher than 700.0 mm. Generally,

the historical precipitation in south China was higher than

that in north China.

The difference ratios in annual mean precipitation

between eight CMIP6 models, their MME, and observa-

tions were presented in Fig. 3. Compared with the obser-

vations, east China exhibited better correspondence than

west China from 1961 to 2014, where the mean bias

between modeled and observed precipitation was less than

± 10%. The difference ratios were even less than ± 5% in
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many places of east China, which could be ignored. For

west China, the bias in the high elevations of the Northwest

River basin exceeded - 60%. Meanwhile, there was a

larger positive bias in the southwestern edge regions of the

Fig. 2 Spatial distribution of

annual mean precipitation over

China during the period of

1961–2014 generated from

a the observation (Obs.), and

b the multi-model ensemble

(MME) averaged from

c CanESM5, d GFDL-ESM4,

e IPSL-CM6A-LR, f MIROC6,

g MIROC-ES2L, h MRI-

ESM2-0, i UKESM1-0-LL,

j CAMS-CSM1-0
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Southwest River basin (exceeded 50%), which occurred in

Fig. 2 as well. Overall, as was shown in Table 2, MME and

MIROC6 owned the lowed bias (difference ratio between

- 5% and 5%: 35.10% and 35.77%, respectively). On the

contrary, the bias was more prominent in IPSL-CM6A-LR

(difference ratio less than - 50%: 5.34%; difference ratio

more than 50%: 5.13%), MRI-ESM2-0 (difference ratio

less than - 50%: 5.26%; difference ratio more than 50%:

4.91%), and CAMS-CSM1-0 (difference ratio less than

- 50%: 5.26%; difference ratio more than 50%: 4.91%).

For temporal variability, the Taylor diagrams were

presented in Fig. 4 to evaluate the accuracy of bias-

Fig. 3 The difference ratios in

annual mean precipitation

between 8 CMIP6 GCMs,

MME, and observations during

the period of 1961–2014. The

dots indicate the difference was

estimated at the 95% confidence

level based on T-test
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corrected trends relative to observed precipitation trends

over nine large river basins and the whole of China during

1961–2014. The correlations between eight bias-corrected

CMIP6 models with observed data were more than 0.70 in

most basins of China, except for the Huaihe River and the

Southeast River basins. The correlation coefficients were

more than 0.94 for the entire China (Fig. 4a). The centered

RMS differences were low in the Northwest River basin

(the differences were all lower than 6.80; Fig. 4j), while

quite high in the Southeast River basin (the differences

were all higher than 57; Fig. 4g). For individual CMIP6

models, the correlation coefficients for UKESM1-0-LL

(0.65\ rUKESM1�0�LL \ 0.95) and MIROC6

(0.61\ rMIROC6 \ 0.95) were comparatively high. The

centered RMS differences of UKESM1-0-LL

(6.30\EUKESM1�0�LL\ 77.65) and MIROC6

(6.02\EMIROC6 \ 81.15) were relatively low. Generally,

bias-corrected UKESM1-0-LL and MIROC6 showed the

best performance among eight bias-corrected CMIP6 out-

puts in terms of describing the temporal variability. How-

ever, the two bias-corrected models did not perform well in

all basins. In the Huaihe River, Southeast River, and Pearl

River basins, UKESM1-0-LL performed the best. In the

Haihe River, Yangtze River, and Northwest River basins,

MIROC6 was superior to other bias-corrected models. In

the Song-Liao River and Yellow River basins, GFDL-

ESM4 performed the best. As for the entire China, IPSL-

CM6A-LR showed the best performance. Whereas, the

MME owned the highest similarity with observation, with

0.79 in the Southeast River basin and higher than 0.83 in

other basins. Similarly, the MME presented the lowest

centered RMS differences (5.22\EMME \ 57.07) in all

regions. Therefore, the MME showed the best performance

in nine representative river basins and the whole of China

from 1961 to 2014, especially in the entire China

(rMME ¼ 35:83, EMME = 8.00, rMME ¼ 0:98) and the

Northwest River basin (rMME ¼ 11:08,

EMME=5.22,rMME ¼ 0:96) (Fig. 4a, j)

The progression of annual mean precipitation anomalies

over nine large river basins and entire China during

1961–2099 has been shown in Fig. 5 indicating the inter-

annual trend of precipitation fluctuations. As the MIROC6,

UKESM1-0-LL, and MME showed better agreement with

observed data analyzed above (Table 2; Fig. 4), only the

inter-annual trend of observed precipitation, MIROC6

(Fig. 5a1–j1), UKESM1-0-LL (Fig. 5a2–j2), and MME

(Fig. 5a3–j3) value were presented from 1961 to 2014. It

could be seen that the precipitation showed significant

increasing trends in the Northwest River basin during

1961–2014 based on MIROC6 and observed data (Fig. 5j1,

j2, j3). However, this upward trend did not occur in

UKESM1-0-LL and MME (Fig. 5j2,j3). Meanwhile, the

precipitation from MME presented a slightly decreasing

trend in the Yangtze River and Southeast River basins.

Large interannual variations existed in precipitation, but

the precipitation fluctuations in MME were much smaller.

Overall, MIROC6 was superior in the Yangtze River basin

(Fig. 5f1), while UKESM1-0-LL was superior in the

Huaihe River basin (Fig. 5e2).

3.2 Projection of the precipitation in China’s
large river basin

As shown in Fig. 5, the precipitation fluctuations will

increase during 2015–2099 over nine representative river

basins and the whole of China, with some differences

between low SSPs (SSP1-1.9 and SSP1-2.6) and high SSP

(SSP5-8.5) scenarios. Generally, the higher SSP scenario

meant higher precipitation by the end of the century, except

for the southeastern regions of China. For example, the

difference between the precipitation of MME in SSP5-8.5

and SSP1-1.9 was 231.1 mm in 2099 over the Southwest

River basin, while the difference was 205.2 mm between

SSP5-8.5 and SSP1-2.6 (Fig. 5i3). However, in 2099,

SSP5-8.5 and SSP1-1.9 showed a -60.4 mm precipitation

difference in the Southeast River basin (Fig. 5g3). Mean-

while, SSP5-8.5 and SSP1-2.6 presented - 98.8 mm,

Table 2 Comparison of the

percentage of grids for different

difference ratios between

modeled and observed annual

mean precipitation over China

(unit: %)

Model B - 50 - 50 to - 10 - 10 to - 5 - 5 to 5 5–10 10 –50 C 50

MME 5.16 19.09 9.88 35.10 11.63 14.34 4.81

CanESM5 4.75 23.42 11.52 32.65 8.40 13.94 5.32

GFDL-ESM4 4.40 15.90 7.68 32.30 13.64 20.52 5.56

IPSL-CM6A-LR 5.34 21.19 10.96 32.71 10.74 13.94 5.13

MIROC6 6.18 21.37 10.58 35.77 10.47 11.65 3.97

MIROC-ES2L 5.42 21.35 11.49 34.61 10.18 12.67 4.27

MRI-ESM2-0 5.26 18.61 9.10 33.67 12.46 15.98 4.91

UKESM1-0-LL 4.86 18.39 9.61 33.86 11.47 16.76 5.05

CAMS-CSM1-0 5.26 19.31 8.14 32.01 13.48 16.89 4.91
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- 39.0 mm, and - 85.0 mm precipitation differences of

MME over the Huaihe River basin, Yangtze River basin,

and Southeast River basin, respectively (Fig. 5e3–g3).

Overall, the mean precipitation of China was expected to

increase over the twnety first century under all the SSPs

scenarios for the three modeled outputs. However, the
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(d) Yellow River basin
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(e) Huaihe River basin
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(g) Rivers in Southeast China basin
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(h) Pearl River basin
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Fig. 4 Taylor diagrams for

mean precipitation between

observation, MME value, and

eight bias-corrected CMIP6

models (indicated by the head of

each arrow) during the period

1961–2014 over a whole China,

and b–j the nine river basins.

Dotted lines corresponded to

standard deviations; dashed

lines for centered RMS

differences; dot-dash lines

corresponded to correlations
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increase of precipitation over north China was higher than

that in south China. The increase of precipitation over the

Northwest River basin would even reach over 57.44% in

the 2090s under SSP5-8.5 (Fig. 5j1–j3). Considering the

bias in the Southwest River basin, the estimated increase in

precipitation will be under 30% in south China by the end

of the century under all SSPs scenarios (Fig. 5i1–i3).

We further explored the precipitation variations over

nine large river basins and the whole of China during

different future periods under five SSPs scenarios in detail

(Fig. 6). The period of 1961–2010 was selected as the

baseline period. During 2011–2020, the precipitation of

MIROC6 and MME was lower than that in the baseline

period over the Yangtze River basin (- 5.32 to - 0.26%)

and Southeast River basin (- 6.53% to - 0.06%) under all

SSPs scenarios. However, as for UKESM1-0-LL, the

decrease of precipitation relative to the base period

occurred in the Song-Liao River, Huaihe River, Southeast

River, Pearl River, and Southwest River basins. Overall,

relative to the base period, the three modeled precipitation

all showed a downward trend during the 2010s in the

Southeast River (Fig. 6g1–g3) and Pearl River (Fig. 6h1–

h3) basins which were located in the southeast of China. In

the Haihe River (Fig. 6c1–c3) and Northwest River

(Fig. 6j1–j3) basins, the three modeled precipitation was

always higher than that before 2010, including the 2010s.

The higher emission scenario did not mean more precipi-

tation. However, there will be more precipitation under the

SSP5-8.5 scenario than the SSP1-1.9 and SSP1-2.6 sce-

narios after 2060, except for the Huaihe River, Yangtze

River, Southeast River, and Pearl River basins. In general,

more precipitation will occur in the future, especially in the

Northwest River basin. The increasing trend of precipita-

tion in north China will be larger than that in south China,

as appeared in Fig. 5 as well. However, it will not reverse

the distribution that the precipitation in south China

(924.2–877.7 mm) is higher than that in north China

(180.4–707.6 mm).

3.3 Uncertainty analysis of future precipitation
projection

Box-and-whisker plots of future precipitation under dif-

ferent scenarios relative to the historical average

(1961–2014) over nine representative river basins and the

whole China, which were considered as an uncertainty

visualization scheme were presented in Fig. 7 (Xiong

2017). It could be seen that the MME had the fewest out-

liers, especially in the Southwest River basin. For the

Southwest River basin, the CMIP6 tended to overestimate

the precipitation (Fig. 7i), consistent with our previous

results (Figs. 2, 3). In contrast, the CMIP6 underestimated

the annual mean precipitation in the Northwest River basin

(Fig. 7j). Generally, the bias of the ensemble results was

much lower than that of MIROC6 and UKESM1-0-LL, and

the bias of low SSPs scenarios was relatively lower.

However, in the Haihe River and Huaihe River basins, the

bias of MIROC6 under medium SSPs scenarios was the

lowest. In addition, Fig. 7 revealed that the difference

between the SSP5-8.5 scenario and history was the largest

except for the Yangtze River, Southeast River, and Pearl

River basins.

Uncertainty ranges of precipitation from 1961 to 2099

relative to the historical average (1961–2014) over China

and nine river basins were also demonstrated in Fig. 5a3–

j3. The uncertainty ranges of projected precipitation fluc-

tuations calculated by the arithmetic ensemble mean

method were similar under the five SSPs scenarios. The

ranges of eight bias-corrected model simulation estima-

tions (the grey bars in the right of the figures) were almost

the same as the uncertainty ranges of MME for all five

scenarios. Therefore, the uncertainty range could not be

narrowed using the arithmetic ensemble mean method in

all basins under all scenarios. The magnitudes of the

uncertainty ranges of precipitation fluctuations were

inconsistent among different basins. The three southeastern

basins (Yangtze River, Southeast River, and Pearl River

St
an

da
rd

 D
ev

ia
tio

n

(i) Rivers in Southwest China basin

  5
  1

0  1
5  2

0  2
5  3

0  3
5

0

10

20

30

40

50

60

70

80
0.1 0.2 0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

C o r r e l a t i o n

C
o e

f f
i c

i e n
t

Obs.

A

B C

D

E

F

G
H I St

an
da

rd
 D

ev
ia

tio
n

(j) Rivers in Northwest China basin

  2
  4

  6
  8

0

5

10

15
0.1 0.2 0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

C o r r e l a t i o n

C
o e

f f
i c

i e n
t

Obs.

A

B

CD
E

F

G

HI

Fig. 4 continued
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basins) depicted the smallest uncertainty ranges

(17.43–39.24%, Fig. 5f3–h3). In contrast, over the North-

west River basin, larger uncertainty ranges of precipitation

change (29.69–79.26%) were detected (Fig. 5j3). This

might be due to the low precipitation in north China, as the

baseline of precipitation was small and the uncertainties of

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

(e1) (e2) (e3)

(f1) (f2) (f3)

(g1) (g2) (g3)

Fig. 5 Annual mean

precipitation anomalies (%)

from 1961 to 2099 over the a1,
a2, a3 whole China, and b1, b2,
b3–j1, j2, j3) the nine river

basins. The period 2015–2099

represented future projection

scenarios from different SSPs.

The shaded region represented

the ± 1 standard deviation

range of individual model

annual averages. The grey bars

in the right of the

figures represented the range of

8 model simulation estimations

for the mean precipitation

during 2090–2099
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precipitation changes would be relatively large. This situ-

ation might also be attributed to a lack of meteorological

stations in the Northwest River basin (Fig. 1).

4 Discussions

The outputs of global climate models are always biased and

unable to predict future climate trends with great accuracy

(Wu et al. 2017). Thus, bias correction and statistical

downscaling were used to improve the accuracy of CMIP6

outputs in reproducing the observed spatial pattern and a

long-term average of precipitation (Su et al. 2018). How-

ever, due to possible differences in the internal structure of

the models or the applied initial conditions, the responses

of the models are different to the same internal variability

even after bias correction (Katiraie-Boroujerdy et al. 2019).

To avoid this problem, according to the arithmetic

ensemble mean approach, the MME of eight bias-corrected

GCMs from CMIP6 was used in this study to project the

precipitation variabilities under five SSPs scenarios over

entire China and nine large basins. Interannual variations

could be suppressed in the model mean (Knutti and

Sedláček 2013). The results showed that, generally, all the

eight bias-corrected CMIP6 outputs captured the spatial

pattern of observed precipitation well, especially MIROC6.

However, there was a low agreement between observed

precipitation and the CMIP6 simulations in west china,

which has been discovered in a previous study (Chen and

Frauenfeld 2014). The annual mean precipitation in the

southwestern edge of the Southwest River basin has been

significantly overestimated for all bias-corrected models,

including the MME ([ 50%), which occurred in CMIP5

models as well (Chen and Frauenfeld 2014; Su et al. 2013).

Meanwhile, the bias in the high elevations of the Northwest

River basin exceeded - 60%. This underestimation pre-

sented disagreement with the results of Sun et al. (2015)

and Ou et al. (2013), which might be due to the revision of

CMIP6. The bias of west China was likely due to the coarse

resolution of models, difficult to fully reproduce the pro-

cesses like local circulation in complex topography (Su

et al. 2013). This might be also due to the induced error

during the interpolation process. The SD method is

dependent on the observed data (Wang and Chen 2013b),

so the lack of meteorological stations in western China

could cause a huge bias there. Compared to the observa-

tion, the modeled precipitation has been slightly under-

valued in most parts of south China (\ 10%), which was

similar to the results by Sun et al. (2015). This situation

was also in accordance with the underestimation of

extreme precipitation in southern China (Ou et al. 2013).

For temporal variability, MIROC6 and UKESM1-0-LL

performed the best among eight bias-corrected CMIP6

models, showing higher correlation coefficients of 0.61–

0.95 and 0.65–0.95, and lower centered RMS differences of

6.02–81.15 and 6.30-77.65. However, the two bias-cor-

rected models did not perform the best in all basins. In the

Haihe River, Yangtze River, and Northwest River basins,

(h1) (h2) (h3)

(i1) (i2) (i3)

(j1) (j2) (j3)

Fig. 5 continued
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Fig. 6 Precipitation variation rate from MIROC6, UKESM1-0-LL, and MME during different future periods relative to 1961–2010 under five

SSPs scenarios
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bias-corrected MIROC6 was superior to other bias-cor-

rected models. In the Huaihe River, Southeast River, and

Pearl River basins, bias-corrected UKESM1-0-LL per-

formed the best. The MME of eight bias-corrected CMIP6

models presented a better agreement with observations

than individual bias-corrected CMIP6 models. There were

small centered RMS differences in precipitation in MME

(5:22\EMME\57:07) compared to individual CMIP6

models. Meanwhile, the MME of eight bias-corrected

models showed close correlation

(0:79\0:79\rMME\0:98) with the observed data over

nine representative river basins and the whole of China.

These findings are consistent with previous studies

emphasizing that the MME techniques can reduce the

uncertainty of independent models effectively with better

performance (Feng et al. 2011; He et al. 2018; Katiraie-

Boroujerdy et al. 2019; Sun et al. 2015) described that the

trend of observations appeared in MME projections was

much better than any individual model, but it contained a

significant deviation. Overall, the precipitation fluctuations

and bias of MIROC6 and UKESM1-0-LL were greater than

those of MME.

Spatially, higher precipitation in south China

([ 700.0 mm) compared to north China (\ 700.0 mm) was

observed during 1961–2014. Temporally, huge inter-an-

nual variations existed in the evolution of precipitation

variabilities over nine large river basins and the whole of

China. Under all SSPs scenarios, the precipitation would

increase over entire China during 2015–2099. The increase

over north China will be higher than that in south China

under all SSPs scenarios. Some country-scale studies on

precipitation projection based on CMIP5 revealed the same

results that the precipitation will increase significantly over

most regions of China, and the increase in northern China

will be greater than that in southern China (Chen and

Frauenfeld 2014; Wang and Chen 2013a; Xu and Xu

2012). Similarly, Wang et al. (2018) pointed out that

annual precipitation will increase in the 2080s under

RCP8.5 and RCP4.5 scenarios over northeastern China. For

MIROC6, UKESM1-0-LL and the MME, the increase in

precipitation will even reach over 57.44% in the Northwest

River basin in the 2090s under the SSP5-8.5 scenario. This

upward tendency of precipitation in northwest China might

further alleviate the pressure of water shortage there, but

the upward trend in southeast China might aggravate the

risk of flood-induced disasters in these regions (Zheng et al.

2019). In the Yangtze River and Southeast River basins,

the precipitation of MIROC6 and MME in the 2010s was

all lower than that during 1961–2010 (- 6.53 to - 0.06%)

irrespective of high SPPs or low SSPs scenarios. According

to this phenomenon, Sun et al. (2015) indicated that the

precipitation will decrease in the two basins during

2011–2030 for all RCPs and increase substantially there-

after, because the enhanced monsoon circulation had a two-

stage evolution during 2010–2099 with a prominent

increase after the 2040s. However, the precipitation of

UKESM1-0-LL was lower than that in the baseline period

over the Song-Liao River, Huaihe River, Southeast River,

Pearl River, and Southwest River basins during the 2010s.

Overall, the three modeled precipitation all showed a

downward trend during the 2010s in the Southeast River

and Pearl River basins. In addition, there would be more

precipitation under the SSP5-8.5 scenario than SSP1-1.9

and SSP1-2.6 scenarios after 2060, except for the Huaihe

River, Yangtze River, Southeast River, and Pearl River

basins.

Uncertainties in climate models have often been a lim-

iting factor, in particular on local scales (Knutti and

(i1) (i2) (i3)

(j1) (j2) (j3)

Fig. 6 continued
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Sedláček 2013). However, the uncertainties of global cli-

mate models are unavoidable (Hawkins and Sutton 2010).

In this paper, the uncertainty ranges for precipitation

estimation could not be effectively narrowed by using the

arithmetic ensemble mean method. The uncertainty ranges

of precipitation fluctuations in north China are larger

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 7 Box-and-whisker plots for future precipitation under different scenarios along with observed and historical simulated precipitation data

sets relative to the historical average (1961–2014) over the a whole China, and b–j the nine river basins. The circles were outliers

Stochastic Environmental Research and Risk Assessment (2021) 35:831–848 845

123



(15.31–79.26%), while they are smaller in south China

(16.06–57.55%). This might be due to the low baseline of

precipitation in north China. In addition, both aerosols

forcing in the emission scenarios and aerosol-cloud module

of GCMs could impact the precipitation simulation and

projections (Lin et al. 2016, 2018). These results are sim-

ilar to the projections of CMIP5 precipitation over China

using the reliability ensemble average approach (Sun et al.

2015; Lehner et al. 2019) revealed that precipitation

changes were more uncertain as well. Generally, the bias of

the ensemble results was much lower than that of MIROC6

and UKESM1-0-LL, and the bias of low SSPs scenarios

was relatively lower. However, in the Haihe River and

Huaihe River basins, the bias of MIROC6 had the lowest

bias under medium SSPs scenarios. The uncertainties could

result in low confidence in regional projections of precip-

itation (Smith et al. 2020). Therefore, more attention

should be paid to more reliable GCMs and better methods

of narrowing uncertainties.

5 Conclusions

In this study, we analyzed the changes of precipitation

during 1961–2099 over nine large river basins of China

based on eight CMIP6 models bias-corrected by the

method of EDCDF under SSP1-1.9, SSP1-2.6, SSP2-4.5,

SSP3-7.0, and SSP5-8.5 scenarios. The major conclusions

were summarized as follows:

1. Generally, all the bias-corrected CMIP6 models cap-

tured the spatial pattern of the precipitation well in

China during 1961–2014. However, the simulated

annual mean precipitation of CMIP6 outcomes has

been significantly overvalued in the Southwest River

basin ([ 50%), while it was undervalued in the high

elevations of the Northwest River basin (\ -60%).

Among all the models, the MIROC6 and UKESM1-0-

LL models have a better performance in simulating

precipitation over China with higher correlation coef-

ficients of 0.61–0.95 and 0.65–0.95, respectively. The

MME of eight bias-corrected CMIP6 models showed

better agreement with observed precipitation than

individual CMIP6 model in all nine river basins during

the period 1961–2014 with the lowest centered RMS

differences (5.22 \ EMME \ 57.07) and the highest

correlations (0.79\ rMME \ 0.98).

2. The precipitation will increase over the whole of China

under all SSPs scenarios during 2015–2099. Moreover,

the rate of precipitation increase over north China was

higher than that in south China under all the SSPs

scenarios. And the increase of precipitation in the

Northwest River basin will reach over 57.44% in the

2090s under SSP5-8.5 for the MME. This upward

tendency in north China might alleviate the shortage of

water there, but will not change the pattern of more

rain in the south (924.2–877.7 mm) and less in the

north (180.4–707.6 mm).

3. In the southeastern river basins, the precipitation of

MIROC6 and MME in the 2010s was all lower than

that during 1961–2010 (- 6.53 to - 0.06%) under all

SSPs scenarios. While the precipitation will increase

obviously under all the SSPs scenarios, especially for

the SSP5-8.5 scenario after the year of 2060.

4. Uncertainties were unavoidable for precipitation esti-

mation. However, the bias of the MME was much

lower than that of individual CMIP6 model, and the

bias of lower SSPs scenarios was relatively lower.

Generally, the uncertainty ranges of precipitation

variability in north China (15.31–79.26%) were larger

compared to south China (16.06–57.55%). There is still

room for reducing the uncertainty of regional precip-

itation change prediction. Nevertheless, this paper

revealed the projections of precipitation and disclosed

the uncertainties of CMIP6 models over China, which

will contribute to a better understanding of the

evolution of regional precipitation in China and the

world in the future.
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