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Abstract
A linear combination, with negative weights, of two continuous covariance functions has been analyzed by a few authors

just for special cases and only in the real domain. However, a covariance is a complex valued function: for this reason, the

general problem concerning the difference of two covariance functions in the complex domain needs to be analyzed, while

it does not yet seem to have been addressed in the literature; hence, exploring the conditions such that the difference of two

covariance functions is again a covariance function can be considered a further property. Therefore, this paper yields a

contribution to the theory of correlation, hence the results cannot be restricted to the particular field of application. Starting

from the difference of two complex covariance functions defined in one dimensional Euclidean space, wide families of

models for the difference of two complex covariance functions can be built in any dimensional space, utilizing some well

known properties. In particular, the difference of two real covariance functions has been considered; moreover, the

difference between some special isotropic covariance functions has also been analyzed. A detailed analysis of the

parameters of the models involved has been proposed; this kind of analysis opens a gate for modeling, in any dimensional

space, the correlation structure of a peculiar class of complex valued random fields, as well as the subset of real valued

random fields. Some relevant hints about how to construct the subset of real covariance functions characterized by negative

values have also been given.

Keywords Complex covariance functions � Spectral distribution functions � Spectral density functions

1 Introduction

The class of continuous covariance functions is completely

characterized by Bochner’s theorem: this important result

shows that a covariance function (c.f.) is, in general, a

complex valued function; for this reason, the whole family

of real c.f.s, which are often utilized in several applications

(Cressie and Huang 1999; De Iaco et al. 2001, 2002;

Gneiting 2002b), only represents a subset of the wider set

of complex c.f.s and are, very often, positive in the whole

set in which they are defined.

Properties of c.f.s for second order stationary random

fields are well known in the literature (Yaglom 1987;

Christakos 2017); in particular, it is well known that, in

general, the difference of two c.f.s is not a c.f.

In the literature, a few authors have addressed the

problem of investigating the difference (or linear combi-

nations with negative weights) of two c.f.s; moreover, this

kind of analysis has been performed only in the real

domain. At this purpose, a linear combination, with nega-

tive weights, of two real valued spatial or spatio-temporal

c.f.s has been analyzed by Ma (2005): however, the two

real c.f.s involved in the analysis are isotropic and belong

to the same family. In addition, a class of c.f.s which allows

negative values has also been proposed by Gregori et al.

(2008): although it is not required that the c.f.s involved

belong to the same class, the applications are however

restricted to the case of Gaussian and Matern families

(Matern 1980).

In the very last years some efforts have been made in

geostatistics utilizing complex formalism. In particular, an

application to predict a wind field has been proposed by De

Iaco and Posa (2016), and a first attempt of complex
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formalism in the spatio-temporal context has been provided

by Cappello et al. (2020).

As far as we know, there are no contributions in the

literature concerning the difference of two c.f.s in the

complex domain. Hence, this paper can be considered one of

the first attempts to explore the conditions under which the

difference of two c.f.s in the complex domain is again a c.f.:

these results can be added to the classical properties of c.f.s,

well known in the literature. This paper thus yields a general

contribution to the theory of correlation, hence the results

cannot be restricted to the particular field of application (i.e.,

geostatistics, time series analysis). In particular, valid

models for the difference of c.f.s in the complex domain as

well as in the real domain will be proposed; moreover, in

order to provide a complete scenario of the subject to be

utilized in several and different situations, some examples of

the difference of two isotropic c.f.s are also explored for the

two and three dimensional Euclidean spaces.

As will be shown, if the conditions for which the dif-

ference of two c.f.s provides a new c.f., in R, are satisfied,

the models obtained through this difference are character-

ized by different features: for example, they could be non

negative in the whole domain, or could be characterized by

negative values in a subset of their domain. Indeed, in

several applications concerning biology, hydrology and

spatio-temporal turbolence, c.f.s with negative values are

often needed (Shkarofsky 1968; Pomeroy et al. 2003).

The various examples, concerning the difference of two

c.f.s and proposed in this paper, are flexible enough to be

utilized in several applications pertaining to the complex

domain, as well as to the subset of the real domain. In

particular, it will be shown how some special families of

c.f.s, obtained through the difference of two c.f.s, present

some relevant and flexible characteristics which the stan-

dard parametric families of c.f.s and their linear combi-

nations with non negative coefficients, as well as their

products, are not able to satisfy.

This paper is organized as follows: in Sect. 2 some

characteristics of continuous c.f.s in the complex domain

are summarized. In Sect. 3 conditions for which the dif-

ference of two c.f.s is again a c.f. have been analyzed in the

complex domain, as well as in the special case of the real

domain through a detailed analysis involving the parame-

ters of these models; in particular, starting from separable

models, the c.f.s obtained through the difference are non

separable. In the case of real c.f.s, some well known

models, often utilized in the applications, have been con-

sidered; some examples of the difference of two isotropic

c.f.s are also explored. The results can be utilized in a

flexible way in any dimensional domain. An overview and

some relevant hints about how to construct c.f.s with

negative values have been given in Sect. 4, whereas the

relevance of the results has been pointed out in Sect. 5.

2 A brief overview

In this section, a brief outline of continuous c.f.s, which are

completely characterized by Bochner’s theorem (Bochner

1959), is provided. Let’s denote with Rn the Euclidean n-

dimensional space, with C the set of the complex numbers

and i the imaginary unit.

Theorem 1 Bochner’s theorem. Let C : Rn ! C, be a

Hermitian function, then C is a continuous c.f. if and only if

it is of the form

CðxÞ ¼
Z
Rn

expðixTxÞdFðxÞ; ð1Þ

where F is a non decreasing and non negative bounded

measure on Rn.

Thec.f.C in (1) canalsobewrittenas:CðxÞ ¼ Cre þ iCim;where

Cre ¼
Z
Rn

cosðxTxÞdFðxÞ

and

Cim ¼
Z
Rn

senðxTxÞdFðxÞ;

in particular, Cre is a real c.f., whereas Cim is an odd

function and it is not a c.f..

According to the previous theorem, any continuous c.f.

can be represented as in (1) and the converse is also true.

Please note that as it is the Fourier transform of the finite

measure F, the function C must be continuous. From (1) it

follows that:

1. Cð0Þ� 0;

2. Cð�xÞ ¼ CðxÞ;
3. jCðxÞj �Cð0Þ;
where the bar denotes complex conjugate. If the non neg-

ative spectral distribution function F is absolutely contin-

uous, then there exists: f : Rn �! R; such that:

CðxÞ ¼
Z
Rn

expðixTxÞf ðxÞdx; ð2Þ

where f is called spectral density function, it is non nega-

tive and integrable. In general, there is no guarantee that C

is integrable. If C is integrable, then the spectral distribu-

tion function F is absolutely continuous and the spectral

density function f can be expressed in terms of the c.f. C,

i.e.,

f ðxÞ ¼ 1

ð2pÞn
Z
Rn

expð�ixTxÞCðxÞdx: ð3Þ

If F is an absolutely continuous spectral distribution

function, then
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~FðxÞ ¼ Cð0Þ � Fð�xÞ

is also a an absolutely continuous spectral distribution

function and it is called the conjugate spectral distribution

of F.

Corollary 1 The c.f. of the conjugate spectral distribution
~F is the conjugate c.f. of C, i.e.,

CðxÞ ¼
Z
Rn

expðixTxÞd ~FðxÞ:

Hence, if C is a c.f., then C is also a c.f..

Corollary 2 If the spectral distribution function F is

absolutely continuous, then the c.f. of the spectral density

function ~f ðxÞ ¼ f ð�xÞ, corresponding to the conjugate

spectral distribution ~F, is the conjugate c.f. of C of the

spectral density function ~f , i.e.,

CðxÞ ¼
Z
Rn

expðixTxÞ ~f ðxÞdðxÞ:

An absolutely continuous spectral distribution function

is said to be symmetric if it is equal to its conjugate, i.e.,
~FðxÞ ¼ FðxÞ. In this last case, the spectral density func-

tion is an even function and the corresponding covariance

is a real function. Equivalently, a c.f. is a real function if

and only if it is equal to its conjugate, i.e., CðxÞ ¼ CðxÞ: In
order to construct models for the difference of two c.f.s, it

is worth underlining the following aspects:

• if the spectral distribution function is not symmetric or,

alternatively, the spectral density function is not an

even function, the c.f. will necessarily be a complex

c.f..

• On the other hand, if the spectral distribution function is

symmetric or, alternatively, the spectral density func-

tion is an even function, the c.f. will necessarily be a

real c.f.. In this case, the two spectral density functions

involved in the difference of two c.f.s, are both even

functions, or, as will be shown in the next section, the

two spectral density functions couldn’t both be even

functions, however their difference could be, in some

cases, an even function.

• Complex c.f.s can be constructed in any dimensional

space; at this purpose, it is important to provide some

useful details about the various techniques which have

been proposed in the literature. In particular,

• utilizing the well known closure properties of c.f.s;

• through the construction of separable models, i.e.

CðxÞ ¼
Yn
i¼1

CiðxiÞ; x ¼ ðx1; . . .; xnÞ 2 Rn; ð4Þ

where each component in the product is a c.f. in R;

in particular, if Fi is the spectral distribution func-

tion of Ci in the representation (1), i ¼ 1; . . .; n, then

C also has a representation as in (1), where

FðxÞ ¼
Yn
i¼1

FiðxiÞ; x ¼ ðx1; . . .;xnÞ 2 Rn; ð5Þ

• by considering the subclass of isotropic c.f.s; in this

case, different results based on the spectral repre-

sentation through Bessel functions (Matern 1980;

Yaglom 1987), completely monotone functions

(Schoenberg 1938), sufficient conditions on positive

definiteness for isotropic c.f.s (Polya 1949), have

been utilized.

3 Difference of two covariance functions

As already underlined, the results given by Ma (2005) and

Gregori et al. (2008), concerning the difference between

two c.f.s, are only valid in the real domain. On the other

hand, the corollaries presented in this section are valid in

the complex domain, i.e., for any c.f. defined as in (1);

hence, these results can be considered further properties for

the difference of two c.f.s in the complex domain. Valid

models for the difference of c.f.s in the complex domain, as

well as in the real domain, will be constructed by utilizing

the results of the same corollaries. The dependence of a c.f.

from a vector of parameters will be properly specified,

because all the results depend on these parameters.

Corollary 3 Let Ci : R
n ! C; i ¼ 1; 2 be c.f.s and define

Cðx;KÞ ¼ AC1ðx; aÞ � BC2ðx; bÞ; x ¼ ðx1; . . .; xnÞ 2 Rn;

ð6Þ

where A[ 0;B[ 0; a and b are vectors of parameters and

K ¼ ðA;B; a; bÞ:
Because of Bochner’s theorem, two different cases need

to be analyzed:

• the spectral distribution functions Fi; i ¼ 1; 2, which

define Ci; i ¼ 1; 2, respectively, are not absolutely

continuous. In this case the corresponding c.f.s can be

written as follows:
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C1ðx; aÞ ¼
Z
Rn

expðixTxÞdF1ðx; aÞ;

C2ðx; bÞ ¼
Z
Rn

expðixTxÞdF2ðx; bÞ;

then

Cðx;KÞ ¼
Z
Rn

expðixTxÞdðAF1ðx; aÞ � BF2ðx; bÞÞ ð7Þ

is a c.f. if and only if, for some suitable values of the

vector of parameters K and x 2 Rn, ðAF1 � BF2Þ is a

non negative bounded function on Rn;

• the spectral distribution functions Fi; i ¼ 1; 2, which

define Ci; i ¼ 1; 2, respectively, are absolutely contin-

uous. In this case, the corresponding c.f.s can be written

as follows:

C1ðx; aÞ ¼
Z
Rn

expðixTxÞf1ðx; aÞdx;

C2ðx; bÞ ¼
Z
Rn

expðixTxÞf2ðx; bÞdx;

with fiðx; �Þ� 0;x 2 Rn and
R
Rn fiðx; �Þdx\1;

i ¼ 1; 2; then

Cðx;KÞ ¼
Z
Rn

expðixTxÞðAf1ðx; aÞ � Bf2ðx;bÞÞdx ð8Þ

is a c.f. if and only if, for some suitable values of the

vector of parameters K and x 2 Rn;

Af1ðx; aÞ � Bf2ðx; bÞ� 0;Z
Rn
ðAf1ðx; aÞ � Bf2ðx; bÞÞdx\þ1: ð9Þ

The second property of (9) is always satisfied because

ðAf1 � Bf2Þ is a difference of integrable functions, hence

only the first property of (9) need to be verified.

Two special cases of Corollary 3 are given hereafter. In

particular, in the next Corollary 4 it is assumed that the

function C in (6) is defined as the product of the difference

of c.f.s, where each c.f. in the difference is defined in R,

whereas, in the next Corollary 5 it is assumed that the

function C in (6) is defined as the difference of the product

of c.f.s, where each c.f. is defined in R:

Of course, the above two models are completely dif-

ferent; in particular, the model in the Corollary 4 has been

built by considering the following aspects:

1. it is a special case of Corollary 3 in R,

2. it is an application of Eq. (4).

In the Corollary 5, starting from separable models in C, the

components of the real and imaginary part of the resulting

c.f. are non separable and anisotropic.

Corollary 4 Let Cj : R ! C; j ¼ 1; 2 be c.f.s and define

C12ðkÞðxk; ak; bkÞ ¼ AkC1ðxk; akÞ
� BkC2ðxk; bkÞ;Ak [ 0;Bk [ 0; k ¼ 1; . . .; n;

ð10Þ

and

Cðx;HÞ ¼
Yn
k¼1

�
AkC1ðxk; akÞ � BkC2ðxk; bkÞ

�
; ð11Þ

where A ¼ ðA1; . . .;AnÞ;B ¼ ðB1; . . .;BnÞ; a ¼ ða1; . . .; anÞ
and b ¼ ðb1; . . .; bnÞ are vectors of parameters, x ¼
ðx1; . . .; xnÞ 2 Rn and H ¼ ðA;B; a; bÞ:

Because of Bochner’s theorem, two different cases need

to be analyzed:

• the spectral distribution functions F1ðxk; akÞ;F2ðxk;bkÞ,
which define C1ðxk; akÞ and C2ðxk; bkÞ; k ¼ 1; . . .; n;

respectively, are not absolutely continuous. In this case

the c.f.s can be written as follows:

C1ðxk; akÞ ¼
Z
R

expðixkxkÞdF1ðxk; akÞ;

C2ðxk; bkÞ ¼
Z
R

expðixkxkÞdF2ðxk; bkÞ;

then, each

C12ðkÞðxk;ak;bkÞ

¼
Z
R

expðixkxkÞdðAkFkðxk;akÞ�BkF2ðxk;bkÞÞ; ð12Þ

is a c.f. if and only if, for some suitable values of the

vector of parameters H and xk 2 R; k ¼ 1; . . .; n

AkF1ðxk; akÞ � BkF2ðxk; bkÞ� 0; k ¼ 1; . . .; n; ð13Þ

and each ðAkF1 � BkF2Þ; k ¼ 1; . . .; n; is a non

decreasing function.

As a consequence, C defined in Eq. (11) is a c.f..

• The spectral distribution functions

F1ðxk; akÞ;F2ðxk; bkÞ, which define C1ðxk; akÞ and

C2ðxk; bkÞ; k ¼ 1; . . .; n; respectively, are absolutely

continuous. In this case, these c.f.s can be written as

follows:

C1ðxk; akÞ ¼
Z
R

expðixkxkÞf1ðxk; akÞdxk;

C2ðxk; bkÞ ¼
Z
R

expðixkxkÞf2ðxk; bkÞdxk;

with fjðxk; �Þ[ 0;xk 2 R and
R
R
fjðxk; �Þdxk\1;

j ¼ 1; 2; k ¼ 1; . . .; n;
then, each

1372 Stochastic Environmental Research and Risk Assessment (2021) 35:1369–1386

123



C12ðkÞðxk; ak; bkÞ

¼
Z
R

expðixkxkÞdðAkFkðxk; akÞ � BkF2ðxk;bkÞÞ ð14Þ

is a c.f. if and only if, for some suitable values of the

vector of parameters H and xk 2 R; k ¼ 1; . . .; n;

Akf1ðxk; akÞ � Bkf2ðxk; bkÞ� 0;Z
R

ðAkf1ðxk; akÞ � Bkf2ðxk; bkÞÞdxk\þ1: ð15Þ

Note that the second condition in (15) is always sat-

isfied; as a consequence of Eq. (4), C defined in Eq. (11)

is a c.f..

Corollary 5 Let Cj : R ! C; j ¼ 1; 2 be c.f.s and define

Cðx;HÞ ¼
Yn
k¼1

AkC1ðxk; akÞ �
Yn
k¼1

BkC2ðxk; bkÞ;

Ak [ 0;Bk [ 0; k ¼ 1; . . .; n; ð16Þ

where A ¼ ðA1; . . .;AnÞ;B ¼ ðB1; . . .;BnÞ; a ¼ ða1; . . .; anÞ
and b ¼ ðb1; . . .; bnÞ are vectors of parameters,

x ¼ ðx1; . . .; xnÞ 2 Rn andH ¼ ðA;B; a; bÞ: Let the spectral
distribution functions which define C1ðxk; akÞ and

C2ðxk; bkÞ; k ¼ 1; . . .; n; respectively, be absolutely contin-

uous, with

fjðxk; �Þ[ 0;xk 2 R;

Z
R

fjðxk; �Þdxk\1;

j ¼ 1; 2; k ¼ 1; . . .; n:

In this case, the expression (16) can be written as follows:

Cðx;HÞ ¼
Yn
k¼1

�
Ak

Z
R

expðixkxkÞf1ðxk; akÞdxk

�

�
Yn
k¼1

�
Bk

Z
R

expðixkxkÞf2ðxk; bkÞdxk

�

¼
Z
Rn

expðixTxÞ
�Yn

k¼1

Akf1ðxk; akÞ �
Yn
k¼1

Bkf2ðxk; bkÞ
�
dx:

ð17Þ

Then, (17) is a c.f. if and only if, for some suitable values

of the vector of parameters H and x 2 Rn;
Yn
k¼1

�
Akf1ðxk; akÞ
Bkf2ðxk; bkÞ

�
� 1; xk 2 R; k ¼ 1; . . .; n: ð18Þ

Remarks

• Note that if (15) is satisfied, then inequality (18) is

verified; hence, the second part of Corollary 4 implies

Corollary 5.

• No hypothesis on the spectral distribution function (i.e.

to be symmetric or not), as well as on the spectral

density function (i.e. to be even or not) are made in the

Corollaries 3, 4 and 5; hence, these corollaries provide a

general result on the c.f. C in (7), (8), (11) and (16),

which could be, in general, a complex c.f..

• The complex c.f. C defined in (11) is the product of

complex c.f.s C12ðkÞ; k ¼ 1; . . .; n; then C is a separable

c.f., where separability is referred to the complex domain

C. However, the real and the imaginary components

outcoming from the above product are non separable in

Rn and are characterized by non geometric anisotropy.

• The complex c.f.C defined in (16) is the difference of two

products of complex c.f.s, where each product is separable

in the complex domain C. However, the real and the

imaginary components of the resulting complex c.f. are

non separable in Rn and are characterized by non

geometric anisotropy.

• If the two spectral density functions f1 and f2 in (8) are

even functions and conditions (9) are satisfied, then

ðAC1 � BC2Þ is a real c.f..

• If just one of the two spectral density functions f1 or f2
in (8) is an even function, then ðAf1 � Bf2Þ cannot be an
even function, as a consequence, if conditions (9) are

satisfied, ðAC1 � BC2Þ is a complex c.f..

• It may happen that if the two spectral density functions

f1 and f2 in (8) are not even functions, then ðAf1 � Bf2Þ
could be an even function, as a consequence, if

conditions (9) are satisfied, ðAC1 � BC2Þ is a real c.f.,

as shown in the following example.

Example 1 Consider, in R, the following spectral density

functions:

f1ðxÞ ¼ e�jxjðx2 þ xþ 3Þ; f2ðxÞ ¼ e�jxjðx2 þ xþ 2Þ;

which are not even functions, hence the corresponding c.f.s

are complex functions. It is easy to verify that:

f1ðxÞ � f2ðxÞ ¼ e�jxj; is an even spectral density function,

as a consequence, the corresponding c.f. is a real function. A

generalization of this example will be given in Corollary 7.

• If C1 and C2 are real and continuous c.f.s and

C1ðxÞ�C2ðxÞ; x 2 Rn; then ðC2 � C1Þ is not, in gen-

eral, a c.f., as shown in the following example.

Example 2 Consider the following c.f.s:

C1ðxÞ ¼ e�2jxj; C2ðxÞ ¼ e�jxj;with C1ðxÞ�C2ðxÞ; x 2 R.

Note that CðxÞ ¼ C2ðxÞ � C1ðxÞ is not a c.f., because

Cð0Þ ¼ 0, and CðxÞ[Cð0Þ; x 6¼ 0, which contradicts the

third property of a c.f., given in Section 2.

• If C1 and C2 are real correlation functions, i.e.,

C1ð0Þ ¼ C2ð0Þ ¼ 1; then CðxÞ ¼ C1ðxÞ � C2ðxÞ cannot
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ever be a c.f. (except for the trivial case C1ðxÞ ¼
C2ðxÞ ¼ 0; x 2 Rn); indeed, in this case Cð0Þ ¼ 0,

however, jCðxÞj �Cð0Þ; which contradicts one of the

main properties of c.f.s.

• If the spectral distribution functions Fi; i ¼ 1; 2, which

define Ci; i ¼ 1; 2, respectively, in Corollary 3 are abso-

lutely continuous, then the resulting c.f.C is strictly positive

definite (De Iaco et al. 2011; De Iaco and Posa 2018).

Some significant examples, utilizing the results of the

previous corollaries, will be given hereafter. In particular,

1. in the Sect. 3.1, some examples for the difference of

c.f.s in the complex domain will be provided.

2. In the Sect. 3.2, some examples for the difference of

c.f.s in the real domain will be also given; in this last

case, differently from the models described in Ma

(2005) which are isotropic and they belong to the same

class, the c.f.s proposed in this paper, obtained as the

difference of two real c.f.s, are anisotropic and non

separable, although they have been built starting from

separable models and they do not necessarily belong to

the same class. Some well known models, utilized in

the applications, have been considered.

3. In the Sect. 3.3 some examples for the difference of

two isotropic c.f.s are provided for the two and three

dimensional Euclidean space; in particular, for some of

these examples the c.f.s involved in the difference

could not belong to the same family.

3.1 Difference of two complex covariance
functions

The following result shows a special case in which the

difference of two spectral distribution functions, which are

not absolutely continuous, is again a spectral distribution

function. As a consequence, the Fourier transform of this

last spectral distribution function, corresponding to the

difference of two c.f.s, will be a c.f..

Corollary 6 Let F1 and F2 be spectral distribution func-

tions on R; i.e.,:

F1ðx; aÞ ¼
0 x\t1

ak tk �x\tkþ1 i ¼ 1; . . .; n� 1

an x� tn;

8><
>: ð19Þ

F2ðx; bÞ ¼
0 x\t1

bk tk �x\tkþ1 k ¼ 1; . . .; n� 1

bn x� tn;

8><
>: ð20Þ

where

a ¼ ða1; . . .; anÞ; b ¼ ðb1; . . .; bnÞ;
bk\ak; ak [ 0; bk [ 0; k ¼ 1; . . .; n

with ak\akþ1; bk\bkþ1; and ðak � bkÞ\ðakþ1 � bkþ1Þ;
k ¼ 1; . . .; n� 1; let

C1ðx; aÞ ¼
Z
R

expðixxÞdF1ðx; aÞ;

C2ðx; bÞ ¼
Z
R

expðixxÞdF2ðx; bÞ:

Then: C1ðx; aÞ � C2ðx; bÞ ¼
R
R
expðixxÞdðF1ðx; aÞ � F2ðx; bÞÞ;

is a c.f., because ðF1 � F2Þ is a spectral distribution func-

tion, i.e., it is non negative and a non decreasing function.

Moreover, if ðF1 � F2Þ is a non symmetric spectral dis-

tribution function, then ðC1 � C2Þ is a complex c.f..

Corollary 6 is valid in R, however, utilizing Eqs. (4) and

(5), it can be extended to any dimensional space Rn: In the

next examples, as well as in the examples shown in the

Sect. 3.2, the same formalism utilized for the Corollaries 3,

4 and 5 will be retained: the generic coordinate of the one

dimensional space R will be denoted with xk; k ¼ 1; . . .; n.

In this way, starting from the one dimensional space,

covariance models in Rn will be easily constructed apply-

ing (11) and (16). These aspects will be underlined at the

end of the examples shown hereafter and at the end of the

examples discussed in the Sect. 3.2.

An application of Corollary 3 for absolutely continuous

spectral distribution functions is given in the following

examples, where the difference of two spectral density

functions is considered: such a difference is a spectral

density function if conditions (9) are satisfied; as a con-

sequence, the difference of the corresponding c.f.s is again

a c.f.. In particular, in the Examples 3, 4 and 5 the spectral

density functions f1 and f2 are not both even functions,

whereas in the Example 6 f1 is an even function while f2 is

not an even function.

Example 3 Let’s consider, in R, the following spectral

density functions, with 0\bk\ak; 0\Bk\Ak;xk 2 R;

k ¼ 1; . . .; n:

f1ðxk; akÞ ¼
0 xk\0

1 0�xk\ak
0 xk � ak

8><
>: ð21Þ

f2ðxk; bkÞ ¼
0 xk\0

1 0�xk\bk
0 xk � bk

8><
>: ð22Þ

which are not even functions; since:

Akf1ðxk; akÞ � Bkf2ðxk; bkÞ� 0;xk 2 R; then the follow-

ing difference:
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AkC1ðxk; akÞ � BkC2ðxk; bkÞ

¼
Z
R

expðixkxkÞðAkf1ðxk; akÞ � Bkf2ðxk; bkÞÞdxk

¼ Ak
sinðakxkÞ

xk
� Bk

sinðbkxkÞ
xk

þ i

"
Ak

2

xk
sin2

�
akxk
2

�
� Bk

2

xk
sin2

�
bkxk
2

�#
;

with AkC1ð0; akÞ � BkC2ð0; bkÞ ¼ Akak � Bkbk, is a com-

plex c.f., xk 2 R; k ¼ 1; . . .; n:

According to Corollaries 4 and 5, the following

functions:

Cðx;HÞ ¼
Yn
k¼1

�
AkC1ðxk; akÞ � BkC2ðxk; bkÞ

�
;

C�ðx;HÞ ¼
Yn
k¼1

AkC1ðxk; akÞ �
Yn
k¼1

BkC2ðxk; bkÞ;

are complex c.f.s in Rn; where A ¼ ðA1; . . .;AnÞ;
B ¼ ðB1; . . .;BnÞ; a ¼ ða1; . . .; anÞ; b ¼ ðb1; . . .; bnÞ and

H ¼ ðA;B; a; bÞ are vectors of parameters,

x ¼ ðx1; . . .; xnÞ 2 Rn; and

C1ðxk; akÞ ¼
sinðakxkÞ

xk
þ i

2

xk
sin2

�
akxk
2

�
;

C2ðxk; bkÞ ¼
sinðbkxkÞ

xk
þ i

2

xk
sin2

�
bkxk
2

�
:

Example 4 Let’s consider, in R, the following spectral

density functions, with 0\ak\bk; 0\Bk\Ak;xk

2 R; k ¼ 1; . . .; n

f1ðxk; akÞ ¼
0 xk\0

expð�akxkÞ xk � 0

�
ð23Þ

f2ðxk; bkÞ ¼
0 xk\0

expð�bkxkÞ xk � 0

�
ð24Þ

which are not even functions and let C1 and C2 be the

corresponding c.f.s of f1 and f2, respectively; since:

Akf1ðxk; akÞ � Bkf2ðxk; bkÞ� 0; xk 2 R; then the fol-

lowing difference:

AkC1ðxk; akÞ � BkC2ðxk; bkÞ

¼
Z
R

expðixkxkÞðAkf1ðxk; akÞ � Bkf2ðxk; bkÞÞdxk

¼ Akak
ðx2k þ a2kÞ

� Bkbk
ðx2k þ b2kÞ

þ i

"
Akxk

ðx2k þ a2kÞ
� Bkxk

ðx2k þ b2kÞ

#
;

xk 2 R; k ¼ 1; . . .; n; ð25Þ

is a complex c.f..

According to Corollaries 4 and 5, the following

functions:

Cðx;HÞ ¼
Yn
k¼1

�
AkC1ðxk; akÞ � BkC2ðxk; bkÞ

�
;

C�ðx;HÞ ¼
Yn
k¼1

AkC1ðxk; akÞ �
Yn
k¼1

BkC2ðxk; bkÞ;

are complex c.f.s, both defined in Rn; where

A¼ ðA1; . . .;AnÞ;B¼ðB1; . . .;BnÞ;a¼ða1; . . .;anÞ;
b¼ðb1; . . .;bnÞ andH¼ðA;B;a;bÞ are vectors of

parameters, x¼ðx1; . . .;xnÞ2Rn; and

C1ðxk; akÞ ¼
ak

ðx2k þ a2kÞ
þ i

xk
ðx2k þ a2kÞ

;

C2ðxk; bkÞ ¼
bk

ðx2k þ b2kÞ
þ i

xk

ðx2k þ b2kÞ
:

Example 5 Let’s consider, in R, the spectral density

functions defined in the Eqs. (23) and (22) respectively,

with ak [ 0; bk [ 0;Ak [ 0;Bk [ 0; k ¼ 1; . . .; n; note that

f1 and f2 are not even functions and define:

f ðxk; ak; bk;Ak;BkÞ ¼ Akf1ðxk; akÞ � Bkf2ðxk; bkÞ;
xk 2 R; k ¼ 1; . . .; n; ð26Þ

this last function is a spectral density function if

0\Bk\Ak and

bk ¼
ln
�
Ak

Bk

�
ak

; k ¼ 1; . . .; n:

If C1 and C2 are the corresponding c.f.s of f1 and f2,

respectively, then the following difference:

AkC1ðxk; akÞ � BkC2ðxk; bkÞ

¼
Z
R

expðixkxkÞðAkf1ðxk; akÞ � Bkf2ðxk; bkÞÞdxk

¼ Akak
ðx2k þ a2kÞ

� Bk
sinðbkxkÞ

xk

þ i

"
Akxk

ðx2k þ a2kÞ
� Bk

2

xk
sin2

�
bkxk
2

�#
;

xk 2 R; k ¼ 1; . . .; n ð27Þ

with AkC1ð0; akÞ � BkC2ð0; bkÞ ¼
Ak

ak
� Bkbk, is a complex

c.f..

According to Corollaries 4 and 5, the following

functions:
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Cðx;HÞ ¼
Yn
k¼1

�
AkC1ðxk; akÞ � BkC2ðxk; bkÞ

�
;

C�ðx;HÞ ¼
Yn
k¼1

AkC1ðxk; akÞ �
Yn
k¼1

BkC2ðxk; bkÞ;

are complex c.f.s, both defined in Rn; where

A ¼ ðA1; . . .;AnÞ;B ¼ ðB1; . . .;BnÞ; a ¼ ða1; . . .; anÞ;
b ¼ ðb1; . . .; bnÞ and H ¼ ðA;B; a; bÞ are vectors of

parameters, x ¼ ðx1; . . .; xnÞ 2 Rn; and

C1ðxk; akÞ ¼
ak

ðx2k þ a2kÞ
þ i

xk
ðx2k þ a2kÞ

;

C2ðxk; bkÞ ¼
sinðbkxkÞ

xk
þ i

2

xk
sin2

�
bkxk
2

�
:

Example 6 Let’s consider, in R, the spectral density

functions

f1ðxkÞ ¼ expð�akjxkjÞ; ak [ 0;

and f2 defined in Eq. (22), where f1 is an even function and

f2 is not an even function and define, with

ak [ 0; bk [ 0;Ak [ 0;Bk [ 0; k ¼ 1; . . .; n:

f ðxk; ak; bk;Ak;BkÞ ¼ Akf1ðxk; akÞ � Bkf2ðxk; bkÞ;
xk 2 R; k ¼ 1; . . .; n;

ð28Þ

this last function is a spectral density function if

0\Bk\Ak and bk ¼
ln
�
Ak

Bk

�
ak

; k ¼ 1; . . .; n: If C1 and C2

are the corresponding c.f.s of f1 and f2, respectively, then

the following difference:

AkC1ðxk; akÞ � BkC2ðxk; bkÞ

¼
Z
R

expðixkxkÞðAkf1ðxk; akÞ � Bkf2ðxk; bkÞÞdxk

¼ 2Akak
ðx2k þ a2kÞ

� Bk
sinðbkxkÞ

xk
� iBk

2

xk
sin2

�
bkxk
2

�
;

xk 2 R; k ¼ 1; . . .; n; ð29Þ

is a complex c.f.. According to Corollaries 4 and 5, the

following functions:

Cðx;HÞ ¼
Yn
k¼1

�
AkC1ðxk; akÞ � BkC2ðxk; bkÞ

�
;

C�ðx;HÞ ¼
Yn
k¼1

AkC1ðxk; akÞ �
Yn
k¼1

BkC2ðxk; bkÞ;

are complex c.f.s, where A ¼ ðA1; . . .;AnÞ;
B ¼ ðB1; . . .; BnÞ; a ¼ ða1; . . .; anÞ; b ¼ ðb1; . . .; bnÞ and

H ¼ ðA;B; a; bÞ are vectors of parameters,

x¼ðx1; ...;xnÞ2Rn; and C1ðxk;akÞ¼ 2ak
ðx2

k
þa2

k
Þ ; C2ðxk;bkÞ¼

sinðbkxkÞ
xk

þ i 2xk sin
2

�
bkxk
2

�
:

3.2 Difference of two real covariance functions

In the following, some applications of Corollary 3, 4 and 5 are

given for the subset of the real c.f.s: hence,C1 andC2 defined in

the same corollaries are real c.f.s which depend on some

parameters. In particular, starting from some well known c.f.s

(exponential, Gaussian and rational models), the difference of

the various combinations of these last models has been ana-

lyzed: it will be shown that the difference of two selected c.f.s

could be a c.f. for somevalues of the parameters onwhich these

models depend. On the other hand, the same difference could

not be a c.f. for other values of these parameters. The models

obtained as the difference of two c.f.s could be negative in a

subset of the domain on which the c.f.s are defined. The pro-

posed models Ci; i ¼ 1; 2; are integrable, hence, according to

(3), the spectral density functions can be expressed as the

Fourier transform of these covariance models.

Example 7 Let

C1ðxk; akÞ ¼ exp
�
� akx

2
k

�
; xk 2 R; ak [ 0; k ¼ 1; . . .; n;

C2ðxk; bkÞ ¼ exp
�
� bkx

2
k

�
; xk 2 R bk [ 0; k ¼ 1; . . .; n;

be Gaussian c.f.s; these models are integrable, then their

Fourier transforms f1 and f2 are, respectively:

f1ðxk; akÞ ¼
1

2p

Z
R

exp
�
� ixkxk

�
exp

�
� akx

2
k

�
dxk

¼ 1

2
ffiffiffiffiffiffiffi
pak

p exp

�
�
�

x2
k

4ak

��
;

f2ðxk; bkÞ ¼
1

2p

Z
R

exp
�
� ixkxk

�
exp

�
� bkx

2
k

�
dxk

¼ 1

2
ffiffiffiffiffiffiffiffi
pbk

p exp

�
�
�

x2
k

4bk

��
;

xk 2 R; k ¼ 1; . . .; n: Then

Cðxk;Ak;Bk; ak; bkÞ ¼ AkC1ðxk; akÞ � BkC2ðxk; bkÞ;
xk 2 R;Ak [ 0;Bk [ 0;

ð30Þ

according to Corollaries 3 and 4, is a c.f., for each

k ¼ 1; . . .; n, if its Fourier transform is a spectral density

function, i.e., Akf1ðxk; akÞ � Bkf2ðxk; bkÞ� 0; xk 2 R;

the previous inequality is satisfied if:

x2
k

4

�
1

bk
� 1

ak

�
[ ln

�
Bk

Ak

ffiffiffiffiffi
ak
bk

r �
; ð31Þ
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then, (31) is always satisfied if ak [ bk and

Bk

Ak
\

ffiffiffiffiffi
bk
ak

s
; k ¼ 1; . . .; n:

Example 8 Given the following exponential c.f.s:

C1ðxk; akÞ ¼ exp
�
� akjxkj

�
; xk 2 R; ak [ 0; k ¼ 1; . . .; n;

C2ðxk; bkÞ ¼ exp
�
� bkjxkj

�
; xk 2 R; bk [ 0; k ¼ 1; . . .; n;

then, C1 and C2 are integrable and

Cðxk;Ak;Bk; ak; bkÞ
¼ Ak exp

�
� akjxkj

�
� Bk exp

�
� bkjxkj

�
; Ak [ 0;Bk [ 0;

ð32Þ

is a c.f. if its Fourier transform f is a spectral density

function, i.e.,

f ðxk;Ak;Bk; ak; bkÞ

¼ Ak

p
ak

ðx2
k þ a2kÞ

� Bk

p
bk

ðx2
k þ b2kÞ

� 0;xk 2 R;
ð33Þ

in particular, (33) is satisfied if:

ðx2
k þ b2kÞ

ðx2
k þ a2kÞ

� Bk

Ak

bk
ak

� 0; xk 2 R:

According to the values of the parameters ak and

bk; k ¼ 1; . . .; n, some special situations can be analyzed:

1. ak [ bk; k ¼ 1; . . .; n; in this case, it is easy to verify

that the minimum value of the function:

fðxk; ak; bkÞ ¼
ðx2

k þ b2kÞ
ðx2

k þ a2kÞ

is obtained for x�
k ¼ 0; hence fð0; ak; bkÞ ¼

b2k
a2k
; as a

consequence, (33) is a spectral density function if:

Bk

Ak
\

bk
ak
\1:

2. ak\bk; k ¼ 1; . . .; n; in this case, fðxk; ak; bkÞ ¼

ðx2
k þ b2kÞ

ðx2
k þ a2kÞ

[ 1; xk 2 R; then (33) is a spectral

density function if:

Bk

Ak
\

ak
bk
: ð34Þ

Example 9 Given the following c.f.s,

C1ðxk; akÞ ¼
1

ðx2k þ a2kÞ
; C2ðxk; bkÞ ¼

1

ðx2k þ b2kÞ
;

xk 2 R; ak [ 0; bk [ 0;

then C1 and C2 are integrable and

Cðxk;Ak;Bk; ak; bkÞ ¼
Ak

ðx2k þ a2kÞ
� Bk

ðx2k þ b2kÞ
; Ak [ 0;Bk [ 0;

ð35Þ

is a c.f. if its Fourier transform f is a spectral density

function, i.e.,

f ðxk;Ak;Bk; ak; bkÞ

¼ Ak

2ak
exp

�
� akjxkj

�
� Bk

2bk
exp

�
� bkjxkj

�
� 0; xk 2 R;

ð36Þ

in particular, (36) is satisfied if bk [ ak; and

Bk

Ak
\

bk
ak
; k ¼ 1; . . .; n:

Example 10 Given the following c.f.s:

C1ðxk; akÞ ¼ exp
�
� akjxkj

�
;

C2ðxk; akÞ ¼
p

2a3k
ð1þ akjxkjÞ



exp

�
� akjxkj

��
;

with xk 2 R; ak [ 0; k ¼ 1; . . .; n; then, C1 and C2 are

integrable and

Cðxk;Ak;Bk; akÞ ¼ AkC1ðxk; akÞ � BkC2ðxk; akÞ

¼ exp
�
� akjxkj

��
Ak �

pBk

2a3k
ð1þ akjxkjÞ

�
;Ak [ 0;Bk [ 0;

ð37Þ

is a c.f. if its Fourier transform f is a spectral density

function, i.e.,

f ðxk;Ak;Bk; akÞ ¼
Ak

p
ak

ðx2
k þ a2kÞ

"
1� pBk

Akakðx2
k þ a2kÞ

#
� 0; xk 2 R:

Note that the maximum value of the function

�ðxk; akÞ ¼
1

ðx2
k þ a2kÞ

is obtained for xk ¼ 0, then f is a spectral density function,

hence C is a c.f. if:

Bk

Ak
\

a3k
p
:
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Note that:

C�ðxk;Ak;Bk; akÞ ¼ BkC2ðxk; akÞ � AkC1ðxk; akÞ;
Ak [ 0;Bk [ 0;

cannot be a c.f. because its Fourier transform:

f ðxk;Ak;Bk; akÞ

¼ Ak

p
ak

ðx2
k þ a2kÞ

"
pBk

Akakðx2
k þ a2kÞ

� 1

#
; xk 2 R;

cannot be a spectral density function, since the function:

�ðxk; akÞ ¼ 1
ðx2

k
þa2

k
Þ ; does not present a minimum value.

Example 11 Given the following c.f.s

C1ðxk; akÞ ¼ exp
�
� akjxkj

�
; C2ðxk; bkÞ ¼ exp

�
� bkx

2
k

�
;

xk 2 R; ak [ 0; bk [ 0;

k ¼ 1; . . .; n; then C1 and C2 are integrable and

Cðxk;Ak;Bk; ak; bkÞ
¼ Ak exp

�
� akjxkj

�
� Bk exp

�
� bkx

2
k

�
; Ak [ 0;Bk [ 0;

ð38Þ

is a c.f., for each k ¼ 1; . . .; n, if the corresponding Fourier

transform f is a spectral density function, i.e.,

f ðxk;Ak;Bk; ak; bkÞ

¼
�
Ak

p
ak expðx2

k=4bkÞ
ðx2

k þ a2kÞ
� Bk

2
ffiffiffiffiffiffiffiffi
pbk

p
�
exp

�
� x2

k

4bk

�
� 0; xk 2 R:

According to the values of the parameters ak and

bk; k ¼ 1; . . .; n, some special situations can be analyzed:

1. a2k � 4bk [ 0; k ¼ 1; . . .; n; in this case, it is easy to

verify that the minimum value of the function:

jðxk; ak; bkÞ ¼
ak expðx2

k=4bkÞ
ðx2

k þ a2kÞ
is obtained for

x�
k ¼ 0; then, taking into account the inequalities

a2k � 4bk [ 0; k ¼ 1; . . .; n, f is a spectral density

function, as a consequence C defined in (38) is a c.f., if

0\
Bk

Ak
\

2
ffiffiffi
p

p

p

ffiffiffiffiffi
bk

p
ak

\
1ffiffiffi
p

p ; hence : 0\
Bk

Ak
\

1ffiffiffi
p

p � 0:564:

2. a2k � 4bk\0; k ¼ 1; . . .; n; in this case, the minimum

value of the function: jðxk; ak; bkÞ ¼
ak expðx2

k=4bkÞ
ðx2

k
þa2

k
Þ is

obtained for x�
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bk � a2k

p
; then, taking into

account the inequalities a2k � 4bk\0; k ¼ 1; . . .; n, f is

a spectral density function, as a consequence C defined

in (38) is a c.f., if 0\
Bk

Ak
\

effiffiffi
p

p � 1:53:

Note that:

Cðxk;Ak;Bk; ak; bkÞ ¼ BkC2ðxk; bkÞ � AkC1ðxk; akÞ;
Ak [ 0;Bk [ 0;

cannot be a c.f. because its Fourier transform:

f ðxk;Ak;Bk; ak; bkÞ

¼
�

Bk

2
ffiffiffiffiffiffiffiffi
pbk

p � Ak

p
ak expðx2

k=4bkÞ
ðx2

k þ a2kÞ

�
exp

�
� x2

k

4bk

�
; xk 2 R;

cannot be a spectral density, since the function:

jðxk; ak; bkÞ ¼
ak expðx2

k=4bkÞ
ðx2

k þ a2kÞ
does not present an abso-

lute maximum value.

Example 12 Given the c.f.s

C1ðxk; akÞ ¼ exp
�
� akjxkj

�
; C2ðxk; bkÞ ¼

1

ðx2k þ b2kÞ
;

xk 2 R; ak [ 0; bk [ 0;

k ¼ 1; . . .; n; then C1 and C2 are integrable and

Cðxk;Ak;Bk; ak; bkÞ

¼ Ak exp
�
� akjxkj

�
� Bk

ðx2k þ b2kÞ
; Ak [ 0;Bk [ 0; ð39Þ

is a c.f. if the corresponding Fourier transform f is a

spectral density function, i.e.,

f ðxk;Ak;Bk; ak; bkÞ

¼
"
Ak

p
ak expðbkjxkjÞ
ðx2

k þ a2kÞ
� Bk

2bk

#
1

exp


ðbkjxkjÞ

� � 0; xk 2 R:

According to the values of the parameters ak and

bk; k ¼ 1; . . .; n, some special situations can be analyzed:

1. akbk [ 1; k ¼ 1; . . .; n; in this case, the minimum value

of the function

vðxk; ak; bkÞ ¼
ak expðbkjxkjÞ
ðx2

k þ a2kÞ
; ð40Þ

is obtained for x�
k ¼ 0; hence, f is a spectral density

function, as a consequence C defined in (39) is a c.f. if:

0\
Bk

Ak
\

2

p
bk
ak

\
2

p
b2k :

2. akbk\1; k ¼ 1; . . .; n; in this case, there exist two

minimum values for the function (40): x�
k ¼ 0 and

x��
k ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffi
1�a2

k
b2k

p
bk

: By comparing the values of the

function v, defined in (40), computed in x�
k and x��

k ,

i.e.,

vðx��
k ; ak; bkÞ � vðx�

k ; ak; bkÞ[ 0; ð41Þ

it results that (41) is satisfied if:
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ðakbkÞ2 exp
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðakbkÞ2

q �

[ 2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðakbkÞ2

q �
; k ¼ 1; . . .; n:

ð42Þ

Inequality (42) is satisfied for 0:8\akbk\1, where

as for 0\akbk\0:8 it results vðx��
k ; ak; bkÞ �

vðx�
k ; ak; bkÞ\0: Hence, according to the previous

results:

• 0:8\akbk\1, expression (39) is a c.f. if:

0\
Bk

Ak
\

2

p
bk
ak

\
2

p
1

a2k
;

• 0\akbk\0:8, expression (39) is a c.f. if:

0\
Bk

Ak
\

2

p
vðx��

k ; ak; bkÞbk:

Note that: Cðx;Ak;Bk; ak;bkÞ ¼ BkC2ðxk;bkÞ � AkC1ðxk; akÞ;
Ak [ 0;Bk [ 0; cannot be a c.f. because its Fourier

transform:

f ðxk;Ak;Bk; ak; bkÞ

¼
"
Bk

2bk
� Ak

p
ak expðbkjxkjÞ
ðx2

k þ a2kÞ

#
1

expðbkjxkjÞ
; xk 2 R;

cannot be a spectral density function, since the function

vðxk; ak; bkÞ ¼
ak expðbkjxkjÞ
ðx2

k þ a2kÞ
;

does not present an absolute maximum value.

Example 13 Given the following c.f.s,

C1ðxk; akÞ ¼
1

ðx2k þ a2kÞ
; C2ðxk; bkÞ ¼ exp

�
� bkx

2
k

�
;

xk 2 R; ak [ 0; bk [ 0;

k ¼ 1; . . .; n, then C1 and C2 are integrable and

Cðxk;Ak;Bk; ak; bkÞ

¼ Ak

ðx2k þ a2kÞ
� Bk exp

�
� bkx

2
k

�
;Ak [ 0;Bk [ 0; ð43Þ

is a c.f. if its Fourier transform f is a spectral density

function, i.e.,

f ðxk;Ak;Bk; ak; bkÞ

¼ Ak

2ak
exp

�
� akjxkj

�
� Bk

2
ffiffiffiffiffiffiffiffi
pbk

p exp

�
�
�

x2
k

4bk

��
� 0;xk 2 R;

ð44Þ

which is equivalent to the following inequality:

exp

�
x2

k

4bk
� akjxkj

�
� Bkak
Ak

ffiffiffiffiffiffiffiffi
pbk

p � 0; xk 2 R; ð45Þ

the minimum value of the function

sðxk; ak; bkÞ ¼ exp

�
x2

k

4bk
� akjxkj

�
is obtained for

x�
k ¼ 2akbk; hence, (44) is a spectral density function if:

expða2kbkÞ\
Ak

ffiffiffiffiffiffi
pbk

p
Bkak

; k ¼ 1; . . .; n:

Note that:

Cðxk;Ak;Bk; ak; bkÞ ¼ BkC2ðxk; bkÞ � AkC1ðxk; akÞ;
Ak [ 0;Bk [ 0;

cannot be a c.f. because its Fourier transform:

f ðxk;Ak;Bk; ak; bkÞ

¼ Bk

2
ffiffiffiffiffiffiffiffi
pbk

p exp

�
�
�

x2
k

4bk

��
� Ak

2ak
exp
�
� akjxkj

�
;xk 2 R;

cannot be a spectral density function, since the following

inequality

Bkak
Ak

ffiffiffiffiffiffiffiffi
pbk

p � exp

�
x2

k

4bk
� akjxkj

�
� 0; xk 2 R;

is not satisfied, because the function s does not present an

absolute maximum value.

In the same way as all that proposed in all the examples

shown in the Sect. 3.1 and according to Corollaries 4 and 5,

the following functions:

Cðx;HÞ ¼
Yn
k¼1

�
AkC1ðxk; akÞ � BkC2ðxk; bkÞ

�
;

C�ðx;HÞ ¼
Yn
k¼1

AkC1ðxk; akÞ �
Yn
k¼1

BkC2ðxk; bkÞ;

are real c.f.s, both defined in Rn; where

A ¼ ðA1; . . .;AnÞ;B ¼ ðB1; . . .;BnÞ; a ¼ ða1; . . .; anÞ; b ¼ ðb1; . . .;bnÞ

and H ¼ ðA;B; a; bÞ are vectors of parameters,

x ¼ ðx1; . . .; xnÞ 2 Rn; where C1 and C2 are the c.f.s

defined in the Examples 7, 8, 9, 10, 11, 12 and 13.

3.3 Difference of isotropic covariance functions

As already underlined, an isotropic c.f. is necessarily a real

valued c.f.. Although there exist several examples of real

c.f.s for stationary random fields in one dimensional space,

however some of the same c.f.s cannot be examples of

isotropic c.f.s in any dimensional space (see for example,

the triangular c.f.s). Nevertheless, there exist functions

which can be isotropic c.f.s in any dimensional space

Rn; n 2 N. A linear combination, with negative weights, of
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two continuous spatial isotropic or spatio-temporal c.f.s has

been analyzed by Ma (2005) in all dimensions: however,

the two spatial or spatio-temporal c.f.s involved in the

analysis belong to the same family. In this subsection some

examples for the difference of two isotropic c.f.s are pro-

vided for the two and three dimensional spaces; in partic-

ular, for some of these examples the c.f.s involved in the

difference could not belong to the same family.

The following equations express the multidimensional

spectral density f in terms of the one-dimensional spectral

density f1, for the two and three dimensional spaces, i.e.,

n ¼ 2 and n ¼ 3, which are the most relevant cases in the

applications:

f ðxÞ ¼ � 1

p

Z 1

x

df1ðx1Þ
dx1

dx1

ðx2
1 � x2Þ1=2

; n ¼ 2; ð46Þ

f ðxÞ ¼ � 1

2px
df1ðxÞ
dx

; n ¼ 3: ð47Þ

To check whether or not a given function C is an n-di-

mensional isotropic c.f. (for n ¼ 2 and n ¼ 3) it is impor-

tant to find, first of all, the one dimensional Fourier

transform f1 of the function C, then computing the corre-

sponding two and three dimensional spectral density f from

f1, utilizing Eqs. (46) and (47) and finally verifying whether

or not the function f is everywhere non negative.

The exponential and Gaussian c.f.s are isotropic c.f.s in

the space Rn, for any n 2 N. In the following examples,

starting from the one dimensional spectral density func-

tions given in the Examples 7 and 8 and applying Eqs. (46)

and (47), the difference, considering various combinations,

between the isotropic exponential and Gaussian c.f.s have

been analyzed for the two and three dimensional spaces.

Example 14 In the following example, the difference

between two isotropic Gaussian c.f.s has been considered

in the Euclidean spaces R2 and R3, respectively.

• n ¼ 2. In the Example 7, given the one dimensional

c.f.s C1ðxkÞ and C2ðxkÞ and the corresponding one

dimensional spectral density functions f1ðxkÞ and

f2ðxkÞ, by utilizing Eq. (46), the two dimensional

spectral density functions f1ðxÞ and f2ðxÞ can be

obtained:

f1ðx; aÞ ¼
1

4pa
exp

�
�
�
x2

4a

��
;

f2ðx; bÞ ¼
1

4pb
exp

�
�
�
x2

4b

��
;

ð48Þ

where a[ 0; b[ 0; x ¼ ðx1;x2Þ and

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

p
: Then

Cðx;A;B; a; bÞ
¼ A exp

�
� ax2

�
� B exp

�
� bx2

�
;A[ 0;B[ 0; ð49Þ

according to Corollary 3, is a c.f. if its Fourier trans-

form is a spectral density function, i.e.,

Af1ðx; aÞ � Bf2ðx; bÞ

¼ A

4pa
exp

�
�
�
x2

4a

��
� B

4pb
exp

�
�
�
x2

4b

��
� 0; x 2 R;

the previous inequality is satisfied if:

x2

4

�
1

b
� 1

a

�
[ ln

�
B

A

a
b

�
; ð50Þ

then, (50) is always satisfied if a[ b and B
A
a
b\1; i.e.,

1\
a
b
\

A

B
:

• n ¼ 3. In this case, utilizing Eq. (47), the following

three dimensional spectral density functions f1ðxÞ and

f2ðxÞ can be obtained:

f1ðx; aÞ ¼
1

8ðpaÞ2=3
exp

�
�
�
x2

4a

��
;

f2ðx; bÞ ¼
1

8ðpbÞ2=3
exp

�
�
�
x2

4b

��
;

ð51Þ

where x ¼ ðx1;x2;x3Þ;x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

p
; a[ 0;

b[ 0: Then

Cðx;A;B; a; bÞ
¼ A exp

�
� ax2

�
� B exp

�
� bx2

�
;A[ 0;B[ 0; ð52Þ

according to Corollary 3, is a c.f. if its Fourier trans-

form is a spectral density function, i.e.,

Af1ðx; aÞ � Bf2ðxbÞ

¼ A

8ðpaÞ2=3
exp

�
�
�
x2

4a

��
� B

8ðpbÞ2=3
exp

�
�
�
x2

4b

��
� 0;

x 2 R;

the previous inequality is satisfied if:

1\
a
b
\

A

B

� �3=2

:

Example 15 In the following example, the difference

between two isotropic exponential c.f.s has been consid-

ered in the Euclidean spaces R2 and R3; respectively.

• n ¼ 2. In the Example 8, given the c.f.s C1ðxkÞ and

C2ðxkÞ and the corresponding one dimensional spectral

density functions f1ðxkÞ and f2ðxkÞ, by utilizing
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Eq. (46), the two dimensional spectral density functions

f1ðxÞ and f2ðxÞ can be obtained:

f1ðx; aÞ ¼
a

2pðx2 þ a2Þ3=2
; f2ðx; bÞ ¼

b

2pðx2 þ b2Þ3=2
;

where a[ 0; b[ 0; x ¼ ðx1;x2Þ and

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

p
: Then

Cðx;A;B; a; bÞ ¼ A exp
�
� ajxj

�
� B exp

�
� bjxj

�
;

A[ 0;B[ 0;

ð53Þ

according to Corollary 3, is a c.f. if its Fourier trans-

form is a spectral density function, i.e.,

Aa

2pðx2 þ a2Þ3=2
� Bb

2pðx2 þ b2Þ3=2
� 0; x 2 R;

ð54Þ

in particular, (54) is satisfied if:�
x2 þ b2

x2 þ a2

�3=2

� B

A

b
a
� 0; x 2 R:

If a\b, then (54) is satisfied if: 1\
b
a
\

A

B
; on the

other hand, if a[ b, then (54) is satisfied if:

1\
a
b
\

ffiffiffi
A

B

r
:

• n ¼ 3: In this case, utilizing Eq. (47), the following

three dimensional spectral density functions f1 and f2
can be obtained:

f1ðx; aÞ ¼
a

p2ðx2 þ a2Þ2
; f2ðx; bÞ ¼

b

p2ðx2 þ b2Þ2
;

where x ¼ ðx1;x2;x3Þ;x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

p
; a[ 0;

b[ 0: Then

Cðx;A;B; a; bÞ ¼ A exp
�
� ajxj

�
� B exp

�
� bjxj

�
;

A[ 0;B[ 0;

ð55Þ

according to Corollary 3, is a c.f. if its Fourier trans-

form is a spectral density function, i.e.,

Aa

p2ðx2 þ a2Þ2
� Bb

p2ðx2 þ b2Þ2
� 0; x 2 R; ð56Þ

in particular, (56) is satisfied if:�
x2 þ b2

x2 þ a2

�2

� B

A

b
a
� 0; x 2 R:

If a\b, then (56) is satisfied if: 1\
b
a
\

A

B
; on the

other hand, if a[ b, then (56) is satisfied if:

1\
a
b
\
�
A

B

�1=3

:

Example 16 In the following example, the difference

between an isotropic exponential and an isotropic Gaussian

c.f.s has been considered in R2 and R3, respectively.

• n ¼ 2. In the Examples 8 and 7, given the one

dimensional c.f.s C1ðxkÞ and C2ðxkÞ for the exponential
and the Gaussian models, respectively, with the corre-

sponding one dimensional spectral density functions

f1ðxkÞ and f2ðxkÞ, by utilizing Eq. (46), the two

dimensional spectral density functions f1ðxÞ and f2ðxÞ,
with a ¼ b, can be obtained:

f1ðx; aÞ ¼
a

2pðx2 þ a2Þ3=2
;

f2ðx; aÞ ¼
1

4pa
exp

�
�
�
x2

4a

��
; a[ 0;

where a[ 0; x ¼ ðx1;x2Þ and x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

p
:

Then

Cðx;A;B; aÞ
¼ A exp

�
� ajxj

�
� B exp

�
� ax2

�
;A[ 0;B[ 0; ð57Þ

according to Corollary 3, is a c.f. if its Fourier trans-

form is a spectral density function, i.e.,

Aa
2pðx2þa2Þ3=2

� B
4pa exp

�
�
�

x2

4a

��
� 0; x 2 R; the

previous inequality is satisfied if:

exp

�
x2=4a

��
= ðx2 þ a2Þ3=2 �B=ð2Aa2Þ:

The minimum value of the function gðx; aÞ ¼

exp

�
x2=4a

��
=ðx2 þ a2Þ3=2 is obtained for x ¼ 0, if

a[ 6: in this case, (57) is a c.f. if a�ð2AÞ=B; on the

other hand, the minimum value of the function g is

obtained for x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a� a2

p
if: 0\a\6: In this last

case, (57) is a c.f. if: eð6�aÞ=4 ffiffiffi
a

p
[ ð3B

ffiffiffi
6

p
Þ=A:

• n ¼ 3: In this case, utilizing Eq. (47), the following

three dimensional spectral density functions f1 and f2
can be obtained:

f1ðx; aÞ ¼
a

p2ðx2 þ a2Þ2
;

f2ðx; aÞ ¼
1

8ðpaÞ3=2
exp

�
�
�
x2

4a

��
;

where a[0; x¼ ðx1;x2;x3Þ;x¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þx2
2 þx2

3

p
:

Then

Cðx;A;B; aÞ
¼ A exp

�
� ajxj

�
� B exp

�
� ax2

�
;A[ 0;B[ 0; ð58Þ

according to Corollary 3, is a c.f. if its Fourier trans-

form is a spectral density function, i.e.,

Aa
p2ðx2þa2Þ2 �

B

8ðpaÞ3=2
exp

�
�
�

x2

4a

��
� 0; the previous
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inequality is satisfied if:

exp

�
x2=4a

��
=ðx2 þ a2Þ2 �B

ffiffiffi
p

p
= ð8Aa2

ffiffiffi
a

p
Þ:

The minimum value of the function

dðx; aÞ ¼


exp

�
x2=4a

��
=ðx2 þ a2Þ2 is obtained for

x ¼ 0, if a[ 8: in this case, (58) is a c.f. if

a
ffiffiffi
a

p
�ð8AÞ=ðB

ffiffiffi
p

p
Þ; on the other hand, the minimum

value of the function d is obtained for x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a� a2

p
if:

0\a\8: In this last case, (58) is a c.f. if:

eð8�aÞ=4 ffiffiffi
a

p
[ ð8B

ffiffiffi
p

p
Þ=A:

3.4 Further properties of real covariance
functions

Some properties related to isotropic/anisotropic and sepa-

rable/nonseparable c.f.s are given hereafter.

• If C1 and C2 in (6) are isotropic c.f.s, then C is an

isotropic c.f.;

• if C1 or C2 in (6) is an anisotropic c.f., then C is an

anisotropic c.f.;

• the sum of two anisotropic c.f.s could be an isotropic

c.f.: let C3ðxÞ ¼ C1ðkxkÞ � C2ðxÞ, where C3 satisfies

Corollary 3, C1 is an isotropic c.f. and C2 is an

anisotropic c.f.; then CðxÞ ¼ C3ðxÞ þ C2ðxÞ is an

isotropic c.f..

• although the c.f. C in Eq. (11) is separable in Rn, the c.f.

C in (16) is non separable; anyway both models are

characterized by non geometric anisotropy.

Real c.f.s can also be obtained as the Fourier transform of

the difference of two spectral density functions, which are

not both even functions. The following result is a gener-

alization of Example 1.

Corollary 7 Let: f1ðx; aÞ ¼ expð�ajxjÞPnðxÞ; f2ðx; aÞ
¼ expð�ajxjÞQmðxÞ; be spectral density functions, x 2 R,

and let

f ðx; aÞ
¼ A1f1ðx; aÞ � A2f2ðx; aÞ ¼ expð�ajxjÞ

�
A1PnðxÞ � A2QmðxÞ

�
;

where Pn and Qm are polynomials of degree n and m,

respectively. Let C1 and C2 be the c.f.s corresponding,

through Bochner’s theorem, to f1 and f2, respectively. If:

A1PnðxÞ � A2QmðxÞ� 0; x 2 R; and

A1PnðxÞ � A2QmðxÞ ¼ A1Pnð�xÞ � A2Qmð�xÞ; x 2 R;

then ðA1f1 � A2f2Þ is an even spectral density function and

Cðx; aÞ ¼ A1C1ðx; aÞ � A2C2ðx; aÞ

¼
Z
R

expðixxÞðA1f1ðx; aÞ � A2f2ðx; aÞÞdx;

is a real c.f., although C1 and C2 could be complex c.f.s if

PnðxÞ 6¼ Pnð�xÞ, for some x 2 R, and

QmðxÞ 6¼ Qmð�xÞ, for some x 2 R.

Note that it is necessary that the integers n and m in the

previous corollary must be even numbers, otherwise f1 and

f2 cannot be spectral density functions.

4 Covariance functions with negative values

The set of c.f.s with negative values is, of course, a subset

of the real c.f.s. Apart from some particular cases which

have been published in the literature, some examples of

c.f.s characterized by negative values, are given hereafter.

In general, for a complex c.f., only its real part is a c.f.,

hence it is possible to analyze the sign of the real part:

some complex c.f.s whose real part is a covariance with

negative values have been proposed. Some families

regarding the difference of two real c.f.s, already described

in subsections, characterized by negative values, have also

been selected.

1. Yaglom (1987) furnished oscillatory c.f.s, based on the

Bessel function of the first kind; on the other hand,

Gneiting (2002a) proposed some families of c.f.s

characterized by negative values through the turning

bands technique.

2. C.f.s which are constructed as a linear combinations of

c.f.s, with some negative weights, as described in Ma

(2005) and in Gregori et al. (2008).

In particular, in Ma (2005) linear combinations of

two isotropic c.f.s of the same type were considered

with further generalizations in the space-time domain.

In Gregori et al. (2008) the following spatio-

temporal class of the generalized sum of product

models was analyzed, i.e.,

Cstðx; uÞ ¼
Xm
j¼1

kjCsjðxÞCtjðuÞ; ðx; uÞ 2 Rn � R; ð59Þ

where Csj and Ctj; j ¼ 1; . . .;m, are continuous and

integrable spatial and temporal c.f.s, respectively.

Through a suitable analysis on the inf and sup of the

ratios of the spectral density functions, the authors

pointed out that the class (59) is still a class of c.f.s for

some negative weights kj:

3. The real part of a complex c.f. is a c.f.; there exist

several classes of complex c.f.s whose real part is

characterized by negative values in a subset of their

domain, as pointed out in the following examples.
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Example 17 Let’s consider, in R, with k[ 0; p[ 0, the

following spectral density function (gamma distribution):

f ðx; k; pÞ ¼
kp

CðpÞx
p�1e�kx x[ 0

0 x� 0;

(
ð60Þ

and the corresponding c.f.:

CðxÞ ¼
 

k
k� ix

!p

: ð61Þ

Please note that (60) is not an even spectral density func-

tion, hence (61) is a complex c.f.; a special case of (61), for

p ¼ 2 and k ¼ 1, is the following c.f.:

CðxÞ ¼ 1� x2

ðx2 þ 1Þ2
þ i

2x

ðx2 þ 1Þ2
:

Example 18 Let’s consider, in R, with n 2 Nþ, the fol-

lowing spectral density function (v2 distribution):

f ðx; nÞ ¼
1

2n=2Cðn=2Þx
n=2�1e�x=2 x[ 0

0 x� 0;

(
ð62Þ

and the corresponding c.f.:

CðxÞ ¼
 

1

1� 2ix

!n=2

; ð63Þ

which is very similar to (61). Even in this case, (62) is not

an even spectral density function, hence (63) is a complex

c.f.. A special case of (63), for n ¼ 4, is the following c.f.:

CðxÞ ¼ 1� 4x2

ð4x2 þ 1Þ2
þ i

4x

ð4x2 þ 1Þ2
:

On the other hand, the difference of two real c.f.s can be

also characterized by negative values, for suitable values of

the vector of parameters, in a subset of their domain, as

shown in the following example.

Example 19 Let’s consider, in R, the following spectral

density functions:

f1ðxÞ ¼ e�jxjð1þ jxjÞ; f2ðxÞ ¼ e�jxj; which are even

functions; then,

Cðx;A1;A2Þ ¼
Z
R

expðixxÞ


A1f1ðxÞ � A2f2ðxÞ

�
dx ð64Þ

is a real c.f. if and only if: A1f1ðxÞ � A2f2ðxÞ� 0;

x 2 R; hence, (64) is a real c.f. if A2\A1: Then, the c.f.

Cðx;A1;A2Þ ¼
4A1

ðx2 þ 1Þ2
� 2A2

ðx2 þ 1Þ is negative in a subset

of its domain, i.e., x\�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A1

A2
� 1

q
; x[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A1

A2
� 1

q
:

4. C.f.s characterized by negative values can be selected

among most of the families described in the examples

proposed in Sect. 3.2 and the same formalism will be

retained: the generic coordinate of the one dimensional

space R will be denoted with xk:

In particular, in Example 7, it is easy to verify that

the c.f. C in (30) is negative for all the values xk 2 R

which satisfy: ðak � bkÞx2k [ ln
�
Ak

Bk

�
; k ¼ 1; . . .; n;

In Example 8, if ak [ bk, it is easy to verify that the

c.f. (32) is negative for the values xk 2 R which satisfy:

ðak � bkÞjxkj[ ln
�
Ak

Bk

�
; k ¼ 1; . . .; n; on the other

hand, if ak\bk, the c.f. (32) should be negative if:

ðbk � akÞjxkj\ ln
�
Bk

Ak

�
; however, because of (34),

Bk

Ak
\

ak
bk
\1; then, if ak\bk; k ¼ 1; . . .; n; the c.f. (32)

cannot ever be negative. In Example 9, the parametric

family (35), in R, becomes:

Cðxk;Ak;Bk; ak; bkÞ ¼
Ak

ðx2k þ a2kÞ
� Bk

ðx2k þ b2kÞ
;

in particular, this last family is characterized just by

positive values in the whole domain if Bk\Ak and

bk [ ak, and by negative values in a subset of its

domain if: 1\
Bk

Ak
\

bk
ak

: In Example 10, the parametric

family (37), in R, becomes:

Cðxk;Ak;Bk;akÞ¼ expð�ajxkjÞ
�
Ak�

p3Bk

8a3k
ð1þakjxkjÞ

�
;

which is always characterized by negative values in a

subset of its domain.

In Example 11, the parametric family (38), in R,

becomes:

Cðxk;Ak;Ak; ak; bkÞ ¼ Ak expð�akjxkjÞ � Bk expð�bkx
2
kÞ:

This last family is negative for the values xk 2 R

which satisfy: ðbkx2k � akjxkjÞ\ ln
�
Bk

Ak

�
; taking into

account the minimum value of the function:

Gðxk; ak; bkÞ ¼ ðbkx2k � akjxkjÞ; the following condition
must be satisfied for the c.f., defined in (38), to be

negative, i.e.,
� a2k
4bk

�
[ ln

�
Ak

Bk

�
; hence, if the above

condition is not satisfied, the c.f., defined in (38),

cannot ever be negative. Moreover, if a2k\4bk and

0\ Bk

Ak
\

ffiffi
p

p

p2 e
3; ln

�
Ak

Bk

�
\ a2k

4bk
\1;

the same family of c.f.s could assume negative

values in a subset of its domain.

In Example 12, if akbk [ 1, the c.f.
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Cðxk;Ak;Bk; ak; bkÞ

¼ Ak exp
�
� akjxkj

�
� Bk

ðx2k þ b2kÞ
; Ak [ 0;Bk [ 0;

is negative for the values xk 2 R which satisfy:

ðx2k þ b2kÞ expð�akjxkjÞ\ Bk

Ak
;

this last inequality can be easily satisfied for suffi-

ciently high values of xk; since

lim
xk!1

�
ðx2k þ b2kÞ expð�akjxkjÞ

�
¼ 0:

In Example 14 the difference between two isotropic

Gaussian c.f.s has been considered in the Euclidean

spaces R2 and R3, respectively: it is easy to verify that

the c.f.s C in (49) and (52) are negative for all the

values x 2 R which satisfy: ða� bÞx2 [ ln

�
A

B

�
:

In Example 15 the difference between two isotropic

exponential c.f.s has been considered in the Euclidean

spaces R2 and R3, respectively. In particular, if a\b,
the c.f.s C in (53) and (55) should be negative for the

values x 2 R which satisfy: ðb� aÞjxj\ ln

�
B

A

�
;

however, this last inequality cannot ever be satisfied

because 1\
b
a
\

A

B
; on the other hand, if a[ b, the

c.f.s C in (53) and (55) are negative for the values

x 2 R which satisfy: ða� bÞjxj[ ln

�
A

B

�
:

5 Relevance and impact of the results

The motivation for this paper arises from the need to

address various problems, whose importance concerns

theoretical and practical aspects as specified hereafter:

• a covariance is a complex valued function and its

properties are well known and described in the litera-

ture. Moreover, it is also well known that, in general,

the difference of two c.f.s is not a c.f. and this issue, in

the literature, does not yet seem to have been addressed

in detail. For this reason, the general problem concern-

ing the difference of two c.f.s in the complex domain

has been analyzed in this paper; hence, exploring the

conditions such that the difference of two c.f.s is again a

c.f. can be considered a further property. The results of

this paper thus yield a general contribution to the theory

of correlation, hence they cannot be restricted to the

particular field of application. The above issue has been

explored in the complex domain as well as in the subset

of the real domain; in this latter case, the difference of

isotropic c.f.s has also been discussed for the two and

the three dimensional Euclidean space. In particular, a

detailed analysis involving the parameters of these

models has been proposed. Although the results

provided in this paper represent a natural consequence

of Bochner’s theorem, the significant aspects of the

same results derive from properly specifying the

characteristics of the spectral distribution function or

of the spectral density function in Bochner’s

representation.

• All the families of c.f.s, which are constructed utilizing

the standard models (Gaussian, general exponential and

rational, which are non negative and non decreasing

c.f.s) and by applying the usual and well known

properties (such as linear combinations with non

negative coefficients or products), preserve the main

typical characteristics of the standard models, regard-

less of the values of their parameters, as formally shown

hereafter.

Let Cj be c.f.s such that CjðxÞ� 0; x 2 R;

C0
jðxÞ\0; x[ 0; j ¼ 1; . . .; n and

CSðxÞ ¼
Xn
j¼1

kjCjðxÞ; CPðxÞ ¼
Yn
j¼1

CjðxÞ; kj� 0; j ¼ 1; . . .; n;

ð65Þ

then:

CSðxÞ� 0; x 2 R; and C0
SðxÞ\0; x[ 0;

CPðxÞ� 0; x 2 R and C0
PðxÞ\0; x[ 0;

in fact, a linear combination of these standard models

(Cj in the above expressions) with non negative coef-

ficients or their product, generate c.f.s which present the

same behaviour of the same standard models: they are

characterized by a systematic decreasing behaviour and

are always non negative in their domain.

On the other hand, there exist models constructed

through the difference of standard models which behave

differently by properly changing the values of the non

negative parameters from which they depend. Hence,

some special families of c.f.s obtained through the

difference of two standard c.f.s provide a significant

contribution to modeling wide classes of correlation

structures. For example, the class of models defined in

(32), i.e.,

Cðxk;Ak;Bk; ak; bkÞ
¼ Ak exp

�
� akjxkj

�
� Bk exp

�
� bkjxkj

�
; Ak [ 0;Bk [ 0;

is flexible enough to describe several situations with

reespect to the standard families of c.f.s as the ones

defined in Eq. (65); indeed, the class (32) is always

characterized by a linear behavior near the origin, it is
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always positive if:
Bk

Ak
\

ak
bk
\1; moreover, in this case,

this class presents a systematically decreasing behavior

for xk [ 0. On the other hand, if: Bk

Ak
\bk

ak
\1, the same

class is negative for all the values xk 2 R which satisfy:

ðak � bkÞjxkj[ ln
�
Ak

Bk

�
. Hence, the same class behaves

differently by properly changing the values of the

parameters on which it depends.

Likewise, the class of models defined in (35), i.e.,

Cðxk;Ak;Bk; ak; bkÞ ¼
Ak

ðx2k þ a2kÞ
� Bk

ðx2k þ b2kÞ
;

Ak [ 0;Bk [ 0;

is always characterized by a parabolic behavior near

the origin and it is always positive if: bk [ ak and

Bk\Ak; moreover, in this case, this class presents a

systematically decreasing behavior for xk [ 0. On the

other hand, if: Bk [Ak, the same class is negative for

xk 2 R which satisfy: ðBk � AkÞx2k [Akb
2
k � Bka2k :

Finally, some traditional families of c.f.s, charac-

terized by damped oscillations and by negative values

in subsets of their domain, have been constructed by

multiplying standard models of c.f.s with a cosinusoidal

c.f.; however, these last families of c.f.s are unable to

behave differently by changing the values of the

parameters on which they depend, as explained here-

after.

Let CDðxÞ ¼ CðxÞ cosðxÞ, where C is a c.f. such that

CðxÞ� 0; x 2 R and C0ðxÞ\0; x[ 0: Then C0
DðxÞ ¼ 0

if tanðxÞ ¼ C0ðxÞ
CðxÞ ; hence, there always exists x 2 Rþ such

that CD changes its sign.

• From a practical point of view, the various examples,

concerning the difference of two c.f.s proposed in this

paper, are flexible enough to be implemented and

utilized in several applications pertaining to the com-

plex domain, as well as to the subset of the real domain.

In particular, the models obtained through this differ-

ence are characterized by different features: for exam-

ple, they could be non negative in the whole domain, or

could be characterized by negative values in a subset of

their domain. Indeed, in several applications in biology,

hydrology and spatio-temporal turbolence, c.f.s with

negative values are often needed, as pointed out by

various authors (Shkarofsky 1968; Levinson et al.

1984; Pomeroy et al. 2003; Xu et al. 2003a, b; Yakhot

et al. 1989). The theory of complex random fields can

give a significant contribution to several phenomena

which often occur in ecological and environmental

science: in particular, in meteorology, oceanography,

signal analysis and geophysics. For this reason, in the

very last years some efforts have been made in

geostatistics utilizing complex formalism. In particular,

an application to predict a wind field has been proposed

by De Iaco and Posa (2016); moreover, a first attempt to

utilize complex formalism in the spatio-temporal con-

text has also been provided by Cappello et al. (2020):

the complex c.f., indexed in time, is estimated and

modeled for data, derived from high frequency radar

systems, collected from 207 stations along the US East

and Gulf Coast. In addition, in other particular scientific

applications, flexible c.f.s models like the ones defined

in Eqs. (32) and (35) are often required: in particular, in

genetics and molecular biology the Price equation

(Martini et al. 2016) utilizes c.f.s to provide a mathe-

matical description of evolution and natural selection;

in micrometeorology, the Eddy c.f. (Moncrieff et al.

2004) is a key atmospherics measurement technique;

finally, c.f.s play a key role in feature extraction

(Sahidullah and Kinnunen 2016), to capture the spectral

variability of a signal.

6 Conclusions

In this paper, conditions for which the difference of two

c.f.s in the complex domain, as well as in the subset of the

real domain, is again a c.f. have been analyzed. This can be

considered a further property which addresses some rele-

vant issues: (a) it provides wider families of c.f.s which can

be utilized to model further correlation structures; (b) it

supplies families of c.f.s also characterized by negative

values, utilized in several applications; (c) some special

families of c.f.s obtained through the difference of two c.f.s

provide a significant contribution to modeling wide classes

of correlation structures because they are flexible enough to

describe various behaviours as compared to the standard

families. The c.f.s proposed in this paper can be utilized to

model complex random fields, but also the subset of real

random fields; in this latter case, some well known models

have been considered. Moreover, in order to provide a

complete analysis of this subject, some examples of the

difference of two isotropic c.f.s have been also explored; in

particular, for some of these examples the c.f.s involved in

the difference could not belong to the same family. The

results can be utilized in a flexible way in any dimensional

domain.
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