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Abstract
Due to climate change, the agricultural and socio-economic development over the eastern Himalayan region of India is

greatly affected. The present study has been carried out to investigate the implications of climate change on regional crop

water requirements (CWR) and crop irrigation requirement (CIR) of major crops (maize, wheat and, rice) over a Hima-

layan state, i.e., Sikkim. Daily climatic datasets such as rainfall, minimum temperature, maximum temperature, wind

speed, sunshine hours, and relative humidity are used for this analysis along with crop and soil data. For future period

(2021–2099), climatic datasets are collected from the four climate models (ACCESS1-0, CCSM4, CNRM-CM5 and MPI-

ESM-LR) of CORDEX under two different scenarios, i.e., Representative Concentration Pathway (RCP) 4.5 and 8.5. CWR

& CIR of maize, wheat and rice crops are projected for three-time windows, i.e. start term (2021–2046), mid-term

(2047–2073), and end term (2074–2099) by taking 1998–2015 as baseline period. In addition, uncertainty and sensitivity

analysis is carried out. The outcomes from the study suggest an increase in the CWR towards the end of the twenty-first

century for rice and wheat over West (8% and 39%) and South (11% and 37%) Sikkim with respect to baseline period. In

case of Maize, a decreasing trend is noticed over West (- 4%) and East (- 15%) Sikkim. For all the crops in East Sikkim,

a declining trend is likely to occur. In most of the cases, the CIR has increased towards the end of the twenty-first century.

The uncertainty analysis reveals RCP 4.5 as the possible scenario over the study area. The outcomes from the study

facilitate the agricultural and water managers for adopting effective measures to ensure sustainability.

Keywords Climate change � Crop water requirement � Crop irrigation requirement � Himalayan region � Uncertainty

analysis

1 Introduction

Potential changes in climate variability and its extremes are

emerging as key determinants for agricultural and socio-

economic development. Due to the dual pressure of climate

change and growing population demand, the agricultural

sector has become more vulnerable. The observed warming

climate over last several decades is directly associated with

the variability in the hydrological components such as

occurrence and intensity of precipitation, available soil

moisture, rate of evaporation, runoff generation, and many

more (Rao et al. 2011). Further, the changes in the

hydrological components can be considered as one of the

principal sources of fluctuation in the agricultural sector in

many parts of the world affecting plant water use, crop

growth, development, quantity of irrigation and produc-

tivity (Moonen et al. 2002; Todisco and Vergni 2008; Wei

et al. 2014). In conjunction with the prevailing warming

conditions, it has been projected an increase in the average

global surface temperature by 4.8 �C by the end of twenty-

first century with latitudinal variations in the precipitation

pattern (IPCC 2014). Therefore, rising temperature with

precipitation uncertainty has a substantial influence on

future water availability and irrigation water requirement

worldwide (Boonwichai et al. 2018).

India, an agrarian country, shares about 18% of the total

world population and having 9% of the world’s arable land.
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In addition, about 56% of its agricultural land is rainfed

(Goyal and Surampalli 2018). With a limited amount of

resources and in the scenario of climate change the sus-

tainable management of the agricultural sector has become

paramount importance (Jha et al. 2019) and even more

challenging in the mountain regions (Das et al. 2020a). A

report by the International Center for Integrated Mountain

Development states a widespread increase in the warming

trend about 0.01–0.04 �C per year over Eastern Himalayas

(Sharma et al. 2009). Due to increasing uncertainty, the

Himalayan agriculture is being impacted substantially (Das

et al. 2020b). Moreover, water storage for irrigation is

consistent problem due to undulated topography and rocky

terrain; hence, rainfed agriculture is dominant over the

hilly areas. The mountain cultivators are facing challenges

and unpredictable scenarios due to climate change, which

further worsen the life and livelihood of the mountain

communities (Goswami et al. 2018a, b). In this sense, it is

indispensable to understand the crop water demand and

irrigation requirement under the climate change circum-

stances for effective agricultural water management in the

mountain regions.

Realizing the importance of agricultural water manage-

ment, in this study we have analyzed the spatio-temporal

variability of the crop water requirement (CWR) and crop

irrigation requirement (CIR) of different major crops under

the climate change scenarios. Water required by different

crops depends upon various factors such as location, atmo-

sphere, and type of soil, valuable precipitation and techniques

used for development. According to Food and Agriculture

Organization (FAO), the term CWR is defined as the depth of

water which is equivalent to the amount of evapotranspiration

from a healthy crop under non-restricting soil conditions and

given growing environment. In other words, it is the amount of

water required by the crop for the optimal growth (Song et al.

2018). Over long-term, the climate variability is likely to

affect agriculture in various ways, including the CWR

(Todisco and Vergni 2008). Similar to the CWR, CIR indi-

cates the extra amount of water that is supplied through irri-

gation for promising optimal growth condition for crop and is

closely related to CWR. Moreover, the irrigation water

requirements vary according to the available soil moisture

condition in the soil and the balance between the precipitation

and evapotranspiration (De Silva et al. 2007). Therefore,

water availability and distribution under climate change will

greatly affect the CIR as well. Future quantification of spatio-

temporal variability of CWR and IR can improve water

management efficiency. In an effort to analyze the future

CWR and IR, limited studies have been carried out by the

researchers from various parts of the world and the examples

include but are not limited to, De Silva et al. (2007), Döll

(2002), Droogers (2004), Shen et al. (2013), Shrestha et al.

(2013), Song et al. (2018), Tubiello et al. (2000), Zhou et al.

(2017), among others. However, most of the studies are car-

ried out without ascertaining the uncertainty associated with

the climate models and scenarios.

Under this understanding, the present analysis incorporated

CROPWAT model to estimate the CWR and CIR over the

Eastern Himalayan region. The CROPWAT, as an irrigation

planning and management tool, is developed by the Water and

land Development Department of FAO. The CROPWAT uses

the spatio-temporal heterogeneity of soil, climate, and crop

inputs to compute the CWR and CIR. Over the Asian coun-

tries, the use of CROPWAT model is prominent over China

and Nepal (Shrestha et al. 2013; Zhou et al. 2017; Song et al.

2018). However, over the agrarian country like India, the use

of CROPWAT is limited with reference to evaluate the future

changeability of CWR and CIR. In order to account the

uncertainty, the past studies employed methodology such as

imprecise probability (Ghosh and Mujumdar 2009), Bayesian

analysis (Das and Umamahesh 2018b), sensitivity analysis

(Mearns et al. 1996), among others. The present analysis

adopts the possibilistic approach to assess the uncertainty

associated with incomplete or partial knowledge (Zadeh

1999). However, the probability theory is adopted to the

dataset with complete information. The outputs from the

GCMs under different scenarios can be related to the datasets

with incomplete information. The adopted technique is simple

and inexpensive.

The aim of the present paper is to assess the spatio-

temporal variation of the climate change impact on CWR

and CIR of major crops over one of the northeastern

Himalayan states, namely Sikkim. For the future projection

under different possible scenarios, we have used outputs

from the GCMs developed as a part of the fifth phase

Coupled Model Intercomparison Project (CMIP5). The

inherent bias in the GCM outputs is corrected using the

distribution mapping method. To the best of the authors’

knowledge, evaluation of GCM and scenario uncertainty is

very limited in the past studies on CWR and CIR. In

addition, sensitivity analysis by shifting the crop planting

periods is demonstrated to identify the implications on

CWR for all the major crops. The reliable estimates of

CWR and CIR of different major crops over the north-

eastern Himalayan region would help greatly in rational

utilization of available water resources for irrigation,

effective planning of irrigation schemes for water conser-

vation and management practices.

2 Materials and methods

2.1 Study area description

The selected study site, Sikkim (Fig. 1), lies in the north-

east part of Himalaya, which is landlocked by Bhutan,
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Nepal and China. The study is conducted on three major

areas in Sikkim namely, Gangtok (East Sikkim), Geyzing

(West Sikkim), and Namchi (South Sikkim). The location

map of Sikkim and digital elevation map of Sikkim is

shown in Fig. 1a, c. Figure 1b represents three chosen

reference locations of east, west and south Sikkim,

respectively. Geographical latitudes of the study area are

27� 070 N and 28� 130 N and longitudes 88� 010 E and 88�
920 E. The altitude of Sikkim ranges from 192 m, and

7403 m above mean sea level (msl). Rainfall mainly occurs

in monsoon season (May–September) with an average

annual rainfall of 3300–3600 mm. Absolute maximum

temperature (Tmax) and minimum temperature (Tmin)

ranges from 17–24 to 9–13 �C, respectively (Deb et al.

2015).

The undulated geology and rough, rock-bounded

topography of Sikkim make it difficult for agricultural

practice. Yet, in spite of such impediments, farming

practices are done by changing rocky and undulated

topography to agrarian land by means of terraces. Major

crops grown in Sikkim are maize, rice and wheat. Although

Sikkim’s economy is largely dependent on agriculture,

most of cultivation is rainfed with traditional system and

low-level inputs. Due to lack of adequate harnessing

techniques, the total area under agriculture is not more than

11% in Sikkim. However, about 70% of Sikkim’s popu-

lation depends on agricultural activity for their livelihood

(Azhoni and Goyal 2018).

2.2 Data

2.2.1 Meteorological data

Meteorological datasets such as precipitation and temper-

ature series at 0.5� 9 0.5� grid resolution are obtained

from India Meteorological Department (IMD) during

Fig. 1 Location and elevation map of the study area. a Sikkim map superimposed over India, b location of the chosen three districts over Sikkim,

c elevation map of the Sikkim

Stochastic Environmental Research and Risk Assessment (2021) 35:1175–1188 1177

123



1970–2015. The wind speed data are collected from the

Terrestrial Hydrology Research Group, Princeton University

website and are available at 0.5� 9 0.5� resolution (http://

hydrology.princeton.edu/getdata.php?dataid=1). Relative

humidity data are obtained from the National Center for

Environmental Prediction/ National Center for Atmospheric

Research (NCEP/ NCAR) re-analysis dataset (https://www.

esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.pressure.

html).

2.2.2 GCM simulated dataset

In order to understand the regional climate change and its

impact in the foreseen future, Global Climate Models/Gen-

eral Circulation Models (GCMs) are used as most credible

tools that projects different hydro-meteorological variables

in future under different possible climate scenarios (Das and

Umamahesh 2018a). However, the lower spatial resolution

outputs from the GCM are incapable of capturing the

regional information. To make up the inability of the GCMs

in predicting regional climate, different downscaling tech-

niques such as statistical and dynamic downscaling are

widely adopted (Ghosh and Mujumdar 2008; Goyal and

Ojha 2012; Wilby et al. 2014; Das and Umamahesh

2016, 2018a). Therefore, in order to avail the high-resolution

datasets, several experimental groups help the research

community in providing the datasets with regional interest.

In the present study, we have used outputs from four

different GCMs under two different climate scenarios

(Representative Concentration Pathways (RCP) 4.5 and

8.5) with a resolution of 0.5� 9 0.5� are downloaded from

the Coordinated Regional Climate Downscaling Experi-

ment (CORDEX) for South Asia from the Indian Institute

of Tropical Meteorology, Pune (IITM) (Das and Umama-

hesh 2018b). To incorporate the diversity among the

GCMs, we have selected four different models, namely

Community Climate System Model, version 4 (CCSM4),

Australian Community Climate and Earth-System Simu-

lator version 1.0 (ACCESS1.0), Max Planck Institute for

Meteorology Earth System Model LR (MPI-ESM-LR),

Centre National de Recherches Météorologiques Coupled

Global Climate Model, version 5 (CNRM-CM5). The

future projections of the datasets (precipitation, tempera-

ture) are obtained under stabilized (RCP4.5) and high

emission (RCP8.5) scenarios during 2006–2099. It is worth

mentioning that historical datasets from 1970 to 2005 from

all the models are downloaded to incorporate bias-correc-

tion in the datasets.

2.3 Research methodology

To accomplish the motive of the study, the proposed

methodology is briefly presented in the form of a

flowchart (Fig. 2). The meteorological datasets, namely,

precipitation, maximum and minimum temperature, rela-

tive humidity, and wind speed for the historical period are

collected. The reference evapotranspiration (ETo) is com-

puted using the Penman–Monteith method. Based on the

observed historical data, the inherent bias in the outputs

from the GCMs are corrected and applied for the future

simulation (2006–2099) for two different scenarios. Next,

the CWR and IR are computed using the crop coefficient

for different major crops over three different locations over

the Sikkim using the bias corrected future simulations. To

ascertain the GCM and both GCM and scenario uncer-

tainty, we have adopted possibilistic approach. In addition,

we have also considered the multiple model ensemble

method to minimize the uncertainty. Subsequently, sensi-

tivity analysis is carried out through shifting the growing

periods of different major crops under different possible

climate change scenarios.

2.3.1 Bias correction

Although GCMs are used as a major tool to evaluate cli-

mate change, a robust assessment of climate change impact

requires unbiased input (Maraun 2016). The high-resolu-

tion outputs from the GCMs are associated with substantial

deviations from the actual data due to the random and

systematic errors (Teutschbein and Seibert 2013). In order

to bridge the gap between the simulated and observed

variables, bias correction is indispensable. In the present

analysis, distribution mapping is used to correct the bias in

precipitation and temperature datasets. In other words,

distribution mapping is also known as quantile-quantile

mapping (Johnson and Sharma 2011), probability mapping

(Block et al. 2009), and histogram equalization (Rojas et al.

2011). In order to correct the bias in precipitation and

temperature series, gamma and Gaussian distributions are

used, respectively. The gamma distribution (Thom 1958)

has been proven to be suitable for precipitation analysis

(Block et al. 2009; Piani et al. 2010). Similarly, the gaus-

sian distribution (Cramér 1999) is generally assumed to be

best fit for temperature analysis (Schoenau and Kehrig

1990). The motive of distribution mapping is to correct the

probability distribution function of the model simulated

series to match the distribution of observed series. In this

study, cumulative distribution functions (CDFs) are

obtained for both the baseline and GCM-simulated histor-

ical values for all the days within a certain month. Next, the

value of the GCM-simulated variables, i.e., tempera-

ture/precipitation of day d within month m is investigated

on the empirical CDF of the GCM simulations along with

its corresponding cumulative probability. Subsequently, the

value of temperature/precipitation corresponds to the same

cumulative probability is located on the empirical CDF of
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observed dataset. Lastly, this value is considered as cor-

rected value during the baseline period for the GCM sim-

ulation. This procedure is performed using gamma

distribution for precipitation and Gaussian (normal) dis-

tribution for temperature. The equations used to correct

precipitation and temperature series are presented in Eqs. 1

and 2 (Teutschbein and Seibert 2012). Based on these

corrections, the future projected datasets of multiple GCMs

are corrected before analyzing the impact of climate

change on crop water requirement and irrigation

requirement.

Pcon
�ðdÞ ¼ F�1

c ðFcðPconðdÞjacon;m; bcon;mÞjaobs;m; bobs;mÞ
Pfut

�ðdÞ ¼ F�1
c ðFcðPfutðdÞjacon;m; bcon;mÞjaobs;m; bobs;mÞ

ð1Þ

Tcon
�ðdÞ ¼ F�1

N ðFNðPconðdÞjlcon;m; r2
con;mÞjlobs;m; r2

obs;mÞ
Tfut

�ðdÞ ¼ F�1
N ðFNðPfutðdÞjlcon;m; r2

con;mÞjlobs;m; r2
obs;mÞ

ð2Þ

Different symbols and notation used in Eqs. 1 and 2: con—

control period (GCM simulated under baseline period, i.e.,

1970–2005); fut—future; obs—observed; (d)—daily; m—

monthly interval; P—precipitation; T—temperature; c—

Gamma distribution; N—Normal distribution; a and b—

shape and scale parameter of the Gamma distribution; l
and r—location and scale parameters of the Gaussian

distribution; *—denotes bias-corrected. For example,

before and after bias correction of precipitation, maximum

and minimum temperature during the baseline period for

the reference location over South Sikkim (Namchi) is

presented in Fig. 3 as quantile–quantile plot for MPI-ESM-

LR model. In can be noted from the figure that different

INPUT DATA

CWR=ETC = KC× ET0 Peff = Fixed percentage Method

CROPWAT Model 

Meteorological Data

Past data (1970-2015)

-Precipitation (mm)

-Temperature (0C)

-Wind Speed (m/s)

-Relative Humidity (%)

-Sunshine Hours 
(Mj/m2/day)

Crop Data

- Planting date 

- Crop factor

- Crop coefficients 

- Critical depletion factor

- Yield response factor

- Rooting depth

Soil Data

- Total available soil 
moisture (mm/meter)

- Maximum infiltration 
rate (mm/day)

- Initial soil moisture 
depletion (%)

- Initial available soil 
moisture (mm/meter)

CIR = CWR- Peff

OUTCOMES

Sensitivity 
Analysis

Uncertainty 
Analysis

Future Projection of 
CWR& CIR

Future Climate Data

Future data (2021-2100)

- Future Projection 
(CORDEX) data

-Bias Corrected Climatic 
Variables RCP 4.5 & RCP 

8.5

Bias Correction using 
IMD data (1970-2005)

Fig. 2 Flow chart of the proposed methodology
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meteorological series has been significantly improved as

compared to the observed dataset after removal of the bias.

2.3.2 CROPWAT model

The crop water requirement varies extensively and is

affected by types of crop, properties of soil, weather con-

ditions, etc. The amount of water lost by the crop repre-

sents by the crop evapotranspiration (ETc) and CWR

represents the extra amount of water that has to be supplied

for growth of crop. In the present study, CROPWAT model

is used to compute the CWR for different major crops over

Sikkim. According to Smith et al. (2002), the model

requires less number of input datasets as compared to the

other models. The model uses Penman–Monteith method

(Eq. 3) to compute ETo, crop evapotranspiration and irri-

gation requirement (Smith 1991; Allen et al. 1998). At

present, there are different methods that are being used to

compute the CWR in water resources research. For

instance, the Blaney–Criddle, Penman–Monteith, radiation,

and pan evaporation methods are commonly used to

compute CWR for different crops. Moreover, the choice of

methods is based on the precision required to compute the

water needs and availability of climatic datasets. Due to the

excellent performance and inclusion of physical theory in

computation, Penman–Monteith method is widely used

(Pereira et al. 2015). In addition, this method offers mini-

mum percentage of error as compared to the other method,

i.e. ± 10% in summer and up to 20% under low evapo-

rative condition (Doorenbos and Pruitt 1977). Therefore, in

the present paper, we have used Penman–Monteith method

to analyze spatio-temporal variability of CWR for different

major crops. To do so, CROPWAT, which has been highly

recommended by FAO to better estimate of CWR under

different climate change scenarios (Smith 1992), is used.

ETo mm=dayð Þ ¼
0:408DðRn � GÞ þ c� 900

Tþ273
� U2ðes � eaÞ

Dþ cð1 þ 0:34U2Þ
ð3Þ

where D is the slope of the saturation vapor pressure

temperature relationship (KPa/�C); Rn is the net radiation

at the crop surface (MJ/m2/day); G is soil heat flux density

(MJ/m2/day); c is psychrometric constant (KPa/�C), U2 is

the measured wind speed at 2 m height (m/s); es and ea are

saturation and actual vapor pressure in KPa, respectively; T

is the mean daily air temperature (in �C).

The model requires different input data modules,

namely, climate data, crop data, soil data, and crop pattern

data. The climate data include precipitation, temperature

(minimum and maximum), windspeed, relative humidity,

sunshine hours, etc. In the absence of relative humidity and

sunshine hours, CROPWAT can estimate ETo using lati-

tude, longitude, altitude, maximum and minimum temper-

ature of location. Similar to the climate data, the crop data

such as maximum rooting depth, crop description, crop

factor, rooting depth, growing days, etc. are needed. The

crop development stages with different crop properties are

mentioned in Table 1. The soil properties, namely, soil

moisture availability, maximum infiltration rate, maximum

rooting depth and initial soil moisture depletion are given

as inputs to CROPWAT model. Loamy soil is more dom-

inated in the study area. The soil and crop data are col-

lected from the literature (Deb et al. 2015; Dubey and

Sharma 2018; Allen et al. 1998). The CWR is computed

using Eq. 4.

ETc ¼ Kc � ETo ð4Þ

where Kc is the crop coefficient that depends on various

factors like soil, crop height, albedo, wind speed and its

direction, etc. Moreover, Kc varies for the types of crop and

growing stages of crop.

To compute the crop irrigation requirement (CIR),

effective rainfall (Peffective) is computed based on the fixed

Fig. 3 Before and after bias-correction of precipitation, maximum and minimum temperature over South Sikkim for MPI-ESM-LR
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percentage method. In Indian condition, it is advised to

consider 50–80% of the total rainfall as effective (Dastane

1974). In the present study, we have chosen 65% as

effective precipitation considering the undulated topogra-

phy of the study area. The amount of irrigation requirement

is calculated by subtracting estimated effective rainfall

from calculated crop water requirement (Eq. 5).

CIR ¼ CWR� Peffective: ð5Þ

2.3.3 Linear trend analysis

To identify the linear trend in the CWR and CIR time

series, we have used a non-parametric method named as

Sen’s slope estimator proposed by Sen (1968). This method

computes the slope of the trend and the corresponding

intercept of the time series. The slope of the time series is

computed by using Eq. 6.

S ¼ yj � yk
j� k

; for j ¼ 1; . . .; n� 1; n; k ¼ 1; . . .; j� 1

ð6Þ

where S is the slope, yj and yk are the data points at time j

and k where (j[ k). With total number of data points n, the

possible slope estimates can be n(n - 1)/2 (Zaifoğlu et al.

2017). After computing all the possible slope values, the

values of S are ranked in an increasing order. If the total

count of slope is an odd number, then the middle value of

will be the median of slope otherwise the median value will

be the mean of the two values at the center.

2.3.4 Uncertainty analysis

Climate change impact assessment is carried out at a

regional scale and impact estimation at finer spatial scales

is burdened with a substantial amount of uncertainty

resulting from several sources (Mujumdar and Ghosh

2008). In addition, due to the availability of several climate

models and scenarios, there is always existence of uncer-

tainty in climate change impact analysis (Najafi and Hes-

sami Kermani 2017). Due to the uncertainty that is

involved in climate modelling, the outputs cannot be used

directly for proposing different adaptation strategies and

decisions (Pielke and Wilby 2012; Huth 2004) character-

ized different level of uncertainty such as (1) scenario

uncertainty, (2) GCM uncertainty, (3) due to downscaling

methods, and (4) different realizations of a single GCM due

to parameter uncertainty (intramodel uncertainty). In the

present study, we have analyzed the GCM and scenario

uncertainty using possibility theory. Here, the possibility

approach is based on the capability of the climate model

and scenario to simulate CWR and IR in the prevailing

climate changing scenario over different parts of Sikkim.

The mathematical expression of the possibility theory can

be presented as
Y

X

ðxÞ:X ! ½0; 1�: ð7Þ

If x = 0 represents X = x is not possible, whereas, x = 1

denotes X = x is possible without any restriction. The

restriction refers to the absence of any value other than x

that X can take with high possibility. According to the

Table 1 Crop development stages of maize, rice and wheat

Crop & it’s characteristics Initial Crop development Mid-season Late Total Sowing date

Maize

Stage length days 20 35 40 30 125 April–May

Root depth 0.3 [[ [[ 1

Crop coefficient 0.4 – 1.2 0.5 –

Yield response factor 0.4 0.4 1.3 0.5 1.25

Rice

Stage length days 30 40 35 20 125 July–August

Root depth 0.1 [[ [[ 0.6

Crop coefficient wet 1.7 – 1.7 0.4 –

Crop coefficient dry 0.5 – 1.05 0.7 –

Yield response factor 1 1.09 1.32 0.5 1.1

Wheat

Stage length days 15 25 50 30 120 October–November

Root depth 0.3 [[ [[ 1.2

Crop coefficient 0.3 – 1.15 0.4 –

Yield response factor 0.2 0.65 0.55 0.1 1.05
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normalization property, there must be one ~x such thatQ
Xð~xÞ ¼ 1 (Spott 1999). A detailed presentation of the

possibility approach is given in Das et al. (2018),

Mujumdar and Ghosh (2008) and the interested readers are

advised to follow the publications for better understanding.

In the present study, the uncertainty analysis using possi-

bilistic approach is performed by considering climate

change evidence in the recent past, i.e., 2006–2015.

Therefore, uncertainty related to GCMs and scenario is

evaluated during this period. The CWR and IR computed

using the observational datasets are considered as historical

observation of CWR and IR during 2006–2015. Next, the

bias corrected model simulations during the recent past are

used to compute CWR and IR under different climate

change scenarios. The performance index (C) is calculated

to assess the performance of the model simulated CWR and

CIR with historical CWR and CIR using Eq. 8.

C ¼ 1 �
P

t ðCWR=CIRobsðtÞ � CWR=CIRsimðtÞÞ2

P
t ðCWR=CIRobsðtÞ � CWR=CIRobsÞ2

ð8Þ

According to the normalization property, the possibility

value for a particular GCM and scenario is computed by

dividing the largest C value with computed C values of that

GCM and scenario.

3 Results and discussion

3.1 Precipitation and temperature variability

The quality of the meteorological outputs from the GCMs

are improved significantly after the bias-correction and the

annual variation in the precipitation and temperature for

baseline and future projected period under both climate

change scenarios for the east, west and south Sikkim is

presented in a Supplementary information under Figure S1.

The shaded area represents the mean ensemble of projected

future climatic variables, i.e. precipitation and temperature

while solid line denotes ensemble mean under both sce-

narios during 2021–2099. It can be seen that annual pre-

cipitation showing a decreasing trend over West and South

Sikkim, while there is no significant change over East

Sikkim is observed under both scenarios. In case of tem-

perature, increasing trend is observed in minimum and

maximum temperature under both scenarios RCP 4.5 and

8.5. This variation is observed higher in high emission

pathways as compared with the stabilized scenario path-

ways. Moreover, highest deviation in maximum tempera-

ture is observed over South Sikkim and the lowest

deviation is observed in East Sikkim. However, there is no

significant variability in minimum temperature observed

among the three districts of Sikkim. Therefore, only

precipitation and maximum temperature variability are

presented in Figure S1.

3.2 Past and future trend of CWR

This section deals with the CWR of three major crops,

namely, maize, wheat, and rice over three different loca-

tions of Sikkim. The historical CWR is computed based on

the observed meteorological datasets and the future pro-

jections are obtained using the bias corrected outputs from

the four selected GCMs under RCP 4.5 and 8.5 scenarios. It

is worth mentioning that all the supplementary figures and

tables can be identified in the main text Figure S (fig-

ure number) and Table S (table number), respectively. The

CWR of maize, wheat, and rice during their growth period

for the baseline and future projected period for all three

parts of Sikkim is presented in Figure S2 for Maize, S3 for

Wheat and S4 for Rice. Moreover, the linear trend mag-

nitude obtained from Sen’s slope analysis of CWR of

different crops is depicted in Figure S5.

An increasing trend of CWR for maize from 1998 to

2015 is observed for all the three parts of Sikkim and can

be noted from Figure S2. Further, the findings can be

supported by the positive linear magnitude of slope in

Figure S5(a). In future projection, a significant decreasing

trend is observed for all the models under both scenarios.

However, a higher decreasing trend (- 0.19 to

- 0.35 mm/year) is observed in case of RCP 4.5 than 8.5.

More interestingly, the CWR trend is likely to increase

under both the scenarios for all the models over West

(0.29–0.5 mm/year for RCP 4.5) and South

(0.32–0.61 mm/year for RCP 4.5) Sikkim. In case of RCP

8.5 scenario, the highest change in the CWR is observed in

CNRM-CM5 (1.52 mm/year) over West Sikkim and in

MPI-ESM-LR (1.96 mm/year) over South Sikkim. The

decrease in CWR over East Sikkim can be attributed to the

future changes in the precipitation and temperature. Over

East Sikkim, there is no significant change in the precipi-

tation from the historical period as compared to the West

and South. Furthermore, the temperature has not signifi-

cantly increased under the climate change scenarios with

respect to the past records and as compared to the other two

locations. Therefore, the ETo is not going to increase more

significantly over East Sikkim resulting in less CWR.

In case of Wheat, a significant decreasing trend is

noticed over West and South Sikkim for the baseline per-

iod. However, an insignificant increasing trend is observed

over East Sikkim. In most of the cases, the future projec-

tions of CWR have shown an increasing trend under both

the scenarios with maximum increase in case of RCP 8.5.

The highest increasing rates are 0.78, 1.61, and 1.35 mm/

year for East, West and South Sikkim, respectively. All the

above-said results can be noticed under the Figure S3 and
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Figure S5(b). It can be noted from Figure S4 and S5(c) that

there is an increase in the CWR of rice during the baseline

period. Similar to the wheat, the CWR of rice during the

2021–2099 has increased under both the scenarios for most

of the cases. The highest increasing rates are 0.63, 1.54,

and 3.69 mm/year for East, West and South Sikkim,

respectively.

3.3 Past and future trend of CIR

The CIR of wheat and rice during the baseline and future

period over three regions of Sikkim are shown in Figure S6

for wheat and S7 for rice. The Sen Slope results of a crop

irrigation requirement are also shown in Figure S8. It

should be noted that maize crop is considered as rainfed

and hence CIR is not computed for the same.

Figure S6 demonstrates the decreasing trend in CIR for

wheat crop during 1998–2015 in West and South Sikkim

while the increasing trend is observed over East Sikkim. A

similar trend can also be observed in Fig S8 (a). An

increasing trend is observed for East and West Sikkim

under RCP 4.5 and 8.5 scenarios for most of the GCMs. On

the other hand, in South Sikkim although the CIR is likely

to increase in future, there is no visible difference observed

between RCP 4.5 and 8.5 for all GCMs except MPI-ESM-

LR. The highest increasing rates are notices as 0.77, 1.51,

and 0.74 mm/year for East, West and South Sikkim,

respectively.

The future projection and its linear trend are presented

in Figure S7 and S8(b). An increasing trend with magni-

tude 0.35–1.54 mm/year and 0.73–1.84 mm/year is

observed over West and South Sikkim, respectively under

both scenarios. However, an insignificant linear trend of

- 0.06 to 0.15 mm/year is noticed over East Sikkim under

RCP 4.5 and 0.42–0.85 under RCP 8.5. The highest posi-

tive rates are obtained from ACCESS-1.0, CNRM-CM5,

and MPI-ESM-LR models for East, West and South Sik-

kim, respectively. The decrease in CIR over East Sikkim

can be attributed to the insignificant changes in the future

CWR. Over East Sikkim, there is no significant change in

the CWR of Rice as compared to the West and South.

Therefore, the CWR is not going to increase more signif-

icantly over East Sikkim resulting in less CIR.

3.4 Uncertainty analysis of future CWR & CIR

It is important to note that the results discussed in

Sects. 3.2 and 3.3 are not analyzed for the uncertainty. As

uncertainty analysis in the climate change impact study is

essential to minimize the errors, in the present section we

are presenting the future outcomes of CWR and CIR after

the uncertainty analysis using possibilistic approach as

discussed in Sect. 3.4.

The performance measure C is calculated for multiple

GCMs under both scenarios based on their simulation

during 2006–2015. Table S1 presents the unnormalized C

value to assess both GCM and scenario uncertainty. The

highest C values are marked as bold in Table S1 for three

major crops and districts of Sikkim. The possibility value

after normalization for both scenario and GCM uncertainty

is presented in Table 2.

It can be found from Table 2 that the RCP 4.5 scenario

exhibits the highest possibility value (11 out of 15 cases)

which implies that stabilized scenario pathway is identified

as the most possible scenario for regional climate change

impact assessment in our study areas for CWR and CIR. It

is important to note that for other agro-meteorological

variables except CWR and CIR, the possibility distribution

can be different for the same region. Since the climate

forcing is not very significant during the recent past

(2006–2015) and therefore significant difference in GCMs

output is not found between RCP 4.5 & 8.5 scenarios. The

possibility value of 1 does not means that the particular

GCM and scenario projects the best climate change

assessment over the study area. However, with the avail-

able GCM and scenario projections the particular selected

GCM under the scenario is likely to prevail in the selected

study area.

3.5 Future projection of CWR & CIR
with uncertainty analysis

Future projection of CWR and CIR of different crops

among three districts of Sikkim with best possible GCM

and scenario is presented in Figs. 4 and 5, respectively.

The percentage change in CWR of wheat crop in the

future increases from 32–39 to 23–37% over West and

South Sikkim, respectively as compared to the baseline

period. Whereas the percentage change is likely to decrease

from - 11 to - 6% over East Sikkim during 2021–2099.

In the case of maize, the CWR change is likely to decline

between - 15 to - 9%, - 8 to - 4% and - 5 to 3% over

East, West and South Sikkim, respectively. Similarly, the

percentage increase in the projected CIR ranges from

24–58 to 20–27% over West and South Sikkim while

decreasing trend from - 12 to - 5% is observed over East

Sikkim during 2021–2099. On the other hand, the per-

centage change in the CWR of rice ranges from - 6 to

- 3, - 2 to 8, to - 0.5 to 11% over East, West, and South

Sikkim, respectively. However, CIR of rice crop has shown

an increasing trend among the three districts of Sikkim

ranges from 4–25, 2–35 to 2–36% over East, West and

South Sikkim, respectively. It is worth mentioning that the

future variability of the CWR and CIR primarily depends

on the meteorological changeability as the constituent of

the soil profile over the study area is assumed to be
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Table 2 Possibility values after normalization for different crops over different regions

Crop GCM/scenarios ACCESS1.0 CCSM4 CNRM-CM5 MPI-ESM-LR

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Maize East Sikkim 0.86 0.59 0.47 0.89 0.55 0.89 1.00 0.63

West Sikkim 0.87 0.46 0.59 0.56 0.96 0.62 1.00 0.73

South Sikkim 1.00 0.50 0.81 0.90 0.97 0.75 0.46 0.72

Rice East Sikkim 0.75 0.85 0.69 0.54 1.00 0.83 0.77 0.48

West Sikkim 0.56 1.00 0.62 0.65 0.43 0.56 0.55 0.45

South Sikkim 0.58 0.73 0.92 1.00 0.78 0.53 0.56 0.47

Wheat East Sikkim 1.00 0.62 0.72 0.69 0.87 0.82 0.63 0.64

West Sikkim 0.77 0.54 0.70 0.55 1.00 0.57 0.67 0.51

South Sikkim 0.54 0.83 0.98 0.67 1.00 0.49 0.98 0.70

Rice CIR East Sikkim 1.00 0.54 0.96 0.92 0.73 0.72 0.97 0.68

West Sikkim 0.84 1.00 0.62 0.90 0.80 0.62 0.59 0.55

South Sikkim 0.95 0.73 1.00 0.72 0.64 0.69 0.58 0.52

Wheat CIR East Sikkim 1.00 0.75 0.86 0.51 0.83 0.96 0.88 0.71

West Sikkim 0.53 0.92 0.55 0.73 0.78 0.53 0.84 1.00

South Sikkim 1.00 0.58 0.73 0.82 0.73 0.62 0.58 0.55

Fig. 4 Observed and future projections of CWR for different crops over East, West, and South Sikkim after GCM and scenario uncertainty

analysis
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constant in the future period. Due to the spatio-temporal

variability of meteorological variables, the soil moisture

profile over the study area is likely to change resulting in

variable CWR and CIR.

3.6 Sensitivity analysis

With increasing greenhouse gas emission and climate

change forcings, it is necessary to find out the way for the

opportunity to decrease CWR in terms of water conserva-

tion. Therefore, we have carried out sensitivity analysis by

altering the growth period of different crops over three

different districts of Sikkim. In Sikkim, the growing period

of maize starts from mid-April. In addition to the current

condition, five different scenarios based on the growth

period of the crop are proposed such as Case I (30 March),

Case II (30-April), Case III (15 May), Case IV (30 May)

and Case V (15 June), i.e. growing period of maize is

shifted from mid-April to mid-June. For Case I, maize has

shown an increasing trend in CWR whereas for other cases

such as Case II to Case V, CWR is likely to decrease, under

both RCP 4.5 and 8.5 scenarios for all 3 parts of Sikkim

(Fig. 6, Figure S9, & Figure S10). A significant amount of

water conservation is noticed from case II to case V

whereas no conservation is observed in case I. Case V

projects the lowest CWR and hence identified as highest

level of water conservation. The growing seasons of Maize

are shifted from April to June, indicating conservation of

10 to 60, 12 to 86, and 12 to 108 mm/year under both

scenarios for East, West, and South Sikkim, respectively.

Also, the growing seasons of Wheat (Figure S11) are

shifted from 20 October to 5 December, i.e., Case I (5

October), Case II (20 October), Case III (5 November),

Case IV (20 November) and Case V (5 December). For

East and South Sikkim, case I, II & V clearly indicate

increasing trend of CWR while a decrease is observed over

case III & IV. However, for West Sikkim, CWR decreases

over Case III, IV, & V. This clearly indicates that the wheat

growth period is suitable to shift from 5th to 20th day of

November from the current scenarios or else no water

conservation is possible. The growing seasons of wheat are

shifted from October to November, indicating conservation

of 1–11, 18–29, and 3–95 mm/year for East, West, and

South Sikkim, respectively.

Similarly, for the rice crop (see Figure S12), in addition

to current condition i.e. 1st week of July, 5 newly added

growing periods are proposed viz., Case I (15 June), Case

II (15 July), Case III (30 July), Case IV (15 August) and

Case V (30 August). From Case II to Case V, CWR of rice

shows a decreasing trend both scenarios over all three parts

of Sikkim. After adopting the newly developed growing

period from July to August, water conservation of 13–102,

4–102 and 11–88 mm/year under both RCP 4.5 & 8.5

scenarios for East, West and South Sikkim, respectively.

It should be noted that the sensitivity analysis through

changing the growing periods of different crops is carried

out to understand the implications on CWR under different

climate change scenarios. Moreover, authors have assumed

15 days gap from one case to another, which may not

affect the crop management practices over the study area

drastically. In the present scenario of climate change, the

spatio-temporal variability of precipitation is well under-

stood. Therefore, the shift in the crop producing periods,

would help in coping with the changeability in the pre-

cipitation pattern. However, adaptation of such conditions

would be a decision-based approach (can’t be straight

Fig. 5 Observed and future projections of CIR for wheat and rice over East, West, and South Sikkim after GCM and scenario uncertainty analysis
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forward) that depends on the crop yields, feasibility, mar-

keting values of different crops, among others.

4 Conclusions

The present study investigates the climate change impli-

cations on CWR and CIR in three districts of Sikkim,

namely East, West, and South Sikkim. Additionally,

uncertainty analysis of both GCM and scenario is also

carried by using the possibility approach. The outcomes of

the study are as follows:

• The future projection of regional CWR in the total

growth stage of maize, wheat, and rice is likely to

decrease over East Sikkim. On the other hand, CWR

(except for maize in West Sikkim) over West and South

Sikkim is expected to increase during 2021–2099.

• The future trends of CIR of wheat and rice show a

significant increasing trend in West and South Sikkim,

whereas, over East Sikkim CIR is likely to decrease

(increase) for wheat (rice).

• It is noted that shifting growth period may reduce CWR

in the study region.

• The uncertainty analysis reveals RCP 4.5 as the most

possible scenario for the regional climate change

impact assessment on CWR and CIR over the study

area.

The outcomes from the study would provide a frame-

work for the agricultural and water engineering over Sik-

kim for effective management of water resources for

sustainable agriculture. Adaptation of different cropping

pattern is necessary to combat climate change. However,

its impact on the crop yield and marketing values under the

stressed scenario of climate change and population growth

should be analyzed and hence provides a new direction to

pursue future research.
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