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Abstract
Available climate change projections, which can be used for quantifying future changes in marine and coastal ecosystems,

usually consist of a few scenarios. Studies addressing ecological impacts of climate change often make use of a low-

(RCP2.6), moderate- (RCP4.5) or high climate scenario (RCP8.5), without taking into account further uncertainties in these

scenarios. In this research a methodology is proposed to generate further synthetic scenarios, based on existing datasets, for

a better representation of climate change induced uncertainties. The methodology builds on Regional Climate Model

scenarios provided by the EURO-CORDEX experiment. In order to generate new realizations of climate variables, such as

radiation or temperature, a hierarchical Bayesian model is developed. In addition, a parameterized time series model is

introduced, which includes a linear trend component, a seasonal shape with varying amplitude and time shift, and an

additive residual term. The seasonal shape is derived with the non-parametric locally weighted scatterplot smoothing, and

the residual term includes the smoothed variance of residuals and independent and identically distributed noise. The

distributions of the time series model parameters are estimated through Bayesian parameter inference with Markov chain

Monte Carlo sampling (Gibbs sampler). By sampling from the predictive distribution numerous new statistically repre-

sentative synthetic scenarios can be generated including uncertainty estimates. As a demonstration case, utilizing these

generated synthetic scenarios and a physically based ecological model (Delft3D-WAQ) that relates climate variables to

ecosystem variables, a probabilistic simulation is conducted to further propagate the climate change induced uncertainties

to marine and coastal ecosystem indicators.
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1 Introduction

It is widely accepted that long term changes in climatic

variables will cause shifts (phenological and biogeographic

shifts) in species distributions, but the extent of these shifts

is not yet well understood and any prediction will have a

high level of associated uncertainty (Goberville et al.

2015). Climate change data in ecosystem assessments are

used as forcing conditions for the numerous non-linear

ecological processes. These ecological processes are

influenced by changes in extreme values, or shifts in dis-

tributions and peaks of the climate forcings. Applicable

methodologies for estimating ranges and expected changes

in statistical properties of the climate scenarios are there-

fore essential for subsequent ecological impact assessment.

The uncertainty accumulated throughout the climate

modelling chain, such as initial conditions, boundary con-

ditions, parametric and model structure of both General

Circulation Models (GCMs) and Regional Climate Models

(RCMs) may further propagate and influence ecological

impact estimates. Yet in most impact studies climate

change induced uncertainty is only characterized by dif-

ferent GCM and Representative Concentration Pathway

(RCP) configurations in a small ensemble of climate sce-

narios to anticipate potential trajectories (Vesely et al.
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2019), but without a fully probabilistic uncertainty

quantification.

If available time series of the climate variables are not

sufficient to serve as stochastic input variables for eco-

logical, agro-meteorological or hydro-meteorological

assessment studies, one way to obtain better uncertainty

estimates is to generate multiple realizations of the climate

input variables. Numerous studies exist on generating new

datasets of meteorological variables using probabilistic

models. These models are often referred to as stochastic

weather generators. Some well known examples of

stochastic weather generators are LARS-WG (Semenov

and Barrow 2002), WeaGETS (Chen et al. 2012), or

CLIMAK (Danuso 2002). These widely used stochastic

weather generators have been compared in various studies

to assess their validity for long-term climate data simula-

tion (Mehan et al. 2017), performance in different climatic

regions (Vu et al. 2018), adequacy for water resources

systems risk assessment (Alodah and Seidou 2019), or to

quantify uncertainty due to the choice of the weather

generator (Vesely et al. 2019). In short the aim of all

stochastic weather generators is to simulate new synthetic

sets of meteorological time series with statistical properties

similar to the historical data or models (Birt et al. 2010).

The expected impact of such methods on the relevant sci-

entific community is to facilitate studying the effect of

long-term changes in mean climate variables, climatic

variability, and the frequency of extreme events (Vesely

et al. 2019).

In the above mentioned weather generators the primary

variable of interest is precipitation and the simulation of

other variables, such as temperature and solar radiation, is

conditioned on the occurrence of rainfall (wet or dry days).

Thus, most of these stochastic weather generators are of

Richardson type (Richardson 1981). The concept of these

types of generators is that solar radiation and temperature

are modeled jointly as a bivariate stochastic process with

the daily means and standard deviations conditioned on the

wet or dry state. First a ’residual’ time series is obtained by

removing a periodic trend. This residual time series is

assumed stationary and normally distributed, and the

autocorrelation and cross-correlation coefficients are esti-

mated using the residuals of the maximum temperature,

minimum temperature, and solar radiation variables.

Finally, the removed means and standard deviations are

reintroduced to produce the generated daily values.

Recently, for the simulation of temperature improve-

ments have been made to the Richardson type weather

generators. One of the major improvements is simulating

nonstationary temperature time series directly instead of

simulating standardized residuals first and then adding

them to the periodic mean and standard deviation (Smith

et al. 2017). The proposed approach called Stochastic

Harmonic Autoregressive Parametric weather generator

(SHArP) allows for trends and seasonality in the temper-

ature generation. Another extension, the Seasonal Func-

tional Heteroscedastic Autoregressive (SFHAR) generator

(Dacunha-Castelle et al. 2015), uses a decomposition of

the temperature signal into trends and seasonality in the

mean and the standard deviation, and a stochastic part. This

was later applied to generate a long trajectory of past and

near future (up to 2040) temperature by also incorporating

GCM simulations (Parey 2019). This is an innovative

feature considering that the commonly used weather gen-

erators focus on historical periods with observed climate

characteristics and allow the inclusion of future climate

projections only through change factors. Those change

factors are then used to alter the observed statistics to

account for the offset in the future projections and recali-

brate the weather generators.

The lack of proper treatment of parameter uncertainty in

previous weather generators gave rise to studies which

employed Bayesian methods. These methods have a clear

advantage as they better capture uncertainty by providing

the full distribution of model parameters instead of a single

best estimate. This enhanced parameter uncertainty char-

acterization allows us to represent the full range of plau-

sible climate scenarios and subsequently the full range of

impacts, once climate input is propagated through process-

based models (Verdin et al. 2019). For these reasons,

hierarchical Bayesian frameworks have been increasingly

applied for a range of purposes in the field of weather

generators. Applications have primarily focused on pre-

cipitation and temperature modelling, such as spatial

modelling of extreme precipitation (Reich and Shaby

2012), spatial modelling of daily precipitation and tem-

perature (Verdin et al. 2019), statistical downscaling of

precipitation (Hashmi et al. 2009), or to quantify future

temperature and precipitation uncertainties from multiple

climate models (Tebaldi et al. 2005; Tebaldi and Sansó

2009; Najafi and Moradkhani 2014; Katzfuss et al. 2017).

Even though all these applications benefited from the

hierarchical or multi-layered Bayesian model structure,

their exact model formulations are not transferable to our

case, in which the parameters of our proposed time series

model are to be inferred in order to simulate long term

traces of radiation, and making use of an ensemble of RCM

simulations.

While our proposed method shares the primary objective

of existing stochastic weather generators, in that we also

aim to generate numerous gap-free time series of atmo-

spheric variables using available climate data and with

statistical characteristics similar to these, there are few

important differences in the main concept. Firstly, we aim

to directly simulate trajectories with long-term trend,

avoiding the common practice of simulating residuals
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which are then added to climatology (historical or climate

change adjusted). Moreover, simulating a very long future

projection until the end of the century is not common in

existing studies. Secondly, we use a high-resolution 0.11

degree (or 12.5 km) RCM ensemble from Euro-CORDEX

as calibration data for our generator to quantify the tem-

poral evolution of future uncertainty in regional climate

change radiation projections, as opposed to most previous

studies using GCMs and focusing on precipitation and

temperature. Since we propose a single site generator, we

do not make full use of the high spatial resolution of the

RCM ensemble, on the other hand, we can argue that high-

resolution RCMs describe regional and local processes

more accurately than GCMs. In this regard, the novelty is

not that the generator can create spatial fields, but rather

that it is using input data from a climate modelling

experiment that describes local processes the best, which

was often not the case in existing stochastic climate gen-

erators. Thirdly, our hierarchical Bayesian model consist of

a new time series model formulation and derived Gibbs

parameter update formulas for the parameter inference.

The proposed multi-layered Bayesian structure combines

different climate scenarios into one model (rather than

separately treating them), making the estimates statistically

more robust. Lastly, we apply the generator to simulate

marine water quality indicators, whereas previous weather

generators were mainly focusing on land based impacts

(hydrology, agriculture, ecosystem changes). While these

conceptual elements separately exist in the field of

stochastic weather generators or more broadly in the field

of climate sciences and/or environmental sciences, the

combination of these features can be considered

innovative.

In summary, this paper presents a Bayesian approach to

simulate climate variables in analogy with stochastic

weather generators extended to a larger temporal scale. The

generated ensemble of future radiation projections is used

to characterize climate model uncertainties and to assess

ecological response in marine and coastal ecosystems

through a physically-based impact model.

2 Dataset

Numerous General Circulation Models (GCMs) and

Regional Climate Models (RCMs) exist that produce long

term predictions of climate variables. In this study the

Surface Downwelling Shortwave Radiation dataset, here-

after referred to as radiation, was obtained from the high

resolution 0.11 degree (or 12.5 km) EURO-CORDEX

(Coordinated Regional Downscaling Experiment) (Jacob

et al. 2014) which uses the Swedish Meteorological and

Hydrological Institute Rossby Centre regional atmospheric

model (SMHI-RCA4). Radiation was chosen for the

demonstration case due to its high influence on ecological

processes. In short, radiation is the measure of solar radi-

ation energy received on a given surface area. Radiation

influences light and energy availability for living organ-

isms in the water column and therefore controls their

growth and mortality among others, such as nutrient

availability and temperature.

In order to produce various regionally downscaled sce-

narios, EURO-CORDEX applies a range of GCMs to drive

the above mentioned RCM. The four driving GCMs in this

study are the National Centre for Meteorological Research

general circulation model (CNRM-CM5), the global cli-

mate model system from the European EC-Earth consor-

tium (EC-EARTH), the Institut Pierre Simon Laplace

Climate Model at medium resolution (IPSL-CM5A-MR),

and the Max-Planck-Institute Earth System Model at base

resolution (MPI-ESM-LR). These GCMs have been pre-

viously used in recent studies describing the impacts of

climate change on ecosystem state and biodiversity

(Goberville et al. 2015). In addition to the driving models,

further scenarios are obtained by considering different

socio-economic changes described in the Representative

Concentration Pathways (RCPs). RCPs are labeled

according to their specific radiative forcing pathway in

2100 relative to pre-industrial values. In this study we

include RCP8.5 (high), and RCP4.5 (medium-low) (van

Vuuren et al. 2011). Together the four different driving

GCMs and two RCPs provide us with an ensemble of eight

future radiation scenarios (see Fig. 1). We make use of

these driving GCMs and RCP scenarios as they were pre-

viously selected and post-processed for climate change

assessments for this study area by the Institute of Atmo-

spheric Sciences and Climate (ISAC-CNR) within the EU

H2020 ECOPOTENTIAL project.

Daily field observations of solar radiation energy were

obtained from the Royal Netherlands Meteorological

Institute (KNMI) at the closest weather station, De Kooy,

from 1970 until August 2020. This time interval covers the

entire Euro-CORDEX reference period (1970-2005) and

more than 14 years of the projection period (2006–mid

2020). These observations were used for the bias correction

of the RCM scenarios and for validation of the generated

scenarios.

While this ensemble of GCM � RCP combinations

already encompasses a certain degree of uncertainty, the

number of ensemble members might not be sufficient and

information on the likelihood of its members is difficult to

obtain. This is due to the fact that RCP scenarios have not

been assigned a formal likelihood and it is generally

assumed that each climate model is independent and of

equal ability (Hayhoe et al. 2017).
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Previously, attempts have been made to assess the

likelihood of the different climate change pathways

(Capellán-Pérez et al. 2016) and a number of studies use

model weighting based on past performance, yet techno-

logical, economic, political and climatic factors underlying

RCP scenarios remain largely uncertain and model weights

based on historical performance might not be adequate for

other regions, variables and for future projections (Knutti

and Sedláček 2013). For this reason, in this study the given

ensemble of scenarios is enriched to be used for compre-

hensive uncertainty quantification studies and for fully

probabilistic simulations in assessment studies.

The used subset of the EURO-CORDEX dataset covers

a domain between 2.0W-10E longitudes and 48-57N lati-

tudes, as depicted in Fig. 2, with a resolution of 0.11

degree on curvilinear grid (cca. 12� 10 km). For the

purpose of this study, time series were extracted at a given

location in the Dutch Wadden Sea (see red dot in Fig. 2) to

reduce the data dimension and to be used as input for the

single site stochastic generator. The original radiation time

series is a high frequency dataset, with 3-h time step, which

was aggregated to daily averages excluding zero radiation

values during night time. Data aggregation was done to

match the daily time step of the validation data and to

reduce unnecessary noise (sub-daily variations) in the

dataset as the sub-daily scale of the processes are not rel-

evant for the purpose of this study. In other cases where

smaller temporal scales are important the data aggregation

step could be excluded.

3 Stochastic generator methodology

The methodological workflow depicted in Fig. 3 starts with

the pre-processing of the time series of radiation data. This

step includes bias correction of the Euro-CORDEX RCM

scenarios, as well as extracting the seasonal shape uS, the

seasonality in the variance of residuals uV , and deviations

from the seasonal cycle (dj). The stochastic generator uses

a parameterized time series model as in Eq. (1) below

which consists of a linear component (Eq. 2), seasonal

component (Eq. 3), and a variance component (Eq. 4).

Consequently, the model contains the following parame-

ters: intercept a, slope b, amplitudes of seasonal shapes

fAS
j g, amplitudes of seasonality in the variance of residuals

fAV
j g) and a variance parameter (r2). We will endow all

parameters with a prior distribution and perform inference

within the Bayesian setup. Sampling from the posterior

distribution is done using the Gibbs sampler. Finally, the

posterior samples can be used to sample from the

Fig. 1 Overview of the eight EURO-CORDEX climate scenarios

used in the study derived from four driving general circulation

models, and two socio-economic scenarios

Fig. 2 Surface downwelling shortwave radiation from RCM SMHI-

RCA4 driven by GCM CNRM-CM5 with RCP8.5. Cooler colors

indicate lower solar radiation energy received at the surface area,

while warmer colors indicate higher radiation energy. The location of

the study site is shown by the red dot
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Fig. 3 Schematization of the stochastic generator methodology and demonstration case
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predictive distribution and generate synthetic radiation

signals. The temporal evolution of these generated syn-

thetic scenarios is regular, meaning that the lengths of

yearly cycles are always equal. Since we observe in the

pre-processing step that in reality seasonal cycles should

not be equally long, temporal deregularization is done

using a time change function sðtkÞ (see Eq. 5). The end

result is numerous generated radiation scenarios, which are

representative of the input Euro-CORDEX scnearios and

have varying lengths of seasonal cycles.

3.1 Bias correction

The RCM simulations are subject to climate model struc-

tural error and boundary errors from the driving GCMs

(Navarro-Racine et al. 2020), hence, they should be bias

corrected before applying them in impact studies (Luo

2016). These systematic biases present in climate models

are most commonly addressed using standard bias correc-

tion techniques, such as mean adjustment or quantile

mapping. Nevertheless, due to the known problems with

these bias correction techniques (Maraun et al. 2017), one

can confidently apply them only if the relevant processes

are reasonably well captured by the chosen climate models,

since fundamental model biases cannot be corrected by the

bias correction approaches. While a comprehensive vali-

dation of the RCM simulations was not conducted in this

study, sufficient credibility of the future projections in

representing local and large-scale processes is assumed

since they are originated from a high-resolution regional

downscaling experiment adhered to a coordinated model

evaluation framework.

Based on this assumption, quantile mapping bias cor-

rection (Amengual et al. 2012) was applied using the RCM

simulations for reference period (1976–2005) and daily

historical radiation field measurements from KNMI for the

same period. The quantile–quantile mapping transfer

functions were established for the reference period and

separately for each RCM simulation. The transfer functions

were then applied for the bias correction of each future

projections separately. Figure 4 depicts the histogram of

observations together with the uncorrected and bias cor-

rected RCM simulations in the projection time interval

when field measurements are still available (2006–2020).

While dissimilarities exist between modelled and observed

distributions, these are not major, indicating that key pro-

cesses are not misrepresented by this RCM (Maraun et al.

2017).

3.2 Temporal evolution

It was verified that significant differences in the temporal

evolution of the selected RCM scenarios during the

projection interval (2006–2100), which could be reflected

in differences in trends, do not exist. Nevertheless, pre-

processing steps were applied to remove identified minor

differences in time evolution. Since it was observed that

not all years had the same number of data points (within

RCM scenarios and across scenarios), the time evolution

was regularized by interpolation using nearest neighbor

method. As the differences in the number of yearly data

points were minor, the interpolation had limited impact on

the dataset. After this regularization step all scenarios had

uniform time evolution. Further considerations regarding

the lengths of the yearly cycles is described in Sect. 3.3.3.

3.3 Time series model definition

For simplicity we first consider only one scenario in this

section and later extend the time series model to all sce-

narios in its full form (Sect. 3.3.4). Suppose t0\t1\ � � � tK
are observation times (in years) and j 2 f1; . . .; Jg indexes

years. Let yðtkÞ denote the radiation measurement at time

tk. We assume

yðtkÞ ¼ TðtkÞ þ SðtkÞ þ
ffiffiffiffiffiffiffiffiffiffiffi

VðtkÞ
p

EðtkÞ ð1Þ

with TðtkÞ the trend component, SðtkÞ the seasonal com-

ponent, VðtkÞ the variance of noise and EðtkÞ the noise

component.

3.3.1 Seasonality

As a first step, we assume a linear trend in the data:

TðtkÞ ¼ aþ btk; ð2Þ

where a and b are the intercept and slope parameters

respectively. The detrended time series has a noisy but

clearly distinguishable yearly cyclic pattern. Our goal is to

estimate this cyclic behaviour and define a seasonal shape

function uS that represents the seasonality. In order to

Fig. 4 Quantile mapping bias correction. Comparison of the his-

tograms of the KNMI observations (red) with the uncorrected (blue)

and corrected versions (yellow) of the RCM projection for the test

period (2006–2020). Example for one RCM projection
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achieve this, the following steps are performed. After

removing the trend TðtkÞ, the time series is smoothed using

a non-parametric smoother LOWESS (Locally Weighted

Scatterplot Smoothing) (Cleveland 1979) to remove noise.

Then the local minima points (mj) of the smooth time series

are identified, see the upper plot in Fig. 5. Based on the

identified local minima points the original detrended time

series is split into yearly curves and the LOWESS

smoother is applied again to estimate the seasonal shape

(center plot in Fig. 5) separately for each scenarios.

In the LOWESS smoothing, the time window was

chosen intuitively by plotting various LOWESS curves and

comparing the fits graphically to avoid over- or under-fit-

ting. The aim was to find a time window which allows us to

obtain a seasonal curve with sufficient details to describe

characteristic features, such as the two shoulders in the

seasonal curve, but at the same time removing all noise.

The fraction value found to be most appropriate for the

yearly seasonality was 0.1 (10% of the yearly data points)

meaning that the time window is roughly one month.

Another option could have been to choose a time window

that optimizes the fit of the LOWESS curve through bias-

corrected Akaike information criterion (AIC) method,

Generalized Cross-Validation (GCV) method or similar.

While these options might be more robust in other cases,

we think that intuitively choosing the time window for the

seasonal shape is preferable for the stochastic generator

methodology as it is more flexible and allows us to

incorporate domain knowledge and preferences. The

averaged LOWESS smoothed seasonal shape (uS) is

depicted in the lower plot in Fig. 5.

Considering a time series with seasonal cycles (years)

the seasonality SðtkÞ in the time series model is defined by

SðtkÞ ¼
X

J

j¼1

AS
j u

Sðtk � jþ 1Þ1½j�1;jÞðtkÞ; ð3Þ

where AS
j is a scaling factor for year j, and the seasonal

shape uS : ½0; 1� ! R. As an example if tk ¼ 1:5 then

Sð1:5Þ ¼ AS
2u

Sð0:5Þ since it is in the second year. Note that

1½j;jþ1ÞðtkÞ is an indicator function which is 1 for all ele-

ments within the interval ½j; jþ 1Þ and 0 otherwise.

3.3.2 Residuals and seasonal shape in the variance uV

Apart from the linear- and seasonal trends there is an

additive residual term
ffiffiffiffiffiffiffiffiffiffiffi

VðtkÞ
p

EðtkÞ in the time series

model. In this residual term the noise variables EðtkÞ,
where 0� k�K, are assumed to be independent and

identically distributed (i.i.d) Nð0; r2Þ and the variance term

VðtkÞ is defined similarly to the seasonal component in

Eq. (3):

VðtkÞ ¼
X

J

j¼1

AV
j u

Vðtk � jþ 1Þ1½j�1;jÞðtkÞ ð4Þ

where AV
j is a scaling factor for year j and uV : ½0; 1� ! R

is the LOWESS smoothed variance of residuals. The sea-

sonal shape of the variance uV depends on the specific

scenario, same as for the seasonal shape uS. The seasonal

variance shape is depicted in Fig. 6. The lower panel of

Fig. 6 shows the comparison of the observed (in blue) and

modeled (in red) residual, which show good agreement,

meaning that the time series model is capable of repre-

senting the input signal. The time series model refinement

process stops at this point when residuals are properly

modeled.

3.3.3 Modelling lengths of periods

In the radiation dataset the local minima points (upper

panel of Fig. 5) are not equidistant, indicating that the

seasonal cycle lengths have slight deviations over the

years. Since the variation in the length of seasonal periods

is an important feature, it should be incorporated in the

stochastic generator. The deviations from the calendar year

dj are defined as:

dj ¼ j� mjFig. 5 Deriving seasonal shape uS. Local minima points and

smoothed dataset (top), comparison of yearly data and smoothed

curves (middle), average smothed curve as seasonal shape (bottom)
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where mj is the j-th local minimum location (in years). The

upper panel of Fig. 7 shows the deviations from the cal-

endar year and their autocorrelation, while the middle

panel shows the distribution of these deviations. It can be

observed that the deviations are centered around zero and

have a negative lag 1 autocorrelation meaning that most

positive deviations tend to be followed by negative devi-

ations and vice versa. In this way the yearly cycle lengths

remain close to the ideal cycle length (one calendar year)

throughout the time series.

In order to account for these non-uniform cycle lengths

when generating new synthetic scenarios, a time change

function sðtkÞ is introduced. For a visual representation of

sðtkÞ see the bottom panel of Fig. 7.

When a new synthetic scenario is generated, for each

year j a deviation value dj is produced by sampling from

the observed deviation distribution of that scenario. Then,

knowing the deviation for each year, we calculate the

location of the end of the j-th period mj. Plotting mj against

the year j will result in a piecewise function as shown in the

bottom panel of Fig. 7. When introducing sðtkÞ we essen-

tially create a piecewise linear function which provides for

every time instance tk the new continuous time value sðtkÞ
assuming that between ½mj;mjþ1� the time is linearly

increasing. Mathematically, the piecewise linear time

change function is described as follows:

sðtkÞ ¼
�

mj þ ðmjþ1 � mjÞðtk � jÞ
�

1½j;jþ1ÞðtkÞ ð5Þ

where mj ¼ j� dj, and the sequence fdjg is modeled as

independent and identically distributed random variables

N 0; r2d
� �

.

Fig. 6 Residuals and deriving seasonal shape in the variance uV .

Seasonal signal and data (top), smoothed shape of the variance

(middle), residual term including variance and independent and

identically distributed noise (bottom). In the bottom panel the blue

color represents the observed residuals while the red color represents

the modeled residual

Fig. 7 Deviations from the calendar year (a), together with their

autocorrelation plot (b), and histogram (c). Sub-figure (d) depicts the
sðtkÞ time change piecewise linear function. This function is

represented by the j-th local minimum location (in years) mj on the

y-axis, against the number of years j on the x-axis. Differences

between mj and the diagonal line are the deviations from the calendar

years dj. Example shown for one Euro-CORDEX scenario
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3.3.4 Full time series model

In this section we write the introduced time series model in

full form, extended to all scenarios, without time change

sðtkÞ.
Recall that j indexes years and k indexes days. Let ‘ 2

f1; � � � ; Lg index the scenarios (we have L ¼ 8). For sce-

nario ‘ we have measurements

y‘ ¼ y‘ðt0Þ � � � y‘ðtKÞ½ �T :

Define

uu
‘;j;k ¼ uu

‘ ðtk � jþ 1Þ 1½j�1;jÞðtkÞ; u 2 fS;Vg

and set

US
‘ ¼

1 t0 uS
‘;1;0 � � � uS

‘;1;K

..

. ..
. . .

.
� � � ..

.

1 tK uS
‘;J;0 � � � uS

‘;J;K

2

6

6

4

3

7

7

5

along with

V‘ ¼ r2‘ diag
X

J

j¼1

uV
‘;j;0A

V
j‘; . . .;

X

J

j¼1

uV
‘;j;KA

V
j‘

 !

and

Au
‘ ¼ Au

1‘ � � � Au
J‘ð Þ; u 2 fS;Vg

The conditional distribution for the observation vector for

scenario ‘ is given by

y‘ j n‘ �N US
‘h‘; r

2
‘V‘

� �

;

where

n‘ ¼ h‘;AV
‘ ; r

2
‘

� �

; with h‘ ¼ a‘; b‘;A
S
‘

� �

denoting the vector obtained by stacking all components of

its elements.

3.4 Prior specification

We choose partially conjugate priors to simplify MCMC-

sampling with the Gibbs sampler. We denote the Normal,

Inverse Gamma and Gamma distributions by N, IG and G

respectively. Moreover, we denote by N x; l; rð Þ the density
of N l; rð Þ-distribution, evaluated at x. Similar notation is

used for the Gamma- and InverseGamma distributions. In

the ‘‘Appendix’’ we specify the densities of these distri-

butions to clarify the parametrisations used in their defi-

nitions. We take the following prior for n‘

fa‘g j r2a �
iid
N 0; r2a
� �

fb‘g j r2a �
iid
N 0; r2b

� �

fAS
‘g j fr2S‘g�

ind
b
J

j¼1

N 0; r2S‘
� �

fAV
‘ g j fbV‘g�ind b

J

j¼1

IG aV ; bV‘ð Þ

fr2‘g j br � IG ar; brð Þ

for hyperparameters aV and ar. To tie together the laws for

different scenarios, we complete the prior specification by

another layer

r2a; r
2
b; fr2S‘g�

iid
IG d1; d2ð Þ

fbV‘g; br �iid G k1; k2ð Þ

for hyperparameters d1; d2; k1; k2.
Since climate scenarios originate from a common

genealogy (e.g. similar computational schemes, description

of similar physical processes) (Steinschneider et al. 2015),

our underlying idea is that scenarios can be assumed

exchangeable rather than independent. This induced the

well known phenomenom of ‘‘borrowing strength’’ where

estimates for parameters over different scenarios are

combined (‘‘pooled’’), see Fig. 8. This can correct outlier-

like behaviour and makes the estimates statistically more

robust (Gamerman and Lopes 2006; Gelman and Hill

2006).

In our case the reason to opt for a hierarchical setup is to

enhance the Bayesian model by using all the data (all

scenarios) to perform inferences for each group (scenario).

This provides a trade off between the noisy within-group

estimate, where parameters are estimated independently

from the other groups, and an oversimplified parameter

estimate that uses all data and ignores the presence of

groups (Gelman and Hill 2006).

3.5 Gibbs sampler for drawing
from the posterior distribution

Sampling from the posterior can be done using a blocked

Gibbs sampler where for the parameters in the second layer

we sample from the following full conditionals

– h‘ �N RðUS
‘Þ

Tr�2
‘ V�1

‘ y‘;!‘

� �

, where

!�1
‘ ¼R�1

‘ þðUS
‘ Þ

Tr�2
‘
V�1
‘

US
‘ ;withV‘¼ diag ðr2a;r2b;r

2
SL;...;r

2
S‘
Þ:

– AV
j‘
� IG avþjIjj=2;bV‘þð2r2

‘
uV
‘;j;k

Þ�1
P

k2Ij
ðy‘ðtkÞ�l‘;kÞ2

� �

; with

Ij ¼ fk : tk 2 ½j; jþ 1Þg and l‘;k ¼ rowkðUS
‘Þh‘:

– r2
‘
� IG arþK=2;brþ1

2
ðy‘�US

‘h‘Þ
TV�1

‘
ðy‘�US

‘h‘Þð Þ
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Here, ‘ ¼ 1; . . .; L, and j ¼ 1; . . .; J. For the third layer we

sample from

– r2a � IG d1 þ L=2; d2 þ 1
2

PL
‘¼1 a

2
‘

� �

– r2b � IG d1 þ L=2; d2 þ 1
2

PL
‘¼1 b

2
‘

� �

– r2S‘ � IG d1 þ J=2; 1
2

PJ
j¼1ðAS

j‘Þ
2

� �

– bV‘ �G k1 þ Jav; k2 þ
PJ

j¼1 AV
j‘

� ��1
� �

– br �G k1 þ Lar; k2 þ
PL

‘¼1 r
�2
‘

� �

Values of the hyperparameters were set to d1 ¼ k1 ¼ 2,

d2 ¼ 1, and k2 ¼ 0:01.

Derivation of these updates is straightforward as the

hierarchical model implies that the posterior satisfies

p fn‘g; r2a; r2b; fr2S‘g; fbV‘g; br j fy‘g
� �

/
Y

L

‘¼1

n

N y‘;U
S
‘h‘;V‘r

2
‘

� �

N a‘; 0; r
2
a

� �

N b‘; 0; r
2
b

� �

� IG r2‘ ; ar; br
� �

Y

J

j¼1

N AS
j‘; 0; r

2
S‘

� �

IG AV
j‘; aV ; bV‘

� �h io

� IG r2a; d1; d2
� �

IG r2b; d1; d2
� �

G br; k1; k2ð Þ
Y

L

‘¼1

n

IG r2S‘; d1; d2
� �

G bV‘; k1; k2ð Þ
o

:

Only derivation of the update for AV
‘ is slightly tedious and

requires bookkeeping that any time tk is only in 1 year

(indexed by j). Note that the priors are chosen such that all

update steps in the Gibbs sampler are partially conjugate.

Due to the random error, generated values may fall below

zero when radiation is low. In order to avoid this, results

are truncated at zero to comply with physics, as solar

radiation cannot be negative. For this reason, the above

introduced model is an approximation. In the model for-

mulation we neglect the impact of truncation.

4 Propagation of uncertainty:
demonstration case

In this demonstration case, the generated radiation sce-

narios are used to drive a physically based model to

investigate the effects on water quality (ecology) and fur-

ther propagate climate related uncertainties to better char-

acterize the response of the ecological system. The optimal

number of stochastic generator realizations for environ-

mental applications has been previously investigated (Guo

et al. 2018; Alodah and Seidou 2020). These studies

assessed the impact of output size of weather generators on

statistical characteristics and indices as compared to his-

torical data and try to reach a predefined accuracy. Apart

from accuracy, for probabilistic impact studies one should

also consider the impact of ensemble size on how well the

predictive distribution of a weather-related variable, such

as radiation, can be estimated (Leutbecher 2019). Based on

these studies the authors conclude that an ensemble size of

Fig. 8 Illustration of the hierarchical Bayesian model structure. Scenarios are indexed by l
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around 100 members is optimal for the demonstration case,

while also computationally feasible.

For the impact modelling, the water quality sub-module

of the Delft3D integrated modelling system, Delft3D-

WAQ, is used with an existing model setup which has been

previously calibrated and validated for the location of our

demonstration case (Los et al. 2008). The spatial domain of

the physical model covers the Southern North Sea with

coarser horizontal resolution offshore and finer resolution

along the Dutch coast, as shown in Fig. 9. The model

comprises of twelve vertical layers, making it a three

dimensional physical model.

Delft3D-WAQ is a comprehensive hybrid ecological

model including an array of modules reproducing water

quality processes that are then combined with a transport

module to calculate advection and dispersion. The model

most importantly calculates primary production and

chlorophyll-a concentration while integrating dynamic

process modules for dissolved oxygen, nutrient availability

and phytoplankton species. Delft3D-WAQ can include a

phytoplankton module (BLOOM) that simulates the

growth, respiration and mortality of phytoplankton. Using

this module the species competition and their adaptation to

limiting nutrients or light can be simulated (Los et al.

2008). A graphical overview of the modelled ecological

processes can be seen in Fig. 10. Without describing in

details the formulation of these ecological processes we

briefly introduce how our variable of interest, chlorophyll-

a, is calculated and how solar radiation influences its

concentration.

The chlorophyll-a content of algae is species specific.

The total chlorophyll-a concentration is equal to the sum of

the contributions of all algae species:

Cchlfa ¼
X

n

i¼1

Calg;i ð6Þ

where Cchlfa is the total chlorophyll-a concentration and

Calg;i is the biomass concentration for algae species type

i. The mass balances for algae types are based on growth,

respiration and mortality which are influenced by factors

such as nutrients (nitrogen, phosphorus, silicon, carbon)

and light in the water column. BLOOM uses linear opti-

misation to calculate the species competition and the

optimum distribution of biomass over all algae types. The

goal of the optimization process is to maximize the net

growth rate of the total of all algae types under nutrient

availability, light availability, maximum growth rate, and

maximum mortality rate constraints.

Light availability, therefore, is an important driving

factor for phytoplankton processes, and this light avail-

ability is a function of solar radiation energy provided by

the RCMs and the stochastic generator. More specifically,

the available light at a particular water depth is calculated

as a function of solar irradiation on the top layer and the

light attenuation in the water column caused by extinction

(scattering and absorption). This light extinction is mod-

elled by the Lambert–Beer law (Eq. 7) which states that the

light intensity in the water layers is exponentially

decreasing with the water depth:

Ib ¼ Ite
ð�KHÞ ð7Þ

where Ib is the light intensity at bottom of the water col-

umn, It is the light intensity at the top of the water column

(solar radiation forcing), K is the light extinction coeffi-

cient and H is the water depth. The extinction coefficient

K is the sum of the background extinction and the extinc-

tion of all other light absorbing suspended organic or

inorganic matter (the self-shading of phytoplankton,

extinction of total suspended matter and the dissolved

humic substances).

Consequently, projected change in solar radiation at the

water surface, which translates into light intensity in the

water column, is an influential factor to determine future

Fig. 9 Demonstration case: Delft3D-WAQ model domain in the

Southern North Sea and along the Dutch coast

Fig. 10 Delft3D-WAQ processes. State variables in grey and

processes indicated by dashed lines have not been included in the

North Sea model application. AIP is absorbed inorganic phosphorus
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changes in chlorophyll-a concentration. The demonstration

case aims to showcase this cause-effect relationship and

quantify the associated uncertainties.

5 Results

5.1 Results of stochastic generator

Initial states and hyperparameters were specified, and the

Gibbs sampler was run for over a thousand iterations.

Samples drawn from the posterior distributions for all

scenarios are summarized in Fig. 11 as violin plots. For the

interpretation of the results the reader is reminded that

scenarios one to four are from different driving GCMs with

RCP4.5, and scenarios five to eight are from the same

GCMs as the first four scenarios, respectively, but with

RCP8.5. It can be seen that the intercept and slope

parameters of all scenarios are similar and their ranges are

overlapping, even though, scenario four shows a slightly

different behaviour. GCM number three (IPSL-CMSA-

MR) and 4 (MPI-ESM-LR) have higher variances than the

other GCMs as indicated by the r2 plot (see third plot in

Fig. 11). It should be mentioned that before pooling was

applied, through an additional layer in the hierarchical

model, scenario four showed stronger outlier behaviour.

This behaviour is reduced in the hierarchical scheme as

estimates get pulled towards the overall mean of the vari-

ous scenarios. We can also observe in the third panel of

Fig. 11, where the r2 estimates are shown for each sce-

nario, that dissimilarities between scenarios are dominated

by driving GCMs. This is in line with previous finding that

uncertainty in the RCM projection scenarios are primarily

influenced by the driving GCMs while the impact of RCPs

is less dominant (Morim et al. 2019).

Regarding the trend slope, it is a general expectation that

RCP8.5 (scenarios 5-8) has steeper slope than RCP4.5

(scenarios 1-4). This expectation was confirmed for the

temperature variable. While trend slopes for solar radiation

under RCP8.5 are also slightly steeper, with an average

difference of 0.014, it is less pronounced. This unexpected

feature could be explained by the complexity of projecting

solar radiation for this region, which has been previously

discussed in literature. A study by Bartók et al. (2017)

found remarkable discrepancy between RCMs and their

driving GCMs, since GCMs consistently indicated increase

in solar radiation over Europe until the end of the century,

while most RCMs detected general decrease. Moreover,

the difficulty of projecting cloud cover and solar radiation

changes in coastal areas with sea-land-atmosphere bound-

aries, such as the study site, has also been highlighted.

Fig. 11 Violin plots of parameter samples for the eight baseline

scenarios. The top three plots show constant values for the a, b, and
r2E parameters, while the bottom two plots display varying values over

85 years for the AS
j and AV

j parameters
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By sampling from the predictive distribution new syn-

thetic scenarios are generated. Posterior predictive checks

(Gelman and Hill 2006) have been done visually by com-

paring the original and sampled data, together with

observations, as shown in Fig. 14. It can be observed that

the seasonal shape is well reproduced and the ensemble

band of the new scenarios around the baseline scenario

suggests the presence of uncertainties both in peak con-

centrations and phase shifts. This indicates benefits of

using a larger ensemble of scenarios as input for ecological

studies. Further validation of the stochastic generator, and

especially its ability to accurately represent long-term

trends, has been done by fitting it with the observations for

the period between 1970 and 2020. The time series of the

observations and generated scenarios have been decom-

posed and their trend, seasonal and residual components

have been compared in Fig. 12. We can observe that the

time series model performs as intended and able to closely

reproduce the long-term trend, seasonal and residual sig-

nals of the observations. Consequently, we can conclude

that the stochastic generator produces valid outputs

including correct representation of the climate change

signal.

For the demonstration case an ensemble of 120 new

scenarios were generated by equally drawing from each

baseline scenario (15 new scenarios of each type). The

generated scenarios have been verified by comparing their

empirical quantiles graphically to the baseline scenarios for

the entire projection period (2006–2090), depicted in

Fig. 13. The quantile–quantile plots of three example

generated scenarios approximately lie on the diagonal line

and there are no obvious discrepancies, except for the tale,

which can be explained by the fact that we take normally

distributed noise which is symmetric.

Finally, Fig. 15 shows boxplots of the generated sce-

narios for each month, with the corresponding monthly

mean statistics of the baseline scenarios as solid lines.

Since the temporal evolution of baseline and generated

scenarios are similar, there is no problem with the long-

term linear trend differences and therefore the figure covers

the entire projection period (2006–2090). We can observe

that each RCM climatological mean for all the months are

well captured by the generated synthetic scenarios, as they

fall within the interquartile range of the boxplots.

5.2 Results of probabilistic water quality
simulation

The eight baseline Euro-CORDEX radiation scenarios and

the 120 generated ones are used as input for the Delft3D-

WAQ numerical model to drive ecological processes which

calculate chlorophyll-a concentration, among others. The

objective of this demonstration case is to illustrate the

benefit of using a larger ensemble of radiation inputs and to

assess the impacts of different radiation intensities towards

the end of this century, during the early spring season when

(solar) energy is the limiting factor to biomass growth.

Consequently, further analysis focuses on the early spring

months. In order to simulate ecological variables for the

spring season the baseline Euro-CORDEX radiation

Fig. 12 Time series decomposition of observations (black), and three

example generated scenarios (colored) for the time interval 1970–mid

2020. The first panel depicts the time series, while the panels below

show their trend, seasonal and residual components, respectively

Fig. 13 Quantile–quantile plots of three example generated scenarios

compared to their baseline scenario (2006–2090)
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scenarios and the outputs of the stochastic generator were

post-processed. Seasonal averages of the first (2006–2015)

and last (2081–2090) simulated decade were derived, thus

obtaining a single year signal for each baseline and gen-

erated scenarios. These processed radiation signals were

then used to force the deterministic physical model. The

simulated chlorophyll-a concentrations therefore indicate

the characteristic spring peak of the beginning and the end

of the century, not a single event.

A subset of the simulation results are shown in Fig. 16

focusing on the spring peak. The figure depicts the

chlorophyll-a concentration ensemble members and their

medians derived from the baseline and generated scenarios

for the first and last simulated decade, as well as the pre-

diction intervals that can be computed using the generated

scenarios. The figure aims at comparing the evolution and

peak of the characteristic spring blooms. In the upper

panel, it is visible that most of the baseline scenarios are

close to each other and only one or two scenarios behave

slightly differently. In the stochastic generator the param-

eter inference process favors the majority behavior as the

data drives the process. Therefore, when generating new

radiation traces it is more likely produce scenarios which

are similar to the majority of the baseline scenarios rather

than the one(s) with outlier behavior. For this reason, it

may happen that a baseline ensemble member is outside of

the generated ensemble band at few time steps. In addition

to this, it should be noted that the more synthetic scenarios

we produce with the stochastic generator, the larger the

ensemble band will become since it can better cover the

parameter space. Despite these facts, the generated

ensemble has an uncertainty band which covers well the

baseline ensemble members.

Regarding climate change impacts, we can observe from

the baseline scenarios that the characteristic spring bloom

of the end of the century (2081–2090) is consistently lower

than the one representing the beginning of the century

Fig. 15 Boxplots of generated scenarios with RCM climatological

mean (solid black line) per calendar month for the entire proejction

period (2006–2090). Only RCP 8.5 is shown for the four driving

GCMs

Fig. 14 Comparison of one baseline scenario (black), observations

(red x) and the new generated scenarios (colored). The number of

generated scenarios is 1, 5, 15 respectively
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(2006–2015). Generated scenarios accurately reproduce

this phenomena. This finding is in line with physical

expectations since radiation projections show mild nega-

tive long-term trend for almost all scenarios (second panel

of Fig. 11), and during the energy limited spring period

radiation positively correlates with the chlorophyll-a con-

centration. It should be noted, however, that in this

experiment we only consider the effect of radiation and

assume all other climate forcing, such as temperature,

unchanged. Consequently, this demonstration does not

replace comprehensive climate change impact studies but

rather showcases a possible use of the radiation generator.

In order to demonstrate the benefit of a larger ensemble,

Fig. 17 depicts the histogram of the pointwise predictive

distribution at the time of the characteristic spring peak

concentration. One can argue that the eight baseline

ensemble members may be used to derive an ensemble

mean and width of the ensemble band (or spread), but not

for full uncertainty characterization which also includes the

predictive distribution. Looking at the basic uncertainty

metrics the baseline ensemble has a mean of 25.42 mg/m3,

standard deviation of 3.7 mg/m3, and 11.33 mg/m3 wide

uncertainty band. The generated ensemble has comparable

metrics with 25.58 mg/m3 mean, 3.13 mg/m3 standard

deviation, and 14.13 mg/m3 uncertainty band. While the

basic metrics remain similar the added value is that the

larger ensemble permits us to derive predictive distribution

and better express confidence in the predictions. Having

only few ensemble members reduces the ability to resolve

the unknown probability distribution that one tries to esti-

mate, hence, higher number of ensemble members pro-

viding sufficient resolution in terms of probabilities is

required (Leutbecher 2019).

6 Conclusions and recommendations

This paper presents an approach to complement existing

regional climate projections by generating new synthetic

scenarios with similar statistical properties. Due to the

Bayesian hierarchical (multi-level) setup the proposed

Fig. 16 Simulated chlorophyll-a concentrations. Ensemble members

and median of the baseline scenarios for the first and last simulated

decades (top), ensemble members and median of the generated

scenarios for the first and last simulated decades (middle), and

pointwise prediction intervals derived from the generated ensemble

(bottom). Orange dashed line indicates the time of the spring peak

concentration

Fig. 17 Histogram of baseline ensemble members (blue), and

pointwise predictive distribution of generated ensembles (orange) at

the peak time. Baseline ensemble members are also represented by

blue marks (zero-width bins) along the x-axis
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method offers flexibility and allows full characterisation of

uncertainties. Thus, the main value of the proposed

methodology is that we can compute predictive uncertainty

conditional on all the data (considering all scenarios).

Moreover, the pre-processing step allows adaptability to

other climate variables, such as temperature, or potentially

to other environmental variables, noting that adjustments to

the model formulation might be necessary as the current

time series model was defined for time series with sea-

sonality. The underlying parameterized time series model

formulation therefore needs to be adjusted for non-seasonal

signals with substantially different characteristics.

In addition, there is a practical limitation to the number

of generated scenarios in cases when probabilistic simu-

lations are performed using computationally expensive

physical models. The three dimensional physical model,

used in the demonstration case, covers a large spatial

domain, hence, simulation times are long (approx. 12 h for

1 year simulation on a medium performance baremetal

Linux computer cluster). Based on this we can conclude

that while the stochastic generator itself has no computa-

tional time limitations, the subsequent model that is uti-

lized to forward propagate uncertainties may present such

limitations. On the other hand, if the synthetic radiation

scenarios are used as input to surrogate models, this limi-

tation on the number of scenarios is reduced.

Moreover, for future research the authors recommend to

extend the current Bayesian hierarchical model to include

spatial correlation (multi-site stochastic generator) and to

incorporate other climate variables, since currently only

one location and variable is considered. Extending the

stochastic generator in this way would allow us to make

use of the multi-dimensional data structure.

Finally, we conclude that the demonstration case, in

which the generated synthetic radiation scenarios were

utilized for probabilistic water quality simulation, could

showcase the potential of the presented approach to express

future likelihoods of predicted chlorophyll-a concentrations

via pointwise predictive distributions. Since with smaller

ensembles one may only derive ensemble mean and spread

as a proxy of uncertainty, it is this added feature of sim-

ulating numerous chlorophyll-a concentration scenarios

and subsequently deriving the pointwise predictive distri-

bution, which helps to achieve better characterization of

uncertainties. This enhanced uncertainty estimate in turn

supports better informed and rational decision making

which often brings socio-economic and monetary benefits.
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Appendix

X�Nðl; r2Þ if the random variable X has density

f ðx; l; r2Þ ¼ 1

r
ffiffiffiffiffiffi

2p
p e� x�lð Þ2=2r2

where l and r2 are the mean and variance parameters

respectively.

X�Gða; bÞ if the random variable X has density

f ðx; a; bÞ ¼ ba

CðaÞ x
a�1e�bx

where a is the shape and b is the rate parameter.

X� IGða; bÞ if the random variable X has density

f ðx; a; bÞ ¼ ba

CðaÞ x
�a�1e�

b
x

where a is the shape and b is the scale parameter.
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