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Abstract
This paper introduces a method to generate conditional categorical simulations, given an ensemble of partially conditioned

(or unconditional) categorical simulations derived from any simulation process. The proposed conditioning method relies

on implicit functions (signed distance functions) for representing the categorical spatial variable of interest. Thus, the

conditioning problem is reformulated in terms of signed distance functions. The proposed approach combines aspects of

principal component analysis and Gibbs sampling to achieve the conditioning of the unconditional categorical realizations

to the data. It is applied to synthetic and real-world datasets and compared to the traditional sequential indicator simulation.

It appears that the proposed simulation technique is an effective method to generate conditional categorical simulations

from a set of unconditional categorical simulations.

Keywords Categorical spatial variable � Conditional simulation � Gibbs sampler � Implicit function � Principal component

analysis

1 Introduction

Conditional simulations of categorical spatial variables in

geostatistics are used to quantify spatial uncertainty rele-

vant to variety of applications, such as environmental,

groundwater, mineral, and oil/gas (Mariethoz and Caers

2014; Armstrong et al. 2011; Chiles and Delfiner 2012;

Lantuejoul 2002; Deutsch 2002; Goovaerts 1998). Methods

can be pixel-based, object-based or surface-based, although

eventually all the results are rastered on a discrete mesh. In

terms of pixel-based (or mesh-based) methods, one has

variogram-based methods (Journel 1983; Deutsch 2006;

Emery 2007), Markov-random field methods (Li 2007;

Daly 2005; Elfeki and Dekking 2001; Tjelmeland and

Besag 1998), and multiple-point-geostatistics methods

(Strebelle 2002; Zhang et al. 2006; Arpat and Caers 2007;

Mariethoz et al. 2010; Honarkhah and Caers 2010). Other

works that deal with the problem of simulation of cate-

gorical spatial variables include methods based on spin

models and maximum entropy (Žukovič and Hristopulos

2009; Bogaert and Gengler 2018). Conditioning to exact

observations (hard data) is often easily achieved, simply

because the central value to be simulated on a mesh is

taken to be the same support as the hard data. Conditioning

in object-based or surface-based methods is more chal-

lenging, since an object or surface is represented as a shape

or geometry rather than a regular mesh. Additionally,

object-based methods are more sensitive to any inconsis-

tency between the hard data and the a-priori choice of

model parameterization. Example of surface-based meth-

ods are those that involve physical processes in addition to

a stochastic component. Physical processes such as sedi-

ment transport or geomorphology create surfaces, not

regular meshes. Representing and conditioning these sur-

faces to exact observations remains challenging.

Object-based, surface-based, and process-based models

often cannot be fully conditioned to hard data, in particular

dense hard data; conditioning remains partial. In this paper,
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we leverage on an ensemble of partially conditioned (or

unconditional) categorical realizations generated by this

kind of approaches and develop a method that creates

conditional categorical simulations, without applying the

original simulation method. Our idea relies on implicit

functions. Implicit functions, sometimes also termed level

set functions, represent surfaces (boundaries) by means of

an additional dimension. For example, signed distance

functions model the distance to a surface (boundary),

adjusted by a sign to indicate inside/outside or above/be-

low. This means that implicit functions transform and

parameterize a 2D surface into a 3D mesh. We then use

principal component analysis to create an orthogonal

parameter representation of the implicit unconditional

realizations. We show how the conditioning problem can

be formulated as an inequality problem on the principal

component scores. To then sample conditional realizations,

we first sample principal component score from a multi-

variate Gaussian distribution with linear inequality con-

straints. The latter can also be seen as a truncated

multivariate Gaussian distribution subject to linear

inequalities constraints. Since the principal component

orthogonalization and the signed distance function trans-

formations are bijective, we can easily reconstruct condi-

tional simulation, without applying the original simulation

method.

The remainder of the paper is structured in the following

manner. Sect. 2 details the proposed conditional simulation

method through its basic ingredients. Section 3 analyzes

the method on simple synthetic cases; in particular, the

trade-off between the number of hard data and the number

of unconditional categorical simulations is studied. Sec-

tion 4 presents a real application in 3D to showcase the

effectiveness of the proposed approach. A comparison with

the classical sequential indicator simulation (SIS) is carried

out. Section 5 outlines concluding remarks and suggestions

for future work.

2 Methodology

Let fCðxÞ; x 2 Dg be the categorical spatial variable of

interest defined on a fixed continuous spatial domain of

interest D � Rp, with a finite set of possible categorical

outputs (categories) fc1; . . .; cKg which are mutually

exclusive and collectively exhaustive. The categorical

spatial variable of interest is observed at a set of n distinct

locations fxi 2 Dgi¼1;...;n. Consider an ensemble of L par-

tially conditioned or unconditional categorical realizations

fCðlÞ
U ðxÞ; x 2 Dgl¼1;...;L. Given this latter, the goal is to

generate categorical realizations fCðtÞ
C ðxÞ; x 2 Dgt¼1;...;T

that honor the data fCðxiÞgi¼1;...;n, i.e.,

C
ðtÞ
C ðxiÞ ¼ CðxiÞ; i ¼ 1; . . .; n. This section is devoted to

the description of the different ingredients required to

implement the proposed conditioning method. This latter

has been implemented in R environment (R Core Team

2020). The simulation of unconditional categorical real-

izations is not the concern here.

2.1 Implicit functions

Consider a bounded domain X in an area of interest D �
Rp as illustrated on Fig. 1 (Zhou et al. 2016). Any point

x 2 D can obviously be classified into three parts: the

interior or inside (X�), the exterior or outside (Xþ), and the

boundary or surface (oX). The ðp� 1Þ dimensional

boundary oX can be represented as the zero isocontour of a

scalar function /ð�Þ in Rp, called implicit function or level

set function: oX ¼ fx 2 D;/ðxÞ ¼ 0g. The implicit func-

tion /ð�Þ defines the boundary oX as well as the regions X�

and Xþ : X� ¼ fx 2 D;/ðxÞ\0g and

Xþ ¼ fx 2 D;/ðxÞ[ 0g.
The signed distance function (SDF) is a subclass of

implicit functions defined as (Osher and Fedkiw 2002):

uðxÞ ¼
�dðxÞ; if x 2 X�

0; if x 2 oX

dðxÞ; if x 2 Xþ

8
><

>:
; ð1Þ

where dðxÞ denotes the minimum distance of x to oX:
dðxÞ ¼ miny2oX kx� yk.

Thus, uð�Þ takes on the distance from the boundary oX
with a sign depending on being inside or outside the

domain X. Signed distance functions are a subset of

implicit functions having the property of unit gradient

module with krdð�Þk ¼ 1. Geometrically, it means that the

d isocontour of the signed distance function is the offset of

its zero isocontour along the normal direction and the offset

distance equals d. Figure 2 shows two examples of

boundaries and their corresponding signed distance func-

tions on a 2-dimensional grid. Signed distance values along

the boundary is equal to zero. Signed distance values inside

the boundary are negative while signed distance values

outside the boundary are positive.

The categorical spatial variable of interest fCðxÞ; x 2
Dg with K categories fc1; . . .; cKg can also be seen as a

variable that creates distinct boundaries or surfaces in the

spatial domain D. Implicit functions such as the signed

distance functions are used to describe the categories. Each

category ckðk ¼ 1; . . .;KÞ is represented by a signed dis-

tance function ukð�Þ such that: ck ¼ fx 2 D;ukðxÞ\0g
and its boundary ock ¼ fx 2 D;ukðxÞ ¼ 0g. This means

that any categorical realization, whether pixel-based,

object-based or surface-based can be parameterized using

signed distance functions. A categorical hard datum at
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location x then indicates the sign of all signed distance

functions at x. Additionally, the indicator notation is used

to denote the presence or absence of a category ck at a

location x 2 D:

The categorical spatial variable of interest fCðxÞ; x 2
Dg with K categories can be transformed into a set of K

signed distance functions ukðxÞ; x 2 Df gk¼1;...;K using the

signed distance transform approach (Grevera 2007; Davies

2012). Each category ck defines a p-dimensional binary

image fIkðxÞ; x 2 Dg where each point (pixel) has either a

value of 1 indicating the presence of the category ck or a

value of 0 indicating the absence of the category ck. For

every point (pixel) set to 1, a distance transform assigns a

value indicating the negatively signed distance from that

point (pixel) to the nearest point (pixel) set to 0. Similarly

for every point (pixel) set to 0, a distance transform assigns

a value indicating the positively signed distance from that

point (pixel) to the nearest point (pixel) set to 1. Addi-

tionally, the signed distance transformation is one-to-one.

The bijectivity is obtained using the following rule:

IkðxÞ ¼
1; if ukðxÞ ¼ min u1ðxÞ; . . .;uKðxÞð Þ
0; otherwise

�

;

8x 2 D; k ¼ 1; . . .;K:
ð3Þ

Equivalent to

CðxÞ ¼ argmin
c1;...;ck

u1ðxÞ; . . .;uKðxÞð Þ; 8x 2 D: ð4Þ

Fig. 1 Representation of a

boundary oX as well as regions

X� and Xþ by means of an

implicit function /ð�Þ

Fig. 2 Examples of boundaries

(in black) and their associated

signed distance functions (map)

uð�Þ

IkðxÞ ¼
1; if CðxÞ ¼ ck

0; if CðxÞ 6¼ ck

�

; and IkðxÞ ¼ 1 implies that Ik0 ðxÞ ¼ 0 8k0 6¼ k; k ¼ 1; . . .;K: ð2Þ
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2.2 Principal component analysis (PCA)

By applying the signed distance transform approach

described in Sect. 2.1, the ensemble of L unconditional

categorical realizations fCðlÞ
U ðxÞ; x 2 Dgl¼1;...;L is trans-

formed into an ensemble of L unconditional signed dis-

tance realizations uðlÞ
Uk
ðxÞ; x 2 D

n o

l¼1;...;L
for each category

ckðk ¼ 1; . . .;KÞ. Principal component analysis (PCA)

performed on each ensemble uðlÞ
Uk
ðxÞ; x 2 D

n o

l¼1;...;L

results in the following decomposition in finite dimensions:

uðlÞ
Uk
ðxÞ ¼

XL

k0¼1

aðlÞUk0 ;k
wUk0 ;k

ðxÞ; 8x 2 D; k ¼ 1; . . .;K; ð5Þ

where faðlÞUk0 ;k
gk0¼1;...;L are principal component scores (co-

efficients) and fwUk0 ;k
ðxÞ; x 2 Dgk0¼1;...;L are principal

components factors (basis functions).

In practice, the spatial domain D is represented with a

number of grid cells (N). For each category

ckðk ¼ 1; . . .;KÞ, PCA is applied to a matrix CUk
ðL� NÞ

arranged as a set of L row vectors, each representing a

single signed distance realization uðlÞ
Uk
ðxÞ; x 2 D

n o
. PCA

can be performed in parallel for each matrix

CUk
ðk ¼ 1; . . .;KÞ. In Eq. (5), the number of principal

components is equal to the number of realizations L.

Indeed, in spatial problems, the size of the grid (number of

grid cells) is usually much higher than the ensemble size

used for quantifying spatial uncertainty (L\\N).

In Eq. (5), the ensemble uðlÞ
Uk
ðxÞ; x 2 D

n o

l¼1;...;L
can be

seen as a set of images and uðlÞ
Uk
ðxÞ; x 2 D

n o
as an image.

Thus, the resulting principal components factors

fwUk0 ;k
ðxÞ; x 2 Dgk0¼1;...;L are images as well. Hence, Eq. (5)

provides a decomposition of the images into a set of eigen-

images and a set of coefficients. Note that in PCA, the basis

functions are fixed, while the coefficients are varying/ran-

dom. A very useful property of PCA is the bijectivity. It

allows the reconstruction of signed distances from coeffi-

cients. Moreover, the signed distance transformation is

bijective as well. This means that a single set of principal

component scores corresponds to a single and unique cat-

egorical realization.

The bijective nature of PCA means that an image can be

reconstructed back, once all the principal component fac-

tors and scores are used. It is important to highlight that the

PCA is used here more as an orthogonal decomposition

approach than a dimension reduction technique because all

the principal component factors are kept. The main reason

for using principal component analysis based on the signed

distance function instead of the random function modeling

the categorical spatial variable of interest is that principal

component analysis of categorical data is not very mean-

ingful and in fact inefficient. The reason lies in the fact that

a categorical realization contains less information than a

signed distance function realization. The distance to a

boundary is the additional information, not present in the

categorical model.

2.3 Conditioning by the Gibbs sampler

Given the principal component factors fwUk0 ;k
ðxÞ; x 2

Dgk0¼1;...;L derived from the PCA decomposition of

unconditional signed distance realizations as depicted by

Eq. (5), the basic idea is to generate new principal com-

ponent scores such that signed distance realizations match

the data. Let

ukðxÞ ¼
XL

k0¼1

ak0;kwUk0 ;k
ðxÞ; 8x 2 D; k ¼ 1; . . .;K;

ð6Þ

where fak0;kgk0¼1;...;L are random coefficients. It is important

to note that all the principal component factors are con-

sidered; so there is no truncation.

Principal component (PC) scores of signed distance

realizations often show Gaussian type behavior (see

Sect. 3.1). For each category ckðk ¼ 1; . . .;KÞ, PC scores

vector ak ¼ ða1;k; . . .; aL;kÞT is assumed to follow a multi-

variate normal distribution defined by:

ak � exp � 1

2
ðak � lkÞ

T
R�1
k ðak � lkÞ

� �

; k ¼ 1; . . .;K;

ð7Þ

where the mean lk and the covariance matrix Rk are

computed using unconditional PC scores faðlÞUk0 ;k
gk0¼1;...;L

derived from the PCA decomposition of unconditional

signed distance realizations given in Eq. (5). Specifically,

lk ¼
1

L

XL

l¼1

aðlÞUk0 ;k

" #

k0¼1;...;L

;

Rk ¼
1

L� 1

XL

l¼1

ðaðlÞUk
� lkÞða

ðlÞ
Uk

� lkÞ
T
;

with a
ðlÞ
Uk

¼ aðlÞUk0 ;k

h i

k0¼1;...;L
:

ð8Þ

The covariance matrix Rk is a diagonal matrix because the

PC scores are uncorrelated by construction. Thus, the

normality assumption of PC scores can be checked using

classical tools in the univariate setting (e.g., normal prob-

ability plot, quantile-quantile plot, Kolmogorov-Smirnov

test, Shapiro-Wilk test).
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As indicated above, hard data informs the sign of the

signed distance function associated with a category. Hence,

the set of hard data can be translated into as set of

inequality constrains using Eq. (6). For example, assume

that at the data location x1, the category c2 is observed

(Cðx1Þ ¼ c2). This means that the signed distance function

associated with the category c2 should be negative at

location x1 (u2ðx1Þ� 0), and the signed distance functions

associated with other categories should be positive at

location x1 (ukðx1Þ� 0; 8k 6¼ 2; k ¼ 1; . . .;K). For each

ukðk ¼ 1; . . .;KÞ, the conditioning to all data locations is

expressed by the following inequalities:

ukðx1Þ ¼ a1;kwU1;k
ðx1Þ þ a2;1wU2;k

ðx1Þ þ . . .þ aL;kwUL;1
ðx1Þ� 0 or � 0

. . .

ukðxnÞ ¼ a1;kwU1;k
ðxnÞ þ a2;kwU2;k

ðxnÞ þ . . .þ aL;kwUL;k
ðxnÞ� 0 or � 0

8
><

>:
:

ð9Þ

In Eq. (9), the n inequalities corresponding to n hard data

can be summarized by:

~WUk
ak � 0; k ¼ 1; . . .;K: ð10Þ

In Eq. (7), since individual elements of ak ¼
ða1;k; . . .; aL;kÞT belong to R, one can write

�1� ak0;k � þ1; k0 ¼ 1; . . .; L. Thus, Eqs. (7) and (10)

define a truncated multivariate normal (TMVN) distribu-

tion subject to linear inequalities. A good collection of

statistical properties of TMVN distributions can be found

in Horrace (2005). Thus, the exact conditioning problem is

equivalent to the construction of samples from a TMVN

distribution subject to linear inequality constraints. Sam-

pling from such distribution proceeds through the Gibbs

sampler (Li and Ghosh 2015). Gibbs sampling is a Markov

Chain Monte Carlo (MCMC) algorithm where each ran-

dom variable is iteratively resampled from its conditional

distribution given the remaining variables. Gibbs sampling

is a good candidate for this task as all full conditional

distributions of a truncated multivariate normal distribution

are truncated univariate normal (TUVN) distributions.

Gibbs sampling requires initial values a
ð0Þ
k ¼

ðað0Þ1;k ; . . .; a
ð0Þ
L;kÞ

T
that already satisfy the inequality con-

straints given in Eq. (10). To do this, a simple linear pro-

gramming is performed to find an initial solution to the

system of inequality constraints (Vanderbei 2013).

Given the Gibbs samples faðtÞk gt¼1;...;T , conditional cat-

egorical realizations are given by the following truncation

rule:

C
ðtÞ
C ðxÞ ¼ argmin

c1;...;ck

uðtÞ
C1
ðxÞ; . . .;uðtÞ

CK
ðxÞ

� �
; 8x 2 D; ð11Þ

where uðtÞ
Ck
ðxÞ ¼

PL
k0¼1 a

ðtÞ
k0;kwUk0 ;k

ðxÞ is a conditional signed

distance realization associated with category

ckðk ¼ 1; . . .;KÞ.
If the categories c1; . . .; cK present a certain order (or

sequence), the truncation rule defined in Eq. (11) can be

modified to account this order as illustrated in Yang et al.

(2019). It is important to highlight that the number of con-

ditional categorical simulations T can be greater or less than

the number of unconditional categorical simulations L. The

Gibbs sampler here can be performed in parallel for each

akðk ¼ 1; . . .;KÞ as well as for each conditional categorical

realization tðt ¼ 1; . . .; TÞ. As with other MCMC sampling

methods, Gibbs sampler generates a Markov chain of sam-

ples, each of which is correlated with nearby samples. As a

result, caremust be taken to obtain independent samples. It is

common to sample T draws and discard the firstB, as burn-in,

and then retain every sth sample.

Given the set of L unconditional categorical simulations

fCðlÞ
U ðxÞ; x 2 Dgl¼1;...;L and the data fCðxiÞgi¼1;...;n, the

proposed conditional simulation method performs the fol-

lowing steps:

1. For k ¼ 1; . . .;K, generate the ensemble of L uncon-

ditional signed distance realizations

uðlÞ
Uk
ðxÞ; x 2 D

n o

l¼1;...;L
using the signed distance

transform method;

2. For k ¼ 1; . . .;K, apply PCA to the matrix CUk

arranged as a set of L row vectors, each representing

a single unconditional signed distance realization

uðlÞ
Uk
ðxÞ; x 2 D

n o
; the PCA outcomes are unconditional

PC scores faðlÞUk0 ;k
gk0¼1;...;L and PC factors

fwUk0 ;k
ðxÞ; x 2 Dgk0¼1;...;L;

3. For k ¼ 1; . . .;K, generate conditional PC scores

fðaðtÞ1;k; . . .; a
ðtÞ
L;kÞ

T
g
t¼1;...;T

using the Gibbs sampling

approach;

4. For k ¼ 1; . . .;K, derive conditional signed distance

realizations by reconstruction

uðtÞ
Ck
ðxÞ ¼

PL
k0¼1 a

ðtÞ
k0;kwUk0 ;k

ðxÞ;

5. Apply the truncation rule C
ðtÞ
C ðxÞ ¼ argmin

c1;...;ck

uðtÞ
C1
ðxÞ; . . .;uðtÞ

CK
ðxÞ

� �
; 8x 2 D for obtaining condi-

tional categorical simulations.

2.4 Falsification of unconditional categorical
simulations

Most of conditioning approaches, implicitly assume that

unconditional simulations and data are consistent. In a
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Bayesian sense, the prior distribution may not predict the

data. Thus, before performing the conditioning of the

unconditional categorical simulations to the data, it is

important to test if these unconditional categorical simu-

lations are consistent in Bayesian sense with the data. This

is achieved by means of a falsification procedure (Scheidt

et al. 2018). If unconditional categorical simulations are

falsified, the resulting conditional simulations might not

reproduce some statistical properties (e.g., mean and

variance).

Let dð0Þ be the vector of observed values at data loca-

tions (termed actual dataset) and fdðlÞgl¼1;...;L be the vector

of simulated values at data locations (termed simulated

dataset). Unconditional categorical simulations are falsified

if the actual dataset dð0Þ is not within the same population

as the simulated datasets fdðlÞgl¼1;...;L, i.e. d
ð0Þ is an outlier.

The idea consists in performing a multivariate outlier

detection through a hypothesis test. This latter can not be

performed directly on datasets fdðlÞgl¼0;...;L because they

are categorical information. However, pairwise distances

among the datasets (including the actual dataset) can be

calculated using a distance measure dedicated to categor-

ical data. Here we choose the Jaccard distance which is one

of most popular distance measures for categorical data;

however, other distance measures can be used as well.

Given the ðLþ 1Þ � ðLþ 1Þ distance matrix between

datasets, the Multidimensional scaling (MDS) (Borg and

Groenen 2007) can be applied on this latter to map the

datasets fdðlÞgl¼0;...;L into an Cartesian space such that

distances between points in this space reflect the pairwise

distances among the datasets. Thus, each dataset dðlÞðl ¼
0; . . .; LÞ (including the actual dataset) is represented by a

m-dimensional point yl (m�ðLþ 1Þ) in the MDS space.

To test, if unconditional categorical simulations and actual

data are consistent, a statistical procedure based on robust

Mahalanobis distance in the MDS space is used.

The robust Mahalanobis distance (RMD) for each

dataset (including the actual dataset) is computed as

follows:

RMDðdðlÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yl � m̂ð ÞĈ�1
yl � m̂ð ÞT

q

l ¼ 0; . . .; L;

ð12Þ

where yl are the coordinates of the dataset d
ðlÞ in the MDS

space; where m̂ and Ĉ are the robust estimation of mean

and covariance of Y ¼ ½y0; . . .; yLþ1	T (Hubert et al. 2018).

Assuming that yl is multivariate normally distributed,

Mahalanobis distance ½RMDðdðlÞÞ	2 follows a Chi-square

distribution with m degrees of freedom v2m. The 97.5 per-

centile of
ffiffiffiffiffiffi
v2m

p
is used as the cutoff. Thus, if the

RMDðdð0ÞÞ falls outside the tolerance, i.e.,

RMDðdð0ÞÞ[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2m;0:975

q
, the dð0Þ is considered as an out-

lier, which means unconditional categorical simulations are

not consistent with the actual observations, hence are fal-

sified. Although multivariate outlier detection based on the

Mahalanobis distance has the advantage of providing

robust statistical calculations, it relies on the Gaussian

assumption of marginal distribution of data. In the case

where this assumption is doubtful, other multivariate out-

lier detection techniques such as one-class SVM (Schölk-

opf et al. 2001), Isolation Forest (Liu et al. 2008), local

outlier factor (Breunig et al. 2000) can be used.

3 Simulation study

This section first illustrates the method with a simple case,

then studies the various elements, components, and

parameters.

3.1 Illustration of the method

Consider an object-based simulation, where two sources of

information are available: the density of objects (Fig. 3a)

and drill-holes with observations of absence (category 1)

versus presence (category 2) (Fig. 3b, c). The total amount

of hard data is n ¼ 300. Constraining object models to

dense drill-hole data is challenging, while constraining to a

density function is not. In that respect, we first generate an

ensemble of 100 object realizations that are constrained to

the density, but not to the drill-holes. Constraining to

density is done through a rejection method (Lantuejoul

2002). Since there are only two categories, the signed

distance function associated with one category is the

opposite of the signed distance function associated with

another category. So, it sufficient here to consider only one

category. We will consider the category 2 (see, Fig. 3b, c).

Figure 4 shows three unconditional categorical realiza-

tions as well as the corresponding unconditional signed

distance realizations for category 2. Figure 5 illustrates the

consistency between unconditional categorical realizations

and data. Figure 5a–c show the actual dataset dð0Þ and the

simulated datasets fdðlÞgl¼1;...;100 in the MDS space. The

computed RMD for the actual dataset RMDðdð0ÞÞ and for

the simulated datasets fRMDðdðlÞÞgl¼1;...;100 are given in

Fig. 5d. The computed RMD for the actual dataset falls

below the 97.5 percentile threshold which is equal to 6.2.

Thus, unconditional categorical realizations are consistent

with data.

To initialize the Gibbs sampling we perform first the

linear programming to get an initial solution. Although
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linear programming finds the optimum of a (linear)

objective function subject to inequality constraints, here

the objective function is simply a constant, hence it only

finds a solution that follows the inequality constraints.

Additionally, linear programming finds only one solution.

Note that in this case there are 300 inequality constraints.

Next, Gibbs sampling is performed with T ¼ 60;000 iter-

ations. It took approximately 30 minutes on a desktop

computer (LINUX environment) with Intel(R) Core(TM)

i9-7900X CPU @ 3.30GHz (10 cores / 20 threads), and 120

GB RAM.

Figures 6 and 7 show the trace plot and running average

of the first four scores obtained by the Gibbs sampling. One

can see how well the chain is mixing. Both the individual

samples and the running average of the samples oscillate

around a stable value of ak, which is an indication of

Fig. 3 a intensity map, b reference categorical model, c drill-hole data

Fig. 4 a, c, e unconditional categorical realizations. b, d, f corresponding unconditional signed distance realizations for category 2
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convergence of the chain. Typically, in Markov Chain

Monte Carlo applications, initial samples are discarded to

ensure that the Markov Chain has stabilized to the sta-

tionary distribution. This is referred to as burn-in samples.

A burn-in period of B ¼ 10;000 is considered. Another way

to check for convergence is to analyze the autocorrelation

between samples (Fig. 8). The lag-k autocorrelation is the

correlation between every sample and the sample k steps

before. As expected, the autocorrelation is high between

consecutive samples, and decreases as the separation

between samples increases. In this particular example,

samples taken s ¼ 500 samples apart can be considered as

independent. Thus, there are 100 conditional categorical

realizations retained. If the autocorrelation remains high

for large values of k, this indicates a poor mixing of the

chain. In this case, the Gibbs sampler should be performed

from different initial solutions for improving mixing.

Figure 9 shows the unconditional and conditional PC

scores for the first 4 PCs. We also apply a test for Gaus-

sianity that shows that the unconditional PC scores follow a

distribution that is close to Gaussian, see Fig. 10. Figure 11

shows some conditional categorical realizations. All con-

ditional realizations match the data perfectly. The average

proportion of objects for conditional categorical realiza-

tions is 26%, which is similar to the input proportion of the

reference model (27%). We do notice some degradation in

the object geometries. The conditional mean and variance

maps are depicted by Fig. 12.

3.2 Monte Carlo evaluation of the method

The proposed conditioning approach relies on an ensemble

of unconditional categorical realizations to performing the

conditioning on the data. We want study the effect of the

Fig. 5 Falsification of unconditional categorical simulations using

robust Mahalanobis distance (RMD). a–c coordinates of datasets

(actual and simulated) in the MDS space. d circle dots represent the

calculated RMD for datasets (actual and simulated). The black-

squared dot is the RMD for the actual dataset. The black dash line is

the 97.5 percentile of the Chi-Squared distributed RMD
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Fig. 6 Trace plot of the first 4

scores in the Gibbs sampler

Fig. 7 Running average of the

first 4 scores in the Gibbs

sampler
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Fig. 8 Autocorrelation of the

first 4 scores in the Gibbs

sampler

Fig. 9 100 unconditional first 4

PC scores and 100 conditional

first 4 PC scores
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number of unconditional categorical realizations versus the

number of hard data points on the spatial uncertainty

generated with the proposed method. Obviously, enough

unconditional categorical realizations are needed to inform

the statistical model in the a-priori variation of principal

components. An additional condition is brought by the

amount of hard data. Hard data are translated into

inequality constraints. Too many constraints relative to too

few unconditional categorical realizations will lead to too

small uncertainty. Our study therefore requires some ref-

erence uncertainty. This reference uncertainty is simply a

case with a very large amount of unconditional categorical

realizations, here 1000. Then we study what happens when

the number of unconditional categorical realizations is

reduced. A third factor is the nature of the unconditional

categorical model. A more spatially correlated uncondi-

tional categorical model would need less unconditional

categorical realizations.

Fig. 10 QQ-plot of the first 4

scores compared to Gaussian

distribution

Fig. 11 4 out 100 conditional categorical simulations from the proposed conditioning method
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Our Monte Carlo study therefore varies the number of

unconditional categorical models but also varies the spatial

model itself. To that extent, we use three alternate object

sizes, see Fig. 13, one smaller, one medium and one larger;

as well as two different intensity maps, one more con-

straining. The intent is to study the impact of spatial

variability. Of note is the definition of the intrinsic

dimensionality of the hard data. The extrinsic

Fig. 12 a conditional mean and b conditional variance computed from 100 conditional categorical simulations generated using L ¼ 100

unconditional categorical simulations

Fig. 13 Spatial model uses tree alternate object sizes and two intensity maps

Table 1 Intrinsic dimension H for each case

Ellipse size Less informed trend More informed trend

Small 44 31

Medium 27 22

Large 16 14
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dimensionality is 300. However, because of spatial corre-

lation, the intrinsic dimensionality is much less. One way

to define this is to look at the variability of the uncondi-

tional signed distance realizations at the data locations. In

other words, we assign, at each data location the uncon-

ditional signed distance realizations and perform the PCA.

Then observe dimension H at the 95% variance cut-off.

Table 1 shows that the intrinsic dimension H is much less

than the number of hard data n and dependent on the

unconditional categorical model.

To establish a measure of distance between the reference

uncertainty model and the results, we use the following

metric:

�L ¼
PN

i¼1 jVarLi � Var1000i j
N

; ð13Þ

which is the average absolute deviation in terms of the

conditional ensemble variance. N ¼ 3000 refers to the size

of entire grid of 100� 30. The index i in Eq. (13) denotes

the grid node. Figures 14 and 15 show how this works for

one particular case (less informed trend and large object

size). In this case the intrinsic dimension is H ¼ 16. We

notice how the conditional variance starts to deviate sig-

nificantly after 75 unconditional realizations, much less

than the initial 300. Figure 16 (left) summarizes all the

result. For each case, the deviation in variance decreases as

the number of unconditional realizations increases. In

addition, the deviation in variance is smaller for larger

ellipses and for models with a more informed trend.

Because of the linearity observed in Fig. 16 (right), we

derive a rule of thumb as

Fig. 14 Conditional variance for different number of unconditional categorical simulations corresponding to the case with less informed trend

and large object size

Fig. 15 Relationship between the number of unconditional categor-

ical simulations and the error in conditional variance for the case with

less informed trend and large object size
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10
H

L
¼ error: ð14Þ

So to get 5% error (error ¼ 5), with H ¼ 50, we would

need L ¼ 100 unconditional simulations. It is also impor-

tant to highlight that increasing the number of uncondi-

tional realizations also increases the computational time of

the Gibbs sampler. In the case of more than two categories,

the rule of thumb is applied to each category. Then, the

relevant number of unconditional realizations is taken as

the maximum of the relevant number of unconditional

realizations associated with each category.

4 Real case study

In this section, the proposed conditional simulation

approach is applied to real-world data. These latter are 3D

lithological data from a porphyry copper deposit. A chal-

lenge in mineral resources assessment lies in estimation of

boundaries between lithological, mineralization or alter-

ation contacts. These are the K ¼ 6 lithology categories,

from the oldest to the youngest: wall rock (IND), Quartz

Feldspar Porphyry type 1 (QFP1), Quartz Feldspar Por-

phyry type 2 (QFP2), intrusive breccia (ABX2),

hydrothermal breccia (BRXH), and cover (COV). The

physical meaning of the lithology classes is not a concern

here. There are n ¼ 4290 samples from 116 drill holes. The

map of drill hole sample locations of interest is shown in

Fig. 17. Indicator variograms and cross-variograms useful

for the SIS method are shown in Fig. 18.

4.1 Unconditional categorical simulations

The proposed conditional simulation approach requires

unconditional categorical simulations. Here, such

Fig. 16 Summary of the error in conditional variance for all cases (left), error in conditional variance as a function of the number of

unconditional categorical realizations L and the intrinsic dimension of the data H

Fig. 17 Representation of lithological data

Fig. 18 Indicator variograms and cross-variograms
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unconditional categorical simulations are generated using

the following process. First, the hard data are transformed

into ‘‘pseudo-signed distance’’ data. At data locations, the

true signed distance is not observed; that would require

knowing the true boundary. Instead, ‘‘pseudo signed dis-

tance’’ values are calculated for each data location as fol-

lows (Safa and Soltani-Mohammadi 2018):

~ukðxiÞ ¼
�kxi � xjk; if IkðxiÞ ¼ 1

þkxi � xjk; if IkðxiÞ ¼ 0

�

; i ¼ 1; . . .; n; k ¼ 1; . . .;K;

ð15Þ

where xj corresponds to the closest data location of dif-

ferent category than at data location xi. Euclidean norm is

used to measure the distance. The ‘‘pseudo signed distance

values’’ at data locations are depicted in Fig. 19.

Secondly, radial basis functions (RBF) interpolation is

performed on the ‘‘pseudo signed distance’’ values

Fig. 19 Pseudo signed distance values at data locations for each lithology category
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f ~ukðxiÞgi¼1;...;n associated with each category. Specifically,

one gets (Buhmann 2003):

ûkðxÞ ¼
Xn

i¼1

xi
khkðkx� xikÞ; 8x 2 D; k ¼ 1; . . .;K;

ð16Þ

where the basis function hkð�Þ is a radially-symmetric

function (e.g., linear, cubic). The unknown coefficients

xk ¼ ðx1
k ; . . .;x

n
kÞ are determined by the requirement that

ûkð�Þ is an exact interpolator, i.e. ûkðxiÞ ¼ ~ukðxiÞ; i ¼
1; . . .; n: The interpolation is performed individually for

each category.

Thirdly, an unconditional categorical simulation is

obtaining by perturbing the RBF interpolant fûkðxÞ; x 2
Dg [Eq. (16)] as follows:

/kðxÞ ¼ ûkðxÞ þ �kðxÞ; 8x 2 D; k ¼ 1; . . .;K; ð17Þ

and taking CðxÞ ¼ argmin
c1;...;ck

u1ðxÞ; . . .;uKðxÞð Þ; 8x 2 D.

�kð�Þ is a zero-mean Gaussian random function with an

exponential covariance function Cð�; r2k ; skÞ whose param-

eters r2k �Uða1;k; a2;kÞ and sk �Uðb1;k; b2;kÞ are uncertain

and uniformly distributed (sill and range, see Table 2).

Initially 1000 unconditional categorical realizations are

generated. Then, the relevant number of unconditional

categorical realizations to use is based on the rule of thumb

given in Sect. 3.2. For each lithology category, the

dimensionality of data, i.e., the number of principal com-

ponents explaining 95% of the variance is illustrated in

Fig. 20. Thus, the relevant number of unconditional real-

izations to consider is L ¼ 458, following the rule of

thumb. An example of four unconditional categorical

simulations is given in Fig. 21. Figure 22a–c present the

actual dataset dð0Þ and the simulated datasets fdðlÞgl¼1;...;458

in the MDS space. Figure 5d shows the calculated RMD

for the actual dataset RMDðdð0ÞÞ and for the simulated

datasets fRMDðdðlÞÞgl¼1;...;458. As one can notice the

computed RMD for the actual dataset falls below the 97.5

percentile threshold which is equal to 9.75. Thus,

unconditional categorical realizations are consistent with

data (Fig. 22).

4.2 Conditional categorical simulations

T ¼ 110;000 Gibbs samples faðtÞk gt¼1;...;T have been drawn

for each lithology category (k ¼ 1; . . .; 6). The first 10,000

samples of the chain are dropped as burn-in samples, and

every 100th sample is accepted. So, there are 1000 con-

ditional simulations. The proposed method took approxi-

mately 4 hours on a desktop computer (LINUX

environment ) with Intel(R) Core(TM) i9-7900X CPU @

3.30GHz (10 cores / 20 threads), and 120 GB RAM. PC

scores before the conditioning (unconditional PC scores

faðlÞk gl¼1;...;L) and after the conditioning (conditional PC

scores faðtÞk gt¼1;...;T ) are presented in Fig. 23. An example

of 3 out of 1000 conditional categorical simulations based

on the proposed approach and the SIS method is given in

Fig. 24. Conditional categorical realizations providing by

the proposed conditioning approach depict more regular

and continuous contours than SIS conditional categorical

realizations. These later show noisy features and contain

artifacts that are geologically unrealistic; a well-known

characteristic of the SIS method (Deutsch 1998). For

instance, lithology category ‘‘QFP2’’ is not expected to

appear above the lithology category ‘‘COV’’ (cover). The

average proportion over 1000 conditional realizations for

each lithology category is given in Table 3. Under the

proposed conditional simulation method, the proportions

estimated from conditional categorical realizations are

close to ones estimated from the data. Whereas, under the

SIS method, minor lithology categories tend to be over-

estimated like ‘‘ABX2’’ and ‘‘BRXH’’, corresponding to

the underestimation of one of major lithology categories

such as ‘‘IND’’ and ‘‘QFP1’’.

Figures 25 and 26 show respectively, the resulting

conditional mean and variance maps for each lithology

category under the proposed conditional simulation method

and the SIS method. The general appearance of the maps of

conditional mean and variance are different although

showing some similar patterns. The SIS method has more

uncertainty than the proposed approach due to ‘‘noisy’’

realization that SIS is known for (Deutsch 1998).

The proposed conditional simulation approach has been

also performed for a double number of relevant uncondi-

tional categorical simulations, i.e., L ¼ 916. Figure 27

show the resulting conditional mean and variance maps for

each lithology category computed from 1000 conditional

categorical realizations generated using this time L ¼ 916

unconditional categorical realizations. The general

appearance of the maps of conditional mean and variance

Table 2 Distribution of sill and range parameters of �kð�Þ defined in

Eq. (17)

Lithology Parameters Distribution

ABX2 ðr21; s1Þ Uð3000; 4000Þ � Uð100; 135Þ
BRXH ðr22; s2Þ Uð1000; 2000Þ � Uð100; 135Þ
COV ðr23; s3Þ Uð5000; 6000Þ � Uð100; 135Þ
IND ðr24; s4Þ Uð5000; 6000Þ � Uð100; 135Þ
QFP1 ðr25; s5Þ Uð4000; 5000Þ � Uð100; 135Þ
QFP2 ðr26; s6Þ Uð4000; 5000Þ � Uð100; 135Þ
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based on L ¼ 916 unconditional categorical simulations is

slightly different to the ones based L ¼ 458 unconditional

categorical simulations. This observation suggests that

there is no need to use more than L ¼ 458 unconditional

categorical realizations to reproduce a realistic spatial

uncertainty.

Fig. 20 Scree plot of PCA on 1000 unconditional signed distance realizations at n ¼ 4290 data locations, for each lithology category

Fig. 21 Cross-sections of 4 out L ¼ 458 unconditional categorical simulations
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Fig. 22 Falsification of

unconditional categorical

simulations using robust

Mahalanobis distance (RMD).

a–c coordinates of datasets

(actual and simulated) in the

MDS space. d circle dots

represent the calculated RMD

for datasets (actual and

simulated). The black-squared

dot is the RMD for the actual

dataset. The black dash line is

the 97.5 percentile of the Chi-

Squared distributed RMD

Fig. 23 L ¼ 458 unconditional first PC scores and 500 conditional first PC scores for each lithology category
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5 Conclusions and future work

In this article, a conditioning method has been proposed for

generating conditional categorical simulations from an

ensemble of unconditional categorical simulations coming

from any simulation approach. The proposed method takes

advantage of the implicit functions representation, in

combination with principal component analysis and Gibbs

sampler to achieve the conditioning to the data. A rule of

thumb has been derived in order to select the relevant

number of unconditional categorical simulations necessary

to capture the spatial uncertainty. A falsification procedure

has been proposed to test the consistency between uncon-

ditional categorical simulations and the data. Synthetic and

real-world case studies have been used to demonstrate the

effectiveness of the proposed conditioning method.

Typical characteristics of the proposed conditional

simulation approach are the following. It is independent to

the method used to construct unconditional categorical

simulations; it does not assume that unconditional cate-

gorical simulations are independent. The proposed method

can easily handle a large number of categories in a

Fig. 24 a–c Cross-sections of 3 out 1000 conditional categorical simulations from the proposed conditioning method. d–f Cross-sections of 3 out
1000 conditional categorical simulations from SIS method

Table 3 Average lithology

proportions over 1000

conditional simulations

ABX2 (%) BRXH (%) COV (%) IND (%) QFP1 (%) QFP2 (%)

Proposed method 9.46 4.76 14.59 28.42 25.41 17.36

SIS method 10.81 5.33 14.53 26.15 24.86 18.32

Data 9.64 4.59 14.65 28.16 25.76 17.20
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Fig. 25 Proposed method: a, c,
e, g, i,k cross-sections of

conditional mean for each

lithology category computed

from 1000 conditional

simulations generated using L ¼
458 unconditional simulations.

SIS method: b, d, f, h, j, l cross-
sections of conditional mean for

each lithology category

computed from 1000

conditional simulations
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Fig. 26 Proposed method: a, c,
e, g, i, k cross-sections of

conditional variance for each

lithology category computed

from 1000 conditional

simulations generated using L ¼
458 unconditional simulations.

SIS method: b, d, f, h, j, l cross-
sections of conditional variance

for each lithology category

computed from 1000

conditional simulations
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Fig. 27 a, c, e, g, i, k cross-

sections of conditional mean for

each lithology category

computed from 1000

conditional simulations

generated using L ¼ 916

unconditional simulations. b, d,
f, h, j, l conditional variance for
each lithology category

computed from 1000

conditional simulations

generated using L ¼ 916

unconditional simulations
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consistent manner via the implicit function representation;

it can be applied when categories obey an ordered sequence

like stratigraphies and lithologies; this order relation can be

captured through signed distance functions that are trun-

cated according to a set of rules. The proposed technique

can be performed in any dimension (e.g., 1D, 2D and 3D);

it can be carried out when the conditioning data are very

irregularly or regularly located. The proposed approach

provides more realistic categorical realizations than the SIS

method as shown in the real case study. It comprises some

components that can be performed in parallel according to

the number of categories, including the generation of

conditional PC scores.

The proposed conditional simulation method relies on

the Gibbs sampling of a truncated multivariate Gaussian

distribution subject to linear inequality constraints. For

each category, the number of linear inequality constraints

is equal to the number of data points. The computational

time of the proposed method increases with the grid size,

the number of unconditional categorical simulations, and

the number the data points. When dealing with very large

datasets, the proposed method could be time consuming as

many conditional simulation methods. To overcome this

problem, the number of linear constraints can be reduced

due to some redundancy existing in very large datasets.

Specifically, very large datasets often exhibit clustered data

points. For clustered data points with the same category,

only few data points can be considered to derive linear

inequality constraints without affecting the conditioning.

Under the proposed conditional simulation technique,

the PC scores are assumed to follow the normal distribu-

tion. So, prior to apply the proposed approach, the nor-

mality assumption of the unconditional PC scores should

be checked. In case where the unconditional PC scores

deviated significantly from the normal distribution, the

resulting conditional categorical simulations might not

reproduce some statistical properties. It would be inter-

esting to extend the proposed method to accommodate

other distributions other than the Gaussian distribution.
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