
ORIGINAL PAPER

The adaptability of typical precipitation ensemble prediction systems
in the Huaihe River basin, China

Han Wang1 • Ping-an Zhong1,2 • Fei-lin Zhu1 • Qing-wen Lu1 • Yu-fei Ma1 • Sun-yu Xu1

Accepted: 23 October 2020 / Published online: 5 November 2020
� Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Evaluating the adaptability of precipitation forecasting is of great importance for regional flood control and drought

warnings. This study conducted evaluations using the 1–9 days cumulative precipitation forecast data of five typical

operational global ensemble prediction systems (EPSs) from TIGGE (i.e., The Observing System Research and Pre-

dictability Experiment Interactive Grand Global Ensemble) and the observed daily precipitation data of 40 meteorological

stations over the Huaihe River basin (HB). A series of verification metrics is used to evaluate the performances of

quantitative precipitation forecasts (QPFs) and probabilistic quantitative precipitation forecasts (PQPFs) from the five EPSs

from April to December 2015 in terms of overall performance, different precipitation thresholds, different lead times and

the spatial distribution over the HB. The adaptability of the multimodel superensemble integrated from the five EPSs by the

Bayesian model average is also examined during the main flood season. The results show that (1) the forecast quality of the

China Meteorological Administration EPS is the worst for all lead times, which may relate to its having the fewest

ensemble members. The European Centre for Medium-Range Weather Forecasts (ECMWF) EPS performs the best in

terms of QPF and PQPF qualities for longer lead times because ECMWF has the largest ensemble members. (2) All EPSs

have better discrimination at low thresholds, indicating the reference value for drought warnings. ECMWF is expected to

obtain the best PQPF skill for a large threshold through postprocessing; (3) due to the differences in climates in the North

and South of the basin, QPF and PQPF qualities are better in the northern HB than in the southern HB; (4) except for

climate, the PQPF skill is also influenced by precipitation type, while the QPF accuracy is affected by terrain. The PQPF is

good at forecasting the precipitation caused by ocean effects but not by mountain topography. The QPF accuracy decreases

in mountainous areas; and (5) the multimodel superensemble has little effect on PQPF skill improvement but can improve

QPF accuracy when raw EPSs have significantly different QPF accuracies.
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1 Introduction

Floods and droughts are major natural disasters that occur

in China and have enormous destructive strength, restrict-

ing economic and social development (Wang 2017; Zhang

Xu et al. 2019). As an essential part of the hydrological

forecasting system, skillful precipitation forecasts are of

vital importance in mitigating risk associated with extreme

events, which supports decision-making for water resource

utilization. In addition, precipitation forecasts provide

decision-makers with uncertainty information in precipi-

tation and flood forecasts (Ying et al. 2019).

Numerical weather prediction (NWP) models have been

developed and improved since the 1940s (Trenberth 1992),

and the forecast accuracy has also steadily improved

(Buizza et al. 1999; Lan et al. 2011). In the past 25 years,

NWP has evolved from deterministic forecasting to a new

stage of ensemble prediction systems (EPSs) (Molteni et al.

1996). In contrast to deterministic forecasting, EPS gen-

erates a forecast set through initial perturbation and model

uncertainty, thereby providing the most likely forecast

value as well as the uncertainty of the forecast. The

improved EPS performance is attributed to advances in the

initial perturbation strategy, (Meng 2011; Whitaker and

Hamill 2002), model uncertainty simulation strategy, res-

olution, number of members and forecast length (Roberto

2019; Roebber et al. 2004). Currently, EPS is not only used

operationally to generate forecasts valid for different time

scales, such as short-term forecasts (up to 2–3 days),

medium-term forecasts (up to 2 weeks), seasonal forecasts

and subseasonal (10–90 days) forecasts but also for dif-

ferent hydrometeorological variables, such as temperature,

precipitation, wind speed, and tropical cyclone paths

(François et al. 2018; Hemri et al. 2014). Currently, EPS is

widely used in many fields. For example, in hydrology,

coupled with hydrological models, precipitation ensembles

can generate runoff forecasts (Cloke and Pappenberger

2009; Lan et al. 2011; Pappenberger et al. 2005). In the

energy field, different weather scenarios are created by

ensembles to estimate the uncertainty of electricity demand

forecasts (Taylor and Buizza 2003). In aviation, ensembles

are used to provide the probability of convectional calamity

and flying conditions, guiding air traffic control (Robert

2018; Verlinden 2017). Furthermore, the inherent forecast

limitations of a single model are difficult to measure. It is

common to combine ensembles from multiple independent

models in a scheme called a multimodel ensemble. This

practice considerably reduces systematic errors in forecasts

and improves reliability (Kirtman et al. 2014; Krishnamurti

et al. 1999, 2016).

The Observing System Research and Predictability

Experiment Interactive Grand Global Ensemble (TIGGE)

provides a solid technical and data support for studies on

the operational global ensemble forecasts (Park et al.

2008). In recent years, regional cases on ensemble forecast

systems have been extensively carried out in quantitative

precipitation forecasts (QPFs) and probabilistic quantita-

tive precipitation forecasts (PQPFs): Hamill (2012) exam-

ined the PQPFs from four TIGGE EPSs over the

contiguous United States during July–October 2010 and

discussed the TIGGE multimodel and the European Centre

for Medium-Range Weather Forecast (ECMWF) refore-

cast-calibrated PQPFs. The author concluded that PQPFs

from the Canadian Meteorological Centre (CMC) EPS are

the most reliable, while those from the U.S. National

Centre for Environmental Prediction (NCEP) and the

United Kingdom Meteorological Office (UKMO) EPSs are

the least reliable. In addition, the TIGGE multimodel

shows better forecast skills, while the accuracy of ECMWF

reforecast-calibrated PQPFs is reduced. Xiang et al. (2014)

evaluated the QPFs and PQPFs from six TIGGE EPSs

during June–August 2008–2010 in the Northern Hemi-

sphere (NH) midlatitude and tropics, as well as the change

in performance after being upgraded. Their study indicated

that the overall forecast skill is better in the NH midlatitude

than in the NH tropics, and generally, the ECMWF EPS

performs best. After the upgrade, the overall QPF and

PQPF errors from CMC EPS increase due to its excessively

enlarged ensemble spread. Louvet et al. (2016) compared

PQPFs from seven TIGGE EPSs with satellite rainfall

estimates over West Africa during 2008–2012 and exam-

ined the performance of the ensemble mean of all models.

They found that the skills of UKMO and ECMWF EPSs

are better than others. For a lead time from 1 to 15 days,

the skill of TIGGE forecasts decreases, and the perfor-

mance of the multimodel overcomes that of any individual

models. Karuna et al. (2017) assessed the skills of three

TIGGE EPSs in predicting 15 rainstorm events over India

during 2007–2015. Their results showed that NCEP EPS

has the least spread, but its QPFs are not well predicted.

The displacement and pattern errors contribute more to the

total root mean square error (RMSE). Using deterministic,

dichotomous (yes/no) and probabilistic techniques, Ami-

nyavari et al. (2018) verified the precipitation forecast

performance of three TIGGE EPSs over Iran for the period

of 2008–2016. This study concluded that all EPSs under-

estimate precipitation in high precipitation regions and

overestimate precipitation in other regions. ECMWF EPS

has better scores than others, while UKMO EPS yields

higher scores in mountainous regions. The multimodel

superensemble is recommended to improve the forecast

quality.

However, systematic studies on regional TIGGE pre-

cipitation forecasts are scarce. Thus, a more comprehensive

study is needed to reveal the detailed properties of regional
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precipitation EPSs. In addition, statistical postprocessing

can construct a multimodel superensemble from EPSs to

remove systematic biases and improve the accuracy and

robustness of EPSs (Qingyun et al. 2019). It is of interest to

analyze the forecast skill of a multimodel superensemble in

a particular area.

This study focuses on the QPFs and PQPFs generated

from individual TIGGE centers from April to December

2015 over the Huaihe River basin (HB). The forecast

quality is assessed in many aspects to obtain a compre-

hensive understanding and summary of the precipitation

forecast properties of five selected operational global EPSs

in the HB. The overall forecast quality is verified, and the

forecast quality at different precipitation thresholds is fur-

ther discussed. Forecast quality changes for different lead

times are also examined in this study. We evaluate the

spatial distribution of forecast performance to reveal the

adaptabilities of EPSs to the terrain and climate back-

ground. In addition, the multimodel superensemble is

integrated from five EPSs using the Bayesian model

average (BMA), and its performance is evaluated with

reference to individual EPSs.

The rest of the paper is organized as follows: Sect. 2

describes the study area, datasets and methods. Section 3

provides the results and discussions. A summary is pre-

sented in Sect. 4.

2 Study area, datasets and methods

2.1 Study area

The HB is located at 111�550 E–121�250 E and 30�550 N–
36�360 N (Fig. 1). The left bank of the Huaihe River is

almost all plain rivers with large concentration areas, while

the right bank is all hilly rivers with small, concentrated

areas. In addition, HB is a transitional zone between the

northern and southern climates of China (Robert 2018). In

contrast to the warm zone with a semihumid monsoon

climate in the northern region, the southern region is a

subtropical zone with a humid monsoon climate.

The average annual precipitation over the HB is

approximately 910 mm, and the precipitation decreases

from South to North. June–September is the flood season in

the HB, and precipitation is usually 500–600 mm during

this period, accounting for 50–80% of the annual precipi-

tation. During the unique plum rain season (June and July),

rainfall lasts for 1 or 2 months, covering the whole basin.

The atmospheric system is complex and changeable over

the HB. The spatial and temporal distribution of precipi-

tation is uneven and prone to floods, droughts and other

disasters. The complex terrain and unique climate back-

ground make it difficult to forecast precipitation in this

region.

2.2 Datasets

2.2.1 Observed data

The observed data set comes from the National Meteoro-

logical Information Centre of China. The data set is the

collection of surface meteorological records submitted

monthly by the data-processing departments of provinces,

municipalities and autonomous regions. The data set

comprises the daily data of 752 meteorological stations in

China from 1951 to 2015. Daily precipitation data from 40

stations over the HB are used in this study. Some dates are

missing data or contain outliers, and these dates are culled.

Fig. 1 The location of HB,

predicted grid points and

stations
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2.2.2 Precipitation forecast data

The cumulative precipitation forecast data of 1–9 days

provided by the Japan Meteorological Agency (JMA),

China Meteorological Administration (CMA), UKMO,

U.S. NCEP and the ECMWF EPSs in the TIGGE data set

are adopted for evaluation. The regional range is 112�–
121� E and 30.5�–36.5� N. The original precipitation data

are converted into the same 0.5� 9 0.5� grid before

downloading using the bilinear interpolation software

provided by the ECMWF TIGGE data portal. The config-

urations of the selected operational global EPSs are shown

in Table 1.

The JMA EPS starts to provide data in February 2014; in

addition, the CMA EPS is missing data from October 2014

to March 2015 due to the system upgrade, and thus, the

verification period covers April–December 2015 in this

study. The negative values of the forecast are set as 0, and

linear interpolation of time is used to estimate the missing

values. The nearest-neighbor approach is used to obtain the

forecast of a specific station from the gridded forecast data

(Vogel et al. 2017). Figure 1 illustrates the distribution of

the selected predicted grid points and the meteorological

stations. The background grid in gray is the original grid.

2.3 Verification metrics and postprocessing
method

The QPFs and PQPFs of five typical EPSs are verified in

terms of different verification metrics. A multimodel

superensemble is constructed by the BMA. The principles

of each part are described as follows.

2.3.1 Verification methods

2.3.1.1 Verification metrics of PQPFs The direct output of

EPS is a set of possible values (i.e., PQPF); thus, PQPF is a

probabilistic prediction. Sharpness, skill, reliability and

resolution are the most common aspects of probabilistic

prediction quality. The sharpness describes the concentra-

tion of the probabilistic prediction distributions. The skill

represents the forecast accuracy compared with a reference

forecast. The reliability relates to the average consistency

between the forecast and observation when a specific

forecast is issued, measuring how well forecast probabili-

ties match observed frequencies. The resolution shows

differences in outcomes for the different forecasts issued,

which means that the distribution of outcomes when ‘‘A’’

was forecast is different from the distribution of outcomes

when ‘‘B’’ is forecast (Qingyun et al. 2019). In this study,

the continuous ranked probability skill score (CRPSS) is

applied to assess the forecast skill of PQPFs (Hersbach

2000). The reliability diagram and Brier score resolution

are used to intuitively and quantitatively evaluate the

reliability of PQPFs, respectively, for dichotomous events.

Dichotomous events refer to events whose results can be

divided into occurrence and nonoccurrence through

thresholds. Brier score skill and Brier score resolution

represent the prediction skill and resolution of PQPFs for

dichotomous events, respectively.

The CRPSS is calculated by normalizing the continuous

ranked probability score (CRPS) with the reference fore-

cast, which is defined as follows:

CRPSSTj ¼
CRPSref ;j � CRPSTj

CRPSref ;j
ð1Þ

where CRPSSTj represents the CRPSS of EPS T at station j

and CRPSTj is the CRPS of EPS T at station j (Tilmann and

Raftery 2007):

CRPSTj ¼ 1

N

XN

i¼1

Z 1

�1
GT

ij xð Þ � H x� oij
� �h i2

dx ð2Þ

H x� oij
� �

¼ 1 x� oij
0 x\oij

�
ð3Þ

where x represents accumulated precipitation; oij is the

observation on i day at j station; N is the number of days in

the verification period; and GT
ij represents the predictive

cumulative distribution function of T EPS on i day at j

station.

CRPSref ;j represents the referenced CRPS at j station and

is generated using the cumulative distribution function

Table 1 Configurations of the

five TIGGE EPSs used in this

study

EPS Country Ensemble members Lead time Horizontal resolution archived

UKMO UK 23 1–9 days 0.45� 9 0.3�
ECMWF Europe 50 O640 (0.14� 9 0.14�)*
CMA China 14 0.28� 9 0.28�
JMA Japan 26 0.37� 9 0.37�
NCEP USA 20 1.0� 9 1.0�
*ECMWF uses Gaussian grid O640, which means there are 640 lines between the pole and equator, giving a

total of 1280 latitude lines. The resolution is approximately 0.14� 9 0.14� over the HB
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(CDF) of the observed samples (i.e., sample climatology)

(Konstantinos et al. 2019):

CRPSref ;j ¼
1

N

XN

i¼1

oij � oj
�� �� ð4Þ

where oj is the average observed precipitation at j station

during the verification period. CRPSS ranges from �1 to

1, and a negative value indicates that the forecast skill of

EPS T is worse than that of the sample meteorology (De-

margne et al. 2010; Ye et al. 2014). In this study, 95%

confidence intervals for CRPSS are calculated by the

bootstrapping method by randomly selecting the statistics

10,000 times (Xiang et al. 2014).

The reliability diagram represents the frequency of the

actual event when the predicted event occurs with a certain

probability. The reliability diagram sets the observed rel-

ative frequency of an event versus the forecast probability

of the event (Fig. 2). Given that m denotes the different M

thresholds of forecast probability, the observed relative

frequency qTm is given by the following equation (Wilks

2009):

qTm ¼ 1

nTmj � J

XJ

j¼1

XnTmj

i¼1

cTmj ð5Þ

where nTmj denotes the number of forecast-observation pairs

used in the verification period for EPS T at j station; and J

represents the total number of stations. Since the obser-

vation of the event is dichotomous for the forecast-obser-

vation pair of T EPS at the j station, cTmj ¼ 1 if the event

occurs and cTmj ¼ 0 otherwise. According to the forecast

probability, the reliability diagram parts the verification

dataset into subsamples, which means that the reliability

diagram requires a fairly large dataset.

The Brier score resolution and Brier score reliability for

EPS T are defined as follows (Wilks 2009):

REST ¼ 1

PJ

j¼1

PM

m¼1

nTmj

XnTmj

i¼1

XM

m¼1

pTm � qTm
� �2 ð6Þ

RELT ¼ 1

PJ

j¼1

PM

m¼1

nTmj

XnTmj

i¼1

XM

m¼1

qTm �
XJ

j¼1

XM

m¼1

cTmj
nTmj

 !2

ð7Þ

where pm is the forecast probability of threshold m; and qTm
is the observed relative frequency corresponding to the

threshold m of EPS T . The larger RES is, the higher the

resolution of PQPFs, and the smaller REL is, the better the

reliability.

BS skill (BSS) normalizes the mean square error of

PQPFs of dichotomous events by reference forecast. For

PQPFs of EPS T , the BSS is given by the following

equation:

BSST ¼ BSref � BST

BSref
ð8Þ

where BST and BSref represent the BS of EPS T and ref-

erence forecast, respectively, and BSref is calculated by the

observed sample frequency of each station (Thomas and

Josip 2006; Wilks 2009):

BST ¼ 1

N � J

XJ

j¼1

XN

i¼1

pTij � cij
� �2

ð9Þ

BSref ¼
1

N � J

XJ

j¼1

XN

i¼1

pref ;j � cij
� �2 ð10Þ

cij ¼
1 oij 2 I
0 oij 62 I

�
ð11Þ

where pTij is the forecast probability of the event of T EPS

on i day at j station; pref ;j is the observed frequency at j

station. Similar to the CRPSS, the perfect score is 1, and

the lower the BSS is, the worse the skill of PQPFs. A lower

limit of atmospheric predictability is a prediction that the

future will be like the past climatology (Qingyun et al.

2019). Climatology is a forecast of the climatological

outcome and is often used as an important reference for the

forecast skill (Qingyun et al. 2019). This paper obtains

observed samples to calculate climatology, that is, the

average precipitation and precipitation distribution of

observed samples are taken as the forecast of the clima-

tological outcomes in this study (Konstantinos et al. 2019).

2.3.1.2 Verification metrics of QPFs The output of EPS is

a set of possible values, which not only provides PQPFs

(ensembles) but also provides relatively robust QPFs by

using the mean of all ensemble members (mean ensemble)

Fig. 2 Schematic of the reliability diagram
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(WMO 2012). As an important output of EPS, multiple

deterministic verification metrics are used to demonstrate

different aspects of QPFs. Scatter plots (Fig. 3a) and

Pearson correlation coefficients are used to measure the

linear relationship between forecasts and observations

(Qingyun et al. 2019). The RMSE and discrimination

diagram are used to evaluate the accuracy and discrimi-

nation of QPFs. Accuracy refers to the average difference

between individual forecasts and observations, while dis-

crimination represents differences in forecasts for different

outcomes.

In the scatter plots (Fig. 3a), the lower correlation

between forecasts and observations results in scatter about

the one-to-one line. The Pearson correlation coefficient is a

measure of the degree of linear correlation between QPFs

and observations. A Pearson correlation coefficient of 1

(- 1) indicates a perfect positive (negative) linear corre-

lation between QPFs and observations, while the absence

of such a relationship leads to 0.

RMSEs are often used to measure the accuracy of

deterministic predictions. The RMSE evaluates the stan-

dard deviation of the error between deterministic predic-

tions and the observations. For RMSE, a lower value

indicates better accuracy.

The discrimination diagram divides predictions into

three types: correct prediction, false positive and false

negative (Fig. 3b).

2.3.2 Bayesian model average method

The BMA, developed by the University of Washington

(Raftery et al. 2005), is now recognized as one of the best

statistical postprocessing methods for constructing multi-

model superensemble forecasts (Sloughter et al. 2007). By

combining data from different EPSs, BMA generates a

single probabilistic prediction in the form of a predictive

probability density function (PDF) (Vogel et al. 2017).

Given that y is the predictive variable, the output corre-

sponding to model M1; . . .;MK is f1; . . .; fK , and for the

training dataset, ðyT ; f TÞ,

p y ðf1; . . .; fK ; yTÞ
��� 	

¼
XK

k¼1

xkgkðyjðfK ; yTÞÞ ð12Þ

XK

k¼1

xk ¼ 1 ð13Þ

where gkðyjfk; yTÞ is the PDF of the Mk EPS and xk is the

BMA weight of the Mk EPS, reflecting the overall perfor-

mance of the Mk EPS during the training period.

The default distribution of the variable is a normal

distribution in BMA. The accumulated precipitation is zero

in many cases; however, the distribution will be highly

skewed for cases in which it is not zero. Therefore, a

modified condition PDF of BMA is applied to extend

BMA. In addition, the BMA variable in this study is taken

as the cube root of precipitation to yield a good distribu-

tion. (Jianguo 2014; Sloughter et al. 2007).

The modified conditional PDF comprises two parts. The

first part calculates the probability distribution of zero

precipitation by a logistic regression model:

log it p y ¼ 0jðfk; yTÞ
� 	
 �

¼ log
p y ¼ 0jðfk; yTÞ½ �
p y[ 0jðfk; yTÞ½ �

¼ a0k þ a1kf
1=3
k þ a2kdk

ð14Þ

where a0k, a1k, and a2k are computed by logistic regression.

The second part is the PDF when the precipitation is

nonzero, which is represented by a gamma distribution

(Sloughter et al. 2007):

hk yjðfk; yTÞ
� 	

¼ 1

bakk CðakÞ
yak�1 expð�y=bkÞ ð15Þ

where the shape parameters ak and scale parameters bk are
expressed as follows:

lk ¼ akbk ¼ b0k þ b1kf
1=3
k ð16Þ

r2k ¼ akb
2
k ¼ c0 þ c1fk ð17Þ

where lk and r2k are the mean and variance in the gamma

distribution, respectively; b0k and b1k are calculated by

generalized linear regression; and c0 and c1 are obtained by

using the maximum likelihood method.

In summary, the BMA predictive PDF of the cube root

of the accumulated precipitation y isFig. 3 a Schematic diagram of scatter plot; b Schematic diagram of

discrimination diagram
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p yjðf1; :::; fk; yTÞ
� 	

¼
XK

k¼1

xk p y ¼ 0jðfk; yTÞ
� 	

I y ¼ 0½ �



þp y[ 0jðfk; yTÞ
� 	

hk yjðfk; yTÞ
� 	

I y[ 0½ �
�

ð18Þ

where the general indicator function I½� is 1 if the condition

in brackets holds; otherwise, it is zero. Using the maximum

likelihood method to calculate xk,

lðx1; . . .;xK ; c0; c1Þ ¼
XJ

j¼1

Xn

i¼1

log p yi;jjðf1;i;j; . . .; fK;i;j; yTÞ
� 	

ð19Þ

where i and j represent time and station, respectively; J is

the number of total stations; and n is the days of training

period. The equation above is maximized numerically by

the expectation–maximization (EM) algorithm (Dempster

1977; McLachlan and Krishnan 1988).

3 Results and discussion

3.1 The performances of EPSs for a lead time
of 24 h

The precipitation forecast for the lead time of 24 h receives

the most attention during flood control. For the lead time of

24 h, the overall performances, the performances at dif-

ferent precipitation thresholds and the spatial distribution

of the performances of five EPSs are examined.

3.1.1 The overall performances of EPSs

Figure 4 demonstrates the scatter plots of QPFs versus

observations. The abscissa of the black box in Fig. 4 rep-

resents the average QPFs, and the ordinate represents the

average observations. The Pearson correlation coefficients

of QPFs are given as the numbers in the figure. The QPFs

of JMA EPS have the best correlation with observations,

while CMA EPS has the worst correlation. Table 2 lists the

mean RMSEs of five typical EPSs during the verification

period, which reflects the QPF accuracies. In line with the

correlation results, followed by ECMWF EPS, QPFs of

JMA EPS show the best accuracy (i.e., lowest RMSE), and

CMA EPS shows the worst accuracy.

Figure 5 illustrates the PQPF skills of each EPS relative

to climatology, and a value of CRPSS greater than 0

indicates more forecasting skills than climatology. The

PQPFs of all EPSs have positive CRPSSs, which indicates

that they are more skillful than climatology (i.e., observed

sample). Followed by ECMWF and UKMO EPSs, the

mean CRPSS of JMA EPS is the highest, and the

Fig. 4 Scatter plots of QPFs versus observations

Table 2 Basin mean QPF

RMSEs of the five EPSs
EPS RMSE (mm/days)

UKMO 9.30

CMA 10.38

ECMWF 9.12

JMA 8.85

NCEP 9.43

Fig. 5 Basin mean PQPF CRPSSs of EPSs
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confidence interval is the narrowest, indicating the better

PQPF skill. CMA EPS has the worst PQPF skill.

ECMWF has been proven to be a superior EPS in

multiple regions, but the adaptability of other EPSs varies

from region to region. For instance, ECMWF and JMA

EPSs show the best skills in China’s Huai River basin (Tao

et al. 2014). Along the coasts of the northern Indian Ocean,

ECMWF, UKMO and NCEP EPSs produce more skillful

forecasts (Bhomia et al. 2017). In West Africa, the fore-

casts of ECMWF and UKMO EPSs are the best (Louvet

et al. 2016).

3.1.2 EPS performances at different precipitation
thresholds

In general, drought relief focuses on the forecast quality at

a low precipitation threshold, while flood control concerns

the forecast quality at a large precipitation threshold.

Therefore, a large threshold and a low threshold are

selected in this paper to evaluate the EPS capacity for

drought relief and flood control, respectively. The precip-

itation between the large threshold and low threshold is not

considered here.

There are few data points at the threshold of more than

50 mm/days (Table 3) during the verification period, and it

is difficult to meet the needs of the reliability diagram.

Therefore, 10 mm/days and 25 mm/days are selected as the

low threshold and large threshold for dichotomous events,

respectively, whereby the quality of QPFs and PQPFs from

five EPSs are estimated at two thresholds.

Figure 6 plots the reliability curves of PQPFs for dif-

ferent events. The closer the curve is to the diagonal, the

more reliable the PQPF is. For clarity, the EPS with more

ensemble members has more probability bins. The BSS,

reliability (REL) and resolution (RES) of the BS are shown

as numbers in the figure. The horizontal dashed line is the

observed sample frequency (i.e., climatology). When the

reliability curve is lower than the dashed line, the fore-

casting skills are inferior to climatology at this forecast

probability.

For the dichotomous event at a low precipitation

threshold (\ 10 mm/days), it largely deviates from the

diagonal line as the prediction probability decreases, which

is a severe false negative case. For the dichotomous event

at a large precipitation threshold ([ 25 mm/days), severe

false negatives occur with increasing prediction probabil-

ity. However, in contrast to false negatives, false positives

are more advantageous for flood control safety.

All EPSs have superior PQPFs skill at low precipitation

thresholds due to the higher BSS value at low precipitation

thresholds. CMA and NCEP EPSs have relatively poor

PQPF reliabilities at both thresholds, presenting poor PQPF

skills at both thresholds. UKMO EPS is sharper and has the

best PQPF skill at a low threshold (the largest BSS), which

is mainly attributed to its best reliability and resolution (the

smallest REL and the largest RES). For the large precipi-

tation threshold, ECMWF and JMA EPSs have better

PQPF skills, where ECMWF has better resolution and is

sharper, and JMA is more reliable.

It is easy to calibrate the reliability term through post-

processing, while the resolution term is difficult to post-

process because it is intrinsic to the model (Xiang et al.

2014). Therefore, for flood warnings, the ECMWF EPS is

relatively more promising and is expected to further

acquire skill through postprocessing.

Figure 7 reveals the discriminations of QPFs at two

thresholds. For a low threshold (\ 10 mm/days), the ratio

of correct prediction is approximately 90% for each EPS,

representing the superior QPF discrimination of all EPSs at

the low threshold, which is of reference value for drought

warnings. For a large threshold ([ 25 mm/days), no EPSs

can discriminate well. The CMA EPS has almost the same

ratio of correct prediction with others, while its false

negative ratio is inferior to others. Therefore, in the case of

flood control, the QPFs of the CMA EPS are preferred

when adopting deterministic forecasts among these EPSs.

Overall, the EPS forecasting skill for precipitation with

a large threshold is far lower than that with a low threshold.

This result relates to the main precipitation types over the

HB and the characteristics of EPS. Typhoons and plum

rains are the main sources of precipitation in the HB. The

typhoon is a tropical cyclone, and the plum rain belongs to

the East Asian monsoon (Wang et al. 2011; Chen et al.

2018). EPS is good at predicting precipitation generated by

the above two types (Lan et al. 2011; Olson et al. 1995), so

EPS has good forecast quality for low thresholds. However,

the accurate forecast of heavier precipitation is a challenge

to EPS (Lan et al. 2011). It is obvious that EPSs can play an

effective role in drought predictions for the HB. However,

when EPSs are used to force the hydrological model to

produce a flood forecast, they should be used carefully.

3.1.3 Spatial distribution of EPS performances

The spatial distribution of precipitation is more realistic

and accurate in mountainous terrain when elevation

Table 3 The proportion of data for different dichotomous events (%)

Threshold CMA ECMWF JMA NCEP UKMO

\ 10 mm/days 89.75 91.58 93.08 91.78 92.63

[ 25 mm/days 3.38 2.37 1.36 1.87 2.38

[ 50 mm/days 1.08 0.46 0.08 0.22 0.56
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dependence is considered (Song et al. 2019). Thus, the

interpolation method used in this paper is Gradient plus

Inverse-Distance-Square (GIDS) (Price et al. 2000), which

can consider the influence of elevation. Affected by the

different climates over the HB, the average daily precipi-

tation distribution decreases from South to North during

the verification period (Fig. 8). The precipitation distribu-

tion in the HB is not only affected by climate but also by

topography and geographical location. The precipitation in

mountainous areas and coastal areas increases.

In this study, two approaches are applied to evaluate the

spatial differences in EPS performances in the HB. First,

the mainstream is taken as the dividing line between the

northern and southern HB (the Qinling Mountains-Huai

River line is the North–South boundary line of China). The

mean verification metrics of EPSs in the northern and

southern HB are calculated and displayed in Table 4 to

study the adaptability of EPSs in the climatic transition

zone. Second, the spatial distribution of the verification

metrics of EPSs is carried out by the GIDS (Figs. 9, 10),

which intuitively describes the spatial changes in the pre-

diction quality of EPSs.

The PQPF skills and QPF accuracies of all EPSs at a

large threshold are worse than those at a low threshold

Fig. 6 Reliability diagrams of

PQPFs at two thresholds. The

bar graphs show the subsample

frequencies on the logarithm

scale. The horizontal dashed

line is the observed sample

frequency (i.e., climatology)

Stochastic Environmental Research and Risk Assessment (2021) 35:515–529 523

123



(Figs. 6, 7); thus, the PQPF skills and QPF accuracies are

better in the northern HB than in the southern HB. UKMO

EPS has the best PQPF skill in the northern HB due to its

better skill at a low threshold, while the PQPF skill of JMA

EPS is superior in the southern HB. In terms of QPF

accuracy, the ECMWF and JMA EPSs perform the best in

the southern and northern HB, respectively. The PQPF skill

and QPF accuracy of CMA EPS are the worst in both the

northern and southern HB.

The PQPF skill is significantly decreased in the moun-

tainous area (the yellow and green parts in Fig. 9). The

PQPF skill distribution is not completely consistent with

the precipitation distribution, which is because atmospheric

predictability varies with precipitation formation and type

(Qingyun et al. 2019). There are many factors affecting

precipitation formation and type, such as atmospheric cir-

culation, topography, and geographical location (including

lake and ocean effects) (Chen et al. 2018). For PQPF, the

forecast of precipitation caused by ocean effects is skillful.

However, the precipitation caused by the complex terrain is

still very difficult to forecast because the original resolution

of EPSs is not adequate (Kaufman et al. 2003).

For QPF, the ensemble mean process eliminates the

above skill, giving rise to a QPF accuracy distribution that

is similar to the precipitation distribution. In addition,

regardless of the amount of precipitation, the QPF accu-

racies are always low for mountainous areas.

Fig. 7 Discrimination diagrams of QPFs at two-thresholds

Fig. 8 The average daily precipitation at stations

Table 4 Mean verification metrics of EPSs in northern and southern HB

EPS Southern HB Northern HB

CRPSS 95% confidence intervals for CRPSS RMSE CRPSS 95% confidence intervals for CRPSS RMSE

ECMWF 0.42 0.37–0.47 10.20 0.45 0.41–0.48 6.88

UKMO 0.37 0.31–0.43 10.86 0.47 0.44–0.51 6.81

NCEP 0.30 0.24–0.37 11.18 0.32 0.27–0.36 7.25

CMA 0.21 0.14–0.29 12.85 0.28 0.24–0.33 8.87

JMA 0.45 0.40–0.49 10.51 0.44 0.40–0.47 6.59

Fig. 9 Spatial distributions of PQPF CRPSSs in the HB

Fig. 10 Distributions of QPF RMSEs in the HB
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3.2 The performances of EPSs for different lead
times

The longer lead time is more favourable for flood control

operation in the future, but it is disadvantageous to forecast

accuracy. Hence, it is necessary to analyse the forecast

quality of EPSs for different lead times. In this study, we

select four lead times of 24 h, 48 h, 72 h and 168 h, and

verify the accumulative precipitation forecast for each lead

time.

Figure 11 demonstrates the PQPF CRPSSs of EPSs for

different lead times, and the 95% confidence intervals are

also provided. As the lead time increases, the PQPF skill

consistently decreases, and the confidence interval

becomes wider. The PQPF skill is poor for the lead time of

168 h; as a result, the forecast for a lead time of 168 h has

no practical value. As the lead time increases, the PQPF

skill advantage of ECMWF EPS gradually appears. The

PQPF of CMA EPS has poor performances for all lead

times.

Figure 12 shows the QPF accuracies for different lead

times. With increasing lead time, the accuracies of QPFs

decrease. For a lead time of 24 h, the QPF accuracy of

ECMWF EPS ranks second best following JMA EPS. The

QPF accuracy of CMA EPS lags behind the others for all

lead times.

In particular, ECMWF EPS shows a good PQPF skill

and QPF accuracy for a long lead time because a long lead

time requires more ensemble members to obtain the max-

imum forecast skill (Clark et al. 2011; Richardson 2001).

CMA EPS has the least ensemble members among the five

EPSs, and it may be a reason for its poor performance.

Thus, for long lead times, an important consideration for

the selection of EPSs is the number of ensemble members.

3.3 The performance of the multimodel
superensemble

The multimodel superensemble is obtained from all

members of five EPSs by BMA. For the members of an

individual EPS, their weights are constrained to be equal

because they are derived from the same model (Robert

2018; Xiang et al. 2014). This section focuses on the flood

control support capacity of a multimodel superensemble.

Since the flood season in the HB lasts from June to

September each year, July 31 to August 31 is selected as

the verification period for the multimodel superensemble,

and the performances of five individual EPSs during the

same period are also verified for comparison.

(1) The length of the BMA training period

The BMA model is reconstructed each day for

each station throughout the verification period. The

training period is a sliding window, and the param-

eters are calibrated using the training period of

n previous days. In this study, following the refer-

ences (Bo et al. 2017; Wu et al. 2014), 35 days,

4 days, 45 days, 50 days, 55 days and 60 days are

selected as the training sample periods to train the

model. The means of CRPSS and RMSE are taken

for all stations and for each day in the verification

period.

Table 5 lists the results of the training sample

periods for a lead time of 24 h. The multimodel

superensemble shows the lowest RMSE for 35 days,

Fig. 11 PQPF CRPSSs of EPSs for different lead times

Fig. 12 QPF RMSEs of EPSs for different lead times

Table 5 The mean verification metrics of the multimodel

superensemble by different training sample periods for a lead time of

24 h

Training sample period (days) RMSE CRPSS

35 13.65 0.43

40 14.24 0.42

45 14.24 0.40

50 14.16 0.44

55 14.20 0.45

60 14.19 0.45
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and the discrepancy of CRPSS between 35 days and

other training sample periods is quite small. Thus,

35 days is chosen as the length of the training period

for the lead time of 24 h. Table 6 lists the training

period lengths for different lead times.

(2) The performance of the multimodel superensemble

The multimodel superensemble is expected to

show an improved performance compared with all

individual EPSs. Figure 13 illustrates the PQPF

skills of five EPSs and the multimodel superensem-

ble for different lead times from July 31 to August

31, as well as the 95% confidence intervals. Only at

lead times of 24 h and 48 h do EPSs and multimodel

superensembles have better PQPF skills than clima-

tology during the flood season. The multimodel

superensemble has a slight improvement effect on

individual EPSs for all lead times, except 168 h,

which manifests a slightly higher CRPSS score and

the narrowest confidence interval. However, for the

lead time of 168 h, the PQPF skill of the multimodel

superensemble ranks second after ECMWF EPS. It

seems that 60 days does not meet the training

requirement of 168 h.

At the same time, the QPF accuracy of the

multimodel superensemble is expected to be

improved compared with that from the five individ-

ual EPSs. Figure 14 plots the QPF accuracies of

EPSs and multimodel superensembles for different

lead times. Contrary to the result of PQPFs, for all

lead times except for 168 h, the multimodel

superensemble has a slightly improved QPF accu-

racy compared with individual EPSs, while the

multimodel superensemble exhibits a remarkable

performance with the highest QPF accuracy for the

lead time of 168 h.

Compared with meteorological elements, such as

air temperature and wind speed, the statistical

postprocessing of precipitation is more difficult to

conduct. The reasons are listed as follows by

Scheuerer and Hamill (2015): (1) The skewed

distribution of precipitation discontinuity is difficult

to fit. (2) The difficulty of forecasting increases with

increasing precipitation threshold. (3) The shortage

of samples for heavy rainfall and rainstorms is also a

major problem.

The results of research on the value of multimodel

superensembles have been mixed. Hamill (2012)

stated that PQPF based on multimodel superensem-

bles has better reliability and prediction skills than

PQPF based on individual EPSs. Peter Vogel et al.

(2017) found that the BMA was not very good at

improving the skill, and the BMA was not much

more valuable than climatology for long lead times.

This finding is consistent with the results of this

paper. Renate Hagedorn et al. (2012) investigated the

possibility of combining all available EPSs into a

multimodel superensemble and found that ECMWF

EPS was a major contributor to the performance

improvement, and the multimodel superensemble did

not improve much more than ECMWF, which may

explain the CRPSS results of 168 h in this paper.

Saedi et al. (2020) proved that BMA has a great

influence on improving probabilistic prediction, but

it is not very effective in deterministic predictions. Ji

et al. (2019) further proved that the deterministic

prediction constructed by the BMA is accurate for

low precipitation thresholds but has limited accuracy

for medium and high precipitation thresholds. It is

evident that the QPF accuracy for a short lead time is

in good agreement with the above two results.

Table 6 The lengths of the BMA training period for different lead

times

Lead time (h) 24 48 72 168

Training period (days) 35 55 55 60

Fig. 13 PQPF CRPSSs of EPSs and multi-model super-ensemble for

different lead times

Fig. 14 QPF RMSEs of EPSs and multimodel superensemble for

different lead times
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The improvement in the forecast reliability of the

multimodel superensemble mainly comes from the

potential bias cancelation in different members

(Duan et al. 2012). If the forecasting skills of the

EPSs are markedly different from each other, then

the deterministic prediction through postprocessing

is better than the best EPS (Winter and Nychka

2010). If the QPFs released by different EPSs are

highly correlated or the best EPS performs signifi-

cantly better than others, then the QPF through

postprocessing cannot always be better than the best

individual EPS (Jeong and Kim 2009; Renate

Hagedorn et al. 2012; Winter and Nychka 2010).

Therefore, for the lead time of 168 h, EPSs have

obviously different QPF accuracies (Fig. 12), elicit-

ing a good performance of BMA for improving QPF

accuracy.

4 Summary

This study provided a comprehensive verification of QPFs

and PQPFs from five operational global EPSs in the HB

from April to December 2015. Focusing on the lead time of

24 h, the forecast qualities are evaluated in terms of overall

performance, different thresholds and spatial adaptability.

The forecast qualities for different lead times are later

assessed. In addition, for different lead times, BMA was

used to integrate all members of the five EPSs, and the

overall performance of the multimodel superensemble in

the main flood season of the HB was verified. The main

conclusions are listed as follows:

(1) As the ECMWF EPS has the largest ensemble

members, the ECMWF EPS has the best forecast

quality both in QPFs and PQPFs for longer lead

times. CMA EPS has the least ensemble members,

which may account for its poor forecast quality for

all lead times.

(2) EPS has a reference value for drought warnings in

the HB. The PQPF of the ECMWF EPS has a

potential ability for the prediction of intense

precipitation.

(3) For long lead times, a large number of ensemble

members is valuable for high forecast quality, so

computing resources should be allocated to increase

the ensemble members. According to the spatial

distribution of EPS performances, for a lead time of

24 h, resources should be focused on the develop-

ment of higher resolution, which is conducive to

increasing the forecasting skills for various types of

precipitation.

(4) Owing to the climate transitional zone over the HB,

EPS forecast quality is better in the northern HB than

in the southern HB. Furthermore, the PQPF skill is

also affected by the precipitation type. PQPF is

skillful for forecasting the precipitation caused by the

ocean effect but is poor for predicting the precipi-

tation affected by mountain topography. The QPF

accuracy is also influenced by the terrain, causing it

to decrease in mountainous areas.

(5) The multimodel superensemble has slightly

improved the PQPF skill for short lead times, and

for long lead times, it is not much more valuable than

climatology. When the QPF accuracy of each

individual EPS is significantly different, the multi-

model superensemble will obtain an improved QPF

accuracy.

The results of this study are only applicable to a specific

river basin, but the analytical method for the adaptability of

ensemble forecasting over a river basin is generally

applicable. This result not only provides a detailed feed-

back report for the precipitation ensemble forecast model

but also provides information for the subsequent watershed

flood forecast based on precipitation ensemble forecasts.

Limited by the synchronization of the verification period of

prediction data sets and observed data, only a portion of the

2015 period is used in this study. Therefore, future work

should include a longer verification period to derive a more

general conclusion. In future studies, many other postpro-

cessing methods should be tested and compared (Ami-

nyavari and Saghafian 2019; Huo et al. 2019; Shin et al.

2019). Furthermore, gridded datasets may be helpful to

further improve the accuracy of the assessment of EPS.
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