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Abstract
Constructing an accurate and dependable displacement forecasting model is a prerequisite for realizing effective early

warning systems of landslide disasters. To overcome the drawbacks of previous displacement prediction models for

landslides with step-like deformation characteristics, such as the low prediction accuracy of the mutational displacements

and the unclear reliability of the prediction results, we propose a novel hybrid interval forecasting model. This model

consists of four parts. First, clustering by fast search and find of density peaks is implemented to distinguish the defor-

mation states of the landslide. Second, the ensemble classifier based on the random forest algorithm is established to

identify the deformation states. Third, based on the wild bootstrap, kernel extreme learning machine, and back propagation

neural network approaches, the ensemble regressors under different deformation states are built. Finally, by combining the

ensemble classifier and ensemble regressors, an interval prediction framework is constructed to realize the dynamic interval

prediction of landslide displacement. Taking the Baishuihe landslide as an example, the datasets of three monitoring sites

from June 2006 to December 2016 are used to verify the accuracy and reliability of the proposed model. The results show

that the proposed model can effectively improve the prediction accuracy of mutational displacements, with the root mean

square errors of 28.19 mm, 14.21 mm, and 34.44 mm and the R-squares of 0.9827, 0.9955, and 0.9903, respectively.

Moreover, the reliability of the prediction results obtained using this model can be expressed in the flexible prediction

intervals (PIs) under different deformation states. The coverage width-based criteria of PIs at 90% nominal confidence are

140.38 mm, 86.61 mm, and 173.68 mm, respectively. In conclusion, the proposed model provides a good basis for

developing early warning systems for landslides with step-like deformation characteristics.
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1 Introduction

Landslides are one of the most common and significant

geological hazards in nature, resulting in thousands of

casualties and billions of dollars in losses every year

worldwide (Gorsevski et al. 2003). Due to its unique

geological, climatical, and environmental conditions, the

Three Gorges Reservoir (TGR) area has always been a

high-incidence area for landslide hazards (Tang et al.

2019). Since the impoundment of the TGR in 2003, under

the coupled impact of continuous heavy precipitation and

periodic reservoir water level variations, the cumulative

displacements of some reservoir colluvial landslides in this

area have shown similar periodic and extreme changes

every year (Du et al. 2013; Lian et al. 2014a, b). These

extreme changes in monitored displacements of landslides

pose severe threats to the lives and property of residents.

Therefore, in recent years, continuous efforts have been

devoted to developing monitoring technologies and theo-

retical methods to realize the accurate and reliable early

warning of landslides (Li et al. 2014; Intrieri et al. 2019;

Tang et al. 2019), especially for the reservoir colluvial

landslides whose deformations exhibit significant step-like

characteristics (Miao et al. 2018; Liao et al. 2020).

To date, most prediction models for landslides with

step-like deformation characteristics have been built based

on the theory of time series analysis (Lian et al. 2014a;

Zhou et al. 2016; Wen et al. 2017). In these models, various

signal decomposition methods are first used to decompose

the cumulative displacement into different components: the

trend, periodic, and random terms. Subsequently, some

novel mathematical statistics or machine learning models

have been applied as prediction models. The well-trained

prediction models of them are used to predict each dis-

placement component. Then, the cumulative displacement

is predicted by superimposing the prediction result of each

component. So far, with the continuous development of

signal decomposition technologies and machine learning

models, the performance of this kind of model has been

gradually and significantly improved (Lian et al. 2013; Ren

et al. 2015; Cai et al. 2016; Huang et al. 2017; Zhu et al.

2018; Zou et al. 2020).

Nevertheless, the prediction models mentioned above

are all point prediction models, and it is complicated to

express the reliability of their prediction results quantita-

tively. Therefore, to more accurately quantify the reliability

of the prediction results and provide more practical infor-

mation for the risk decision, some novel prediction models,

namely, interval prediction models, have been proposed

recently. For example, Lian et al. (2016) proposed an

interval prediction model of landslide displacement based

on a novel neural network model with high prediction

accuracy, strong generalization ability, and good robust-

ness. Ma et al. (2018) used a hybrid approach based on the

bootstrap, extreme learning machine (ELM), and artificial

neural network (ANN) approaches to quantify the associ-

ated uncertainties in landslide displacement forecasting.

Wang et al. (2019) proposed a hybrid model based on

double exponential smoothing and lower and upper bound

estimation to construct the prediction intervals (PIs) of

landslide displacement.

However, for landslides with step-like deformation

characteristics, the variations in their deformation rates in

different periods significantly differ. If the interval pre-

diction models mentioned above are directly applied to

predict the displacement interval of these landslides, the

data corresponding to a period of a sharp increase in

landslide displacement might be incorrectly marked as

outlier data in the training process (Lian et al. 2018). This

issue is bound to lead to the underfitting of prediction

results, meaning that the prediction results of these sharply

increasing displacement points would always significantly

underestimate their actual values. Thus, it is essential to

consider the influence of the dynamic switching among

different deformation states on the performance of interval

prediction models for landslides with step-like deformation

characteristics.

In this paper, based on the three-stage evolution model

of progressive landslides, the deformation responses of

landslides with step-like deformation characteristics under

the coupling impacts of complex external inducing factors

were analyzed first. Then, according to the analysis results,

the dynamic switching between two different deformation

states observed in the evolution of landslides with step-like

deformation characteristics was defined. Finally, a novel

hybrid interval prediction model considering the dynamic

switching of deformation states was proposed. This pro-

posed model included the clustering by fast search and find

of density peaks (CFSFDP), engineering geology analogy

(EGA), adaptive synthetic sampling (ADASYN), random

forest (RF), wild bootstrap (WB), kernel extreme learning

machine (KELM), and back-propagation neural network

(BPNN) approaches. The Baishuihe landslide, a typical

reservoir colluvial landslide with step-like deformation

characteristics in the TGR area, was taken as a case study

to explore the effectiveness, accuracy, and reliability of the

proposed model. Two core issues about improving the

performance of this model were discussed in detail within

the performance comparison of models. The obtained

results can be useful for the displacement prediction of

similar reservoir colluvial landslides with step-like defor-

mation characteristics in the TGR area.
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2 Theoretical basis, methodology,
and evaluation index

2.1 Evolution of landslides with step-like
deformation characteristics

Many rock and soil creep tests and monitoring data show

that under the influence of gravity, the deformation evo-

lution of progressive landslides can be divided into three

stages (Fig. 1a): the primary (or decelerating or transient)

creep stage, secondary (or steady-state) creep stage, and

tertiary (or accelerating) creep stage (Xu et al. 2015;

Intrieri et al. 2019). However, in nature, landslides are

disturbed by various external factors, thus resulting in some

inevitable fluctuations or step-like growths of the dis-

placement–time monitoring curves. Therefore, for actual

progressive landslides, their displacement–time curves

follow the three-stage creep evolution law on the whole but

exhibit unique variation characteristics locally (Xu et al.

2015). For example, due to the coupling impacts of the

continuous evolution of internal geological conditions and

the dynamic change in external factors (mainly periodic

heavy precipitation), the Xintan landslide, a typical ancient

colluvial landslide in the TGR area, underwent the whole

evolution of progressive landslides from November 1977 to

June 1985 (He et al. 2010). As shown in Fig. 1b, the dis-

placements of the landslide underwent several sharp

increases to different extents from its secondary creep stage

to ultimate failure. Similar variations in displacements

have been reported in some other reservoir colluvial

landslides in the TGR area, such as the Bazimen landslide

(Zhou et al. 2016), Shuping landslide (Wang et al. 2020),

and Baijiabao landslide (Yao et al. 2019). For the conve-

nience of expression, this type of landslide is usually

defined as a step-like landslide (Miao et al. 2018), in which

the step-like shape refers to the step-like increase in the

landslide displacements rather than the step-like shape of

the landslide topography.

For step-like landslides, without violating the three-

stage evolution law, two alternating deformation states

(i.e., stable and mutation states) caused by the strong

influence of external periodic factors are observed in the

secondary and tertiary stages. The stable state is defined as

the deformation state in which the increase in displacement

is relatively stable. The mutation state is defined as the

deformation state in which the displacement increases

sharply. Moreover, it should be emphasized that these two

states cannot alternate forever. Under the action of

Fig. 1 a Three-stage evolution

law of progressive landslides;

b displacement monitoring

curves and monthly

precipitation of the Xintan

landslide
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complex external periodic factors, when the landslide

finally enters the tertiary creep stage and is on the verge of

instability, the landslide must be in the mutation state.

Thus, considering the characteristics of the machine

learning methods, how to correctly understand the dynamic

switching law between these two deformation states is the

significant precondition of building the displacement pre-

diction model for step-like landslides.

2.2 Displacement interval prediction model
considering the dynamic switching
of deformation states

2.2.1 Division of landslide deformation states

The division of the deformation states for step-like land-

slides is essentially a clustering process. In this process, the

characteristic parameters of landslide deformation, such as

the cumulative displacement increments, tangent angles,

velocities, and accelerations, are clustered into two dif-

ferent classes that correspond to the different deformation

states of step-like landslides. The K-means algorithm is the

most widely used approach in the division of landslide

deformation states. However, due to inherent defects, such

as the strong dependence on the initial center value, ease of

falling into a local optimum, and reliance on experience to

determine the number of optimal classes, the clustering

effect of the K-means algorithm is sometimes limited.

The CFSFDP algorithm is a novel density-based clus-

tering algorithm (Rodriguez and Laio 2014). This algo-

rithm can identify the cluster centers of samples by finding

the density peaks, which makes it possible to cluster the

high-dimensional datasets with arbitrary shapes effectively.

Only one parameter, namely, the truncation distance dc, is

needed in the clustering process, and the clustering results

are insensitive to the parameter setting. Therefore, the

CFSFDP algorithm was implemented in this study to

realize the division of the deformation states for the step-

like landslide.

2.2.2 Identification of landslide deformation states

Due to the unique characteristics of their evolutions, step-

like landslides usually correspond to significant potential

instability risks. Thus, identifying their deformation states

is critical to prevent and reduce the landslide disaster risks.

The identification of landslide deformation states is

essentially a typical classification process. In this process,

the corresponding classification model is first established

by mining the nonlinear relationship between various

external factors and different deformation states. After that,

the established model is used to accurately identify the

deformation state of landslides during the dynamic

switching process of deformation states.

The RF algorithm is an ensemble learning method that

implements prediction by training a large number of clas-

sification and regression trees (Breiman 2001). Compared

with traditional classification algorithms, such as the sup-

port vector machine (SVM), extreme learning machine

(ELM), and decision tree algorithms, this algorithm intro-

duces two random sampling processes in the selection of

training samples and input factors (Zhou et al. 2019). These

two processes effectively avoid the occurrence of overfit-

ting. Thus, the RF algorithm clearly meets the basic

requirements of landslide deformation state identification.

The uneven distribution of data is a widespread problem

in classification research. In the deformation parameters of

step-like landslides, the ratio of stable state samples to

mutation state samples is higher than 3:1. Unfortunately,

most of the traditional classification algorithms, including

the RF algorithm, assume that the distribution of data is

balanced. When the proportion of the majority class sam-

ples is too high, it inevitably leads to the neglect of the

minority class samples. In some extreme cases, the

minority class samples are ignored because they are

misidentified as outliers of the majority class samples. To

accurately identify the deformation state of step-like

landslides, the accuracy and reliability of the selected

algorithm should be considered, and the imbalance prob-

lem of training data should be addressed effectively.

The ADASYN approach is a novel data synthesis

method based on the classical synthetic minority over-

sampling technique (SMOTE) (He et al. 2008). This

approach can adaptively synthesize the appropriate number

of minority class samples according to the distribution

characteristics of the training samples. However, we cannot

blindly and directly use this type of resampling technique

to address the practical imbalance problem that needs to be

solved. Therefore, to obtain more useful information with

definite physical meaning and reduce the risk of changing

the data authenticity, we proposed a modified compre-

hensive method based on the engineering geology analogy

(EGA) method and the ADASYN approach. The specific

steps of this method were as follows:

1. The similarity between the research object and other

actual step-like landslides in terms of the external

factors, geological conditions, deformation evolution

characteristics, and deformation responses were first

analyzed by applying the EGA method. One or more

cases that were most similar to the research object were

selected from these step-like landslides. Afterward,

supplementary samples of the mutation state were

obtained from these cases.
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2. If the number of these supplementary samples was

insufficient to make the distribution of the training

samples completely balanced, a certain number of

mutation state samples were appropriately synthesized

by applying the ADASYN method based on the

mutation state samples of the research object and that

of analogous landslide examples.

If there are several monitoring sites on the research

object, the supplement samples of the mutation state can

also be selected according to the similarity of the dis-

placement versus time curves between the different moni-

toring sites. In this study, the monitoring sites ZG93,

ZG118, and XD01 are all located in the warning zone of

the Baishuihe landslide. This means that these three mon-

itoring sites have similar geological and geomorphological

conditions, deformation influencing factors, and historical

deformation characteristics. Thus, the mutation state sam-

ples of monitoring sites ZG93 and ZG118 can be used as

supplementary samples of monitoring site XD01, and vice

versa. On this basis, an RF-based ensemble classifier was

established to realize the accurate identification of the

deformation states.

2.2.3 Interval prediction of landslide displacements
under different deformation states

As described in Sect. 2.1, whether the deformation state

changes abruptly is not the essential condition for the

catastrophe of step-like landslides. If we want to achieve

the accurate early warning of step-like landslides, it is

imperative to predict the displacement of these landslides

accurately. However, due to the coupling effects of various

uncertainties in landslide geological models, prediction

models, input data, and other factors (Wu et al. 2014), any

prediction of landslides cannot be wholly accurate and

dependable. For the traditional point prediction models,

only the displacement is used as the prediction object. This

seriously limits the quantitative characterization of the

reliability of its own final prediction results. To address this

issue properly, interval prediction models were recently

proposed to evaluate the epistemic uncertainties associated

with landslide displacement prediction (Ma et al. 2018).

Thus, to improve the credibility and practicality of the

prediction results, it is indispensable to introduce the idea

of interval prediction into the regression of landslide

displacements.

The WB-KELM-BPNN model is an integrated interval

forecasting model based on the KELM model (Huang et al.

2011) and was fully adopted in the interval predictions of

landslide displacement under different deformation states

in this study. The calculation process of the model is shown

in Fig. 2. Khosravi et al. (2011) introduced the construction

of the bootstrap-based method similar to the WB-KELM-

BPNN model, and more information about the bootstrap-

based method can be found in their study. For the conve-

nience of description and comparison, in the latter part of

the study, the proposed hybrid model is called the modified

model, while the WB-KELM-BPNN model is called the

unmodified model.

2.2.4 Framework of the hybrid interval prediction model
for landslide displacement

The primary process of the proposed hybrid model is

shown in Fig. 3. It mainly includes the following four

steps: (1) Division of deformation states; (2) Identification

of deformation states; (3) Construction of the interval

prediction model for landslide displacements under dif-

ferent deformation states; and (4) Landslide displacement

interval prediction considering the dynamic switching of

deformation states. The specific calculation process is as

follows:

1. Division of deformation states

1. The monthly increment of landslide displacement

and its corresponding tangential angle were

obtained as follows:

Dti ¼ ti � ti�1; i ¼ 1; 2; . . .;N ð1Þ

u Dtið Þ ¼ actan
Dti
DT

� �
� p
180

ð2Þ

where ti is the cumulative landslide displacement,

Dti is the monthly increment of ti, u Dtið Þ is the

tangential angle of Dti, and DT is the sampling

period of landslide displacement. In this paper, we

set DT ¼ 30 days.

2. The CFSFDP algorithm was used to cluster the Dti
and u Dtið Þ comprehensively. According to clus-

tering results, the landslide deformation state Ci

was divided into the stable state CI and the

mutation state CII.

3. A new dataset DC was constructed for classifica-

tion, and DC ¼ DC
train [ DC

test ¼ Xi; cið Þf gNtrainþtest

i¼1 .

Wherein Xi is the input factors, and Xif gNtrainþNtest

i¼1 ¼
Xtrain [ Xtest ¼ xi1; xi2;½ . . .; xiM�T 2 RM : ci is the

class label of different landslide deformation

states, and cif gNtrainþNtest

i¼1 ¼ ctrain [ ctest. ci can be

expressed as follows:

ci ¼
1 Ci 2 CI

�1 Ci 2 CII

�
ð3Þ
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2. Identification of deformation states

1. DC
train was divided into two sub-datasets according

to the following equations:

DC
train I ¼ Xi; cið ÞjXi 2 Xtrain;Ci 2 CIf gNtrain I

i¼1 ð4Þ

DC
train II ¼ Xi; cið ÞjXi 2 Xtrain;Ci 2 CIIf gNtrain II

i¼1 ð5Þ

where DC
train I is the training sub-datasets for the

classification of the stable state, and DC
train II is the

training sub-datasets for the classification of the

mutation state.

2. The hybrid model composed of EGA and ADA-

SYN was employed to obtain supplement samples

of DC
train I. After that, the new mutation state sub-

dataset DC�
train II was built to balance the sample

distribution of training data.

3. Based on DC
train I and DC�

train II, an ensemble classifier

composed of many classification and regression

trees by using the RF algorithm was built.

4. Using the ensemble classifier to predict ci, the

predicted results were as follows:

ĉif gNtrainþNtest

i¼1 ¼ ĉtrain [ ĉtest ð6Þ

5. According to the classification prediction results

and Eq. (3), the identification results were obtained

as follows:

Ĉi

� �NtrainþNtest

i¼1
¼ Ĉtrain [ Ĉtest ð7Þ

3. Construction of the interval prediction model for

landslide displacement under different deformation

states

1. A new dataset DR was constructed for regression,

and DR ¼ DR
train [ DR

test ¼ Xi; tið Þf gNtrainþtest

i¼1 .

2. According to the identification results Ĉtrain, D
R
train

was divided into two sub-datasets according to the

following equations:

DR
train I ¼ Xi; tið ÞjXi 2 Xtrain; Ĉi 2 CI

� �Ntrain I

i¼1
ð8Þ

DR
train II ¼ Xi; tið ÞjXi 2 Xtrain; Ĉi 2 CII

� �Ntrain II

i¼1
ð9Þ

where DR
train I is the training sub-datasets for the

regression of the stable state, and DR
train II is the

training sub-datasets for the regression of the

mutation state.

3. By using the WB method, random resampling with

replacement was conducted on DR
train I and DR

train II

separately. After B times of resampling, B boot-

strap sub-datasets of stable deformation state

DI
1;D

I
2; . . .;D

I
B and B bootstrap sub-datasets of

mutation deformation state DII
1 ;D

II
2 ; . . .;D

II
B were

generated.

4. Based on DR
train I and DR

train II, two different KELM

models were established separately. Then, the Grey

Wolf Optimization (GWO) algorithm proposed by

Mirjalili et al. (2014) was used to optimize the

hyperparameters of KELM models.

5. According to the sub-datasets and the optimized

hyperparameters, two sets of different KELM-

BPNN integration models were trained separately.

Each integration model consists of B KELM

models and a BPNN model, wherein the BPNN

models were respectively trained according to the

squared residuals (i.e., r2train I and r2train II) of the

Fig. 2 Flowchart of the WB-KELM-BPNN model

1094 Stochastic Environmental Research and Risk Assessment (2021) 35:1089–1112

123



predicted means obtained from two sets of B

KELM models.

4. Landslide displacement interval prediction considering

the dynamic switching of deformation states

1. The integration models were used to forecast the

landslide displacements. The predicted results were

expressed as ŷIl xið Þ
� �B

l¼1
and ŷIIl xið Þ

� �B

l¼1
, and

ŷ xið Þ ¼ ŷIl xið Þ
� �B

l¼1
[ ŷIIl xið Þ
� �B

l¼1
.

2. The predicted landslide displacements were

assumed to be unbiased. The mean values of

predicted landslide displacements and their

variances (as known as the variance of the system

error) were obtained according to the following

equations:

ŷ xið Þ ¼ ŷI xið Þ [ ŷII xið Þ ¼ 1

B

XB
l¼1

ŷl xið Þ ð10Þ

r2ŷ xið Þ ¼ r2ŷI xið Þ [ r2ŷII xið Þ

¼ 1

B� 1

X
l¼1

ŷl xið Þ � ŷ xið Þ½ �2 ð11Þ

Fig. 3 Flowchart of the proposed interval prediction hybrid model
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where ŷI xið Þ is the mean value of predicted land-

slide displacement under the stable deformation

state, ŷII xið Þ is the mean value of predicted land-

slide displacement under the mutation deformation

state, r2ŷI xið Þ is the variance corresponding to ŷI xið Þ,
and r2ŷII xið Þ is the variance corresponding to ŷII xið Þ.

3. For constructing the PI of the landslide displace-

ment under different deformation states, after

determining the variance of systematic error, the

variances of random error (i.e., r2ŷI xið Þ and r2ŷII xið Þ)
also need to be estimated according to the follow-

ing equations:

r2e xið Þ ¼ r2eI xið Þ [ r2eII xið Þ � E y xið Þ � ŷ xið Þð Þ2
n o

� r2~y xið Þ
ð12Þ

For realizing the prediction of r2eI xið Þ and r2eII xið Þ, it
is necessary to construct two new sub-datasets (i.e.,

Dr2
I
and Dr2

II
) of corresponding squared residuals r2i I

and r2i II. Then, the trained BPNN models in two

different KELM-BPNN integration models were

respectively used to achieve the prediction of

random error variances. The r2i I, r
2
i II, Dr2

I
and Dr2

II

are defined as follows:

r2iI ¼ r2trainI [ r2testI ¼ max tiI � ŷIð Þ2�r2ŷI ; 0
h i

ð13Þ

r2iII ¼ r2trainII [ r2testII ¼ max tiII � ŷIIð Þ2�r2ŷII ; 0
h i

ð14Þ

Dr2
I
¼ Dtrain

r2
I

[ Dtest
r2
I

¼ XiI; r
2
iI

� �� �NtrainþNtest

i¼1
ð15Þ

Dr2
II
¼ Dtrain

r2
II

[ Dtest
r2
II

¼ XiII; r
2
iII

� �� �NtrainþNtest

i¼1
ð16Þ

where r2iI is the squared residual set of the

stable state, r2iII is the square residual set of the

mutation state, Dr2
I
is the regression sub-dataset for

the BPNN model under the stable state, and Dr2
II
is

the regression sub-dataset for the BPNN model

under the mutation state. The r2trainI, r
2
trainI, D

train
r2
I

and Dtrain
r2
II

are generated during the training process

of KELM-BPNN integration models.

4. The calculation results obtained in step (3) and step (4)

were then reassembled according to the sequence of

monitoring time. Then, the mean values of landslide

displacement prediction were taken as the results of

point estimation. Afterward, the interval estimation

results of landslide displacement were constructed by:

Iat xið Þ ¼ Lat xið Þ;Ua
t xið Þ

	 

ð17Þ

r2t xið Þ ¼ r2ŷ xið Þ þ r2e xið Þ ð18Þ

Lat xið Þ ¼ ŷ xið Þ � z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffi
r2t xið Þ

q
ð19Þ

Ua
t xið Þ ¼ ŷ xið Þ þ z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffi
r2t xið Þ

q
ð20Þ

where Iat xið Þ is the displacement PI under the confi-

dence level of 1� að Þ � 100%, Lat xið Þ is the lower

limit of the PI Iat xið Þ, Ua
t xið Þ is the upper limit of the PI

Iat xið Þ, z1�a=2 is the quantile of the standard normal

distribution, and r2t xið Þ is the variance of the total error.

2.3 Performance evaluation index
of the prediction result

2.3.1 Clustering results of deformation state

The Silhouette Coefficient (SC) was used for evaluating the

clustering effect of the deformation states. Its specific

definition is as follows:

s ið Þ ¼ b ið Þ � a ið Þ
maxfa ið Þ; b ið Þg ð21Þ

SC ¼ 1

N

XN
i¼1

s ið Þ ð22Þ

where s ið Þ is the Silhouette Coefficient of the sample i, a ið Þ
is the average distance from the sample i to other samples

from the same cluster, b ið Þ is the average distance from the

sample i to samples of other different clusters, and SC is

the mean Silhouette Coefficient for all samples. The range

of SC is [- 1,1]. The closer the SC is to 1, and the better

the clustering effect is.

2.3.2 Classification results of deformation state

Four different evaluation indexes of unbalanced data

classification effects that are proposed based on the con-

fusion matrix (Table 1) were used for the evaluating of the

deformation state identification effect.

1. Overall accuracy (OA), as shown in Eq. (23), is the

proportion of the number of samples with correct

classification to the total number of samples.

OA ¼ TPþ TN

TPþ FPþ FN þ TN
ð23Þ

2. Sensitivity, as shown in Eq. (24), is the proportion of

majority class samples with correct classification to the

total number of majority class samples. It measures the

classifier’s recognition ability for the majority class.
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Sensitivity ¼ TP

TPþ FN
ð24Þ

3. Specificity, as shown in Eq. (25), is the proportion of

minority class samples with correct classification to the

total number of minority class samples. It measures the

classifier’s recognition ability for the minority class.

Specificity ¼ TN

TN þ FP
ð25Þ

4. Geometric mean (G_mean), as shown in Eq. (26),

refers to the average ability of the classifier to identify

the majority class and the minority class correctly.

G�mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity � Specificity

p
ð26Þ

2.3.3 Regression results of landslide displacement

Root mean square error (RMSE) and R-square (R2) were

used to evaluate the point prediction effects of models. The

prediction interval coverage probability (PICP), mean

prediction interval width (MPIW), and coverage width-

based criterion (CWC) were applied to evaluate the interval

prediction effects of models.

1. PICP, as shown in Eqs. (27) and (28), is the probability

that the actual observation falls within the upper and

lower bounds of the PI. It can be used to measure the

reliability of the PI.

PICP ¼ 1

Ntest

XNtest

i¼1

ai ð27Þ

ai ¼
1 ti 2 Lat Xið Þ; Ua

t Xið Þ
	 


0 ti 62 Lat Xið Þ; Ua
t Xið Þ

	 

�

ð28Þ

where Ntest is the number of testing samples and ai is a

Boolean variable.

2. MPIW, as shown in Eq. (29), is the average width

between the upper and lower bounds of the PI under

the significance level a. It can be used to measure the

clarity of the prediction results to avoid the PI being

too full due to the blind pursuit of reliability.

MPIW ¼ 1

Ntest

XNtest

i¼1

Ua
t Xið Þ � Lat Xið Þ

	 

: ð29Þ

3. CWC, as shown in Eqs. (30) and (31), is a compre-

hensive index for evaluating the quality of PIs. It can

be used to quantify the balance between the reliability

and clarity of prediction results.

CWC ¼ MPIW 1þ c � PICP � e�g PICP�lð Þ
� 


ð30Þ

c ¼ 0; PICP� l
1; PICP\l

�
ð31Þ

where c is a Boolean variable, g is a penalty param-

eter, and l is a constant equal to the confidence level

1� að Þ � 100%. In this study, we set g ¼ 50.

3 Application to the Baishuihe landslide,
TGR area, China

3.1 Geological conditions, movement history,
and field monitoring

As shown in Fig. 4, the Baishuihe landslide is located on

the right bank of the Yangtze River. This landslide is a

large-scale ancient colluvial landslide with an average

slope inclination of 30�, an average thickness of 30 m, and

a volume of 1.26 9 107 m3. The main sliding direction is

20� NE. The north–south and east–west lengths are 600 m

and 700 m, respectively. The toe of the landslide extends to

the riverbed of the Yangtze River. The bedrock ridge

bounds the east and west sides of the landslide. The head of

the landslide is located at the lithologic boundary of the

rock and soil and has an elevation of 410 m (Miao et al.

2018).

The materials of the sliding masses are Quaternary

deposits, including silty clay and fragmented rubble with a

disorderly structure. The lithologies of the bedrock and

strata that crop out around the landslide are mainly Jurassic

siltstone, arenaceous shale, and quartz sandstone, with dip

directions of 15� and dip angles of 36� (Miao et al. 2014).

As shown in Fig. 5, there are two different sliding surfaces

observed in the landslide (Yang et al. 2019; Xue et al.

Table 1 Confusion matrix for

performance evaluation
Real classification results Predicted classification results

Majority class

(stable deformation state)

Minority class

(mutation deformation state)

Majority class

(stable deformation state)

TP FN

Minority class FP TN
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2020). The secondary sliding surface is the contact belt

between the Quaternary deposits and the cataclastic rock,

and its depth ranges from 12 to 25 m. The initial sliding

surface is the contact belt between the bottom of the cat-

aclastic rock and the underlying bedrock, and its depth

ranges from 18.9 to 34.1 m.

Since the displacement monitoring started in July 2003,

the Baishuihe landslide has undergone five large defor-

mations (Three Gorges University 2013; Yi et al. 2017;

Miao et al. 2017, 2018): (1) In June 2003, a transversal

tension crack with a strike of 120�, a width of 5–30 mm,

and a length of more than 300 m formed in the eastern part

of the landslide at elevations of 150–200 m; (2) In July

2004, the landslide exhibited obvious macroscopic defor-

mation, resulting in the connection of cracks in the eastern

boundary and the damage of twenty-one residential houses;

(3) From May 2006 to June 2006, some of the original

ground cracks extended to 50 mm wide, and a local col-

lapse occurred at the tail of the landslide; (4) From

February 2007 to July 2007, due to the water level of the

reservoir dropping from 154 to 145 m for the first time, the

landslide underwent the most intense deformation damage,

and its eastern and back boundaries became basically

connected; (5) From June 2015 to July 2015, due to the

frequent precipitation in the area, the landslide exhibited a

large macroscopic deformation next to that that occurred in

2007, and the local deformation rate of the landslide

reached nearly 14.60 mm/d. Overall, the deformation

mainly concentrated in the front and middle parts of the

landslide, and the whole landslide still exhibits retrogres-

sive deformation (Du et al. 2013; Miao et al. 2018).

According to the annual monitoring report of the

Baishuihe landslide (published at http://www.crensed.ac.

cn) issued by the National Field Observation and Research

Station of Landslides in the TGR area of the Yangtze

River, the long-term monitoring method of this landslide is

mainly surface displacement GPS monitoring. As shown in

Fig. 4b, 11 GPS displacement monitoring sites are arran-

ged on the landslide. In this paper, June 2006 to December

2016 was selected as the research period.

3.2 Deformation mechanism and response law
analysis of landslide deformation
under the coupling impact of external
factors

As shown in Fig. 6, the monthly cumulative displacement

monitoring curves had the characteristics of periodic step-

Fig. 4 a Location of the Baishuihe landslide, TGR area, China; b topographic map of the Baishuihe landslide; c overall view of the Baishuihe

landslide
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like changes every year, indicating that the landslide was

strongly influenced by external periodic factors during its

deformation evolution. To further explore which kind of

external factor has an apparent influence on the evolution

of the landslide, the variation in the monthly displacement

increment and the corresponding tangential angle were

analyzed compared with the daily reservoir water level and

precipitation data (Fig. 7).

1. Phase I (May 2005 to August 2006) In this phase, the

variation range of the reservoir water level was from

135 to 140 m. As shown in Figs. 4b and 5, although the

front part of the landslide had already been affected by

the periodic fluctuation in the reservoir water level, the

fluctuating range and immersion range of the reservoir

water level were still small. As a result, the monthly

displacement increment and tangent angle increased

synchronously with the increase in precipitation during

the flood period (from May to September every year).

In the non-flood period (from October to April every

year), the monthly displacement increment and tangent

angle tended to be stable with the gradual decrease in

precipitation.

2. Phase II (September 2006 to October 2008). In this

phase, the variation range of the reservoir water level

changed from 135 * 140 m to 145 * 155 m. This

variation resulted in the significant extension of the

fluctuating range and immersion range of the reservoir

water level (Figs. 4b, 5). After that, the stress field,

seepage field, and rock-soil structure characteristics of

the sliding mass significantly changed, which had an

immediate impact on the evolution of the landslide.

Thus, compared with the characteristics of Phase I, the

variation range of the monthly displacement increment

and tangential angle increased significantly, indicating

that the periodic fluctuation in the reservoir water level

in this stage had a more substantial influence on the

deformation process of the landslide than the contin-

uous heavy precipitation in the flood period. When the

reservoir water level dropped from 155 to 145 m for

the first time, along with the gradual increase in

precipitation during the flood period, the landslide

Fig. 5 Geological profile along sections II–II’ and III–III’

Fig. 6 Daily precipitation, daily reservoir water level and monthly cumulative landslide displacements
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displacement increment and tangential angle increased

sharply.

3. Phase III (November 2008 to December 2016) Com-

pared with those in Phase II, the fluctuating range and

immersion range of the reservoir water level increased

further in Phase III. However, when the reservoir water

level decreased from 175 to 145 m for the first time,

due to the substantial adjustment of the sliding mass

during the second phase, the variation range of the

monthly displacement increment and tangential angle

decreased, even under the strong influence of heavy

precipitation. After that, the landslide gradually

adapted to the scheduling mode of the reservoir water

level in this phase. The variation range of the monthly

displacement increment and tangential angle tended to

be stable. However, when the external factors changed

sharply again, the displacement of the landslide still

increased sharply. For instance, in June 2015, the

reservoir water level declined rapidly after a short

period of rapid rise. Thus, under the coupling effect of

continuous heavy precipitation and the rapid decline in

the reservoir water level, large-scale deformation of the

landslide occurred at the beginning of July 2015 (Yi

et al. 2017).

To summarize, the terrain in the front part of the land-

slide is gentle, and its sliding masses are composed of

gravelly silty clay with low permeability. Therefore, during

the rising and falling of the reservoir water level, it is

difficult to dissipate the porewater pressure inside the

sliding masses in time (Tang et al. 2019). This caused that

the deformation of the landslide mainly occurred in the

period of reservoir water level falling. More concretely,

when the reservoir water level increased rapidly in the non-

flood season, the rise of the groundwater level in the sliding

masses lagged the rise of the reservoir water level. It made

the submerged landslide subject to a hydrostatic pressure

which is orthogonal to the sliding surface, thus increasing

the anti-sliding force. In this situation, considering that the

precipitation in the non-flood season was relatively small,

the landslide remained stable, and its deformation rate was

constant.

However, when the reservoir water level dropped sig-

nificantly in the flood season, the decline in the ground-

water level lagged the decline in the reservoir water level.

Thus, the sliding masses were still affected by a hydrody-

namic pressure parallel to the sliding surface and pointing

out of the slope for a certain period after the decline in the

reservoir water level. This greatly increased the sliding

force of the landslide. Under these conditions, considering

the influence of the heavy precipitation in the flood season,

the stability of the landslide decreased sharply, and its

deformation rate increased intensely. Cleary, the coupling

impact of the continuous heavy precipitation in the flood

period and the periodic fluctuation of the reservoir water

level was the primary reason for the step-like increase in

displacement in the Baishuihe landslide from May to

September each year. Therefore, when selecting input

factors of machine learning models for the Baishuihe

landslide, the factors highly related to the local precipita-

tion and reservoir water level must be fully considered.

When the influence of external factors gradually weak-

ened from October of 1 year to April of the next year, the

deformation rate of the landslide significantly decreased

and became constant once again. Thus, based on the evo-

lution stage of progressive landslides described in

Sect. 2.1, the Baishuihe landslide deformation clearly was

Fig. 7 Monthly displacement increment, monthly displacement tangent angle, daily precipitation, and daily reservoir water level
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still transforming from secondary creep to tertiary creep in

December 2016. Moreover, the landslide had undergone

some adjustments during its evolution to release the shear

deformation energy but still tended to be unstable when the

external factors changed dramatically. This kind of intense

effect of external factors can accelerate the transformation

of the landslide creep stage from the second stage to the

third stage. Therefore, it is of great significance to study the

displacement prediction for the early warning and risk

control of this landslide.

3.3 Candidate input factors

It is known that the performance of machine learning

models is closely related to the selection of input factors.

Simply, the higher the correlations between the input fac-

tors and prediction targets are, the better the performance

of the model. In this paper, a total of twenty-eight input

factors related to the aspects of precipitation, reservoir

water level, and historical landslide deformation were used

as the candidate factors (Table 2). The specific basis for

selecting these twenty-eight input factors is as follows:

1. Precipitation and reservoir water level Numerous

monitoring and numerical simulation results show that

the deformation evolution of most reservoir colluvial

landslides in the TGR area is controlled by the

coupling effect of precipitation and reservoir water

level fluctuation (Zhou et al. 2018; Yao et al. 2019;

Xue et al. 2020). As described in Sect. 3.2, for the

Baishuihe landslide, step-like variations in displace-

ment mostly occurred before the reservoir water level

dropped and continuous heavy precipitation occurred.

When the reservoir water level increased and the

precipitation decreased, the change in displacements

tended to be stable again. Many previous studies (Du

et al. 2013; Lian et al. 2013, 2014, b, 2016, 2018;

Huang et al. 2017; Miao et al. 2018; Liao et al. 2020)

suggest that the change in precipitation and reservoir

water levels over 1 or 2 months is closely related to the

variation in the displacement of the Baishuihe land-

slide, especially from June to September every year.

Therefore, the monthly and bimonthly antecedent

precipitation and maximum continuous effective pre-

cipitation with different attenuation coefficients

(a ¼ 1:0; 0:8; 0:6; and 0:4) were adopted as input fac-

tors to reflect the impact of precipitation. The average

elevation, increasing range, decreasing range, relative

variation, and absolute variation metrics of the reser-

voir water level over the preceding 1 or 2 months were

used as input factors to represent the impact of the

reservoir water level.

2. Landslide historical deformation Due to the continuous

evolution of geological conditions, under the same

external conditions, there is a significant difference in

the deformation responses of the same landslide among

its different evolution stages (Glade et al. 2005; Zhou

et al. 2016). It is vital to consider the influence of

historical landslide deformation (i.e., the current evo-

lution stage of the landslide) on the future evolution of

landslide deformation when selecting input factors of

the interval prediction model for landslide displace-

ment (Cao et al. 2016). Therefore, the displacements

over the preceding 1–12 months were adopted as the

supplement of the rainfall and reservoir level factors to

characterize the influence of the evolution of landslide

geological conditions on landslide displacements.

What needs to be clarified is that the geological condi-

tions of landslides, such as the compositions and properties

of the rock and soil masses and the characteristics of the

geological structures, are usually difficult to use as input

factors directly. Because these geological factors are usu-

ally constant or quasi-constant factors, they cannot provide

any information to update the weight and bias of models

effectively. Thus, some scholars have put forward an

indirect substitution method, which takes the factors that

are more related to the geological factors than external

factors as the input factors of models. For example, Cai

et al. (2016) introduced the monitoring data of anchor rope

dynamometers as the input factors into the displacement

prediction model. Therefore, if the specific research object

has monitoring data related to its geological conditions,

such as anchor rope stresses, groundwater levels, or pore

water pressures, these monitoring data can be easily

introduced to improve the performance of prediction

models.

3.4 Prediction results

In this study, the data from June 2006 to December 2013

and from January 2014 to December 2016 were used as the

training and testing datasets, respectively. The dynamic

single-step prediction method was used in the prediction

process, meaning that only the displacement of the next

month was predicted in each prediction step. After the end

of each prediction, the actual monitoring data of the next

month were added to the training set so that the model

could be updated. Furthermore, before the training of the

model, the raw data of the landslide displacement, reservoir

water level, and precipitation must be preprocessed to unify

the sampling period.
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3.4.1 Input factor selection

As mentioned in Sect. 2.2.4 above, two different machine

learning models, namely, the ensemble classifier based on

the RF algorithm and the ensemble regressor based on the

WB-KELM-BPNN model, were used in the dynamic pre-

diction process of the landslide displacement interval.

These two ensemble models have vast differences in their

hypotheses, working principles, and applicable conditions.

Thus, the selections of input factors for these two models

were different: (1) For the ensemble classifier, the twenty-

eight factors of landslide displacement proposed in

Sect. 3.3 were all used as the input factors. (2) For the

ensemble regressor, the top three factors of each type of

factor based on the importance ranking of the RF algorithm

and the relevancy analysis of the maximum information

Table 2 Candidate input factors

Category Input inducing factor Label Definition Note

Precipitation Monthly antecedent

precipitation

P30
PN ¼

PN
i¼1

Pi

Pi is the precipitation over ith days. In this paper,

N ¼ 30 and 60

Bimonthly antecedent

precipitation

P60

Maximum continuous

effective precipitation

Pa¼a Pa¼a ¼
Pn
i¼0

anPn
Pn is the precipitation over nth days. a is the

attenuation coefficient. n is the duration of the

maximum continuous rainfall process in the

month. In this paper, a ¼ 1:0; 0:8; 0:6; and 0:4

Reservoir

water level

Monthly average

elevation of reservoir

water level

�R30 �RN ¼
PN
i¼1

Ri

�
N

Ri is the elevation of the reservoir water level over

ith days. In this paper, N ¼ 30 and 60

Bimonthly average

elevation of reservoir

water level

�R60

Monthly increasing

range of reservoir

water level

Rþ
30

Rþ
N ¼

XN
i¼1

Riþ1 � Rið Þ

if Riþ1 � Ri\0; then Riþ1 � Ri ¼ 0
Bimonthly increasing

range of reservoir

water level

Rþ
60

Monthly decreasing

range of reservoir

water level

R�
30

R�
N ¼

XN
i¼1

Riþ1 � Rið Þ

if Riþ1 � Ri [ 0; then Riþ1 � Ri¼0
Bimonthly decreasing

range of reservoir

water level

R�
60

Monthly relative

variation in reservoir

water level

MR30 MRN ¼ Rþ
N þ R�

N –

Bimonthly relative

variation in reservoir

water level

MR60 –

Monthly absolute

variation in reservoir

water level

M R30j j M RNj j ¼ Rþ
N

�� ��þ R�
N

�� �� –

Bimonthly absolute

variation in reservoir

water level

M R60j j –

Landslide

historical

deformation

Landslide cumulative

displacement over the

preceding nth months

Dn¼N
Dn¼N ¼

PN
i¼1

Diþ1 � Dið Þ
Di is the landslide displacement over ith months.

In this paper, N ¼ 1; 2; . . .; 12
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coefficient (MIC) method were used as the input factors

(Table 3).

3.4.2 Hyperparameter settings of the modified model

To further improve the performance of the modified model

in predicting unknown data, after determining the input

factors, we also need to optimize the parameter settings of

the model. Table 4 shows the hyperparameter settings of

the proposed model.

3.4.3 Evaluation and analysis of prediction results

1. Effect evaluation of deformation state division Table 5

shows that the SCs of the training set data and the

prediction set data were all greater than 0.6 for moni-

toring sites ZG93, ZG118, and XD01. The stable state

and mutation state samples in the cumulative dis-

placements of the landslide were well distinguished

(Fig. 8). These findings indicated that the CFSFDP

method could accurately divide the stable and mutation

states of landslide deformation according to the chan-

ges in the actual monthly displacement increments and

monthly displacement tangential angles.

2. Effect evaluation of deformation state identification

Taking the clustering results of landslide deformation

states as the basis and standard, the deformation states

were identified based on the comprehensive identifica-

tion method described in Sect. 2.2.2. As shown in

Table 6, Figs. 8 and 9, the OAs, sensitivities, speci-

ficities, and G_means of the identification results in the

training set were all 100.00%. That is, all the samples

in the training set can be correctly identified by this

comprehensive method. However, for the testing set,

seven mutation state samples were misidentified as

stable state samples, and four stable state samples were

misidentified as mutation state samples. These results

showed that although this identification method can

accurately identify the deformation state of the land-

slide overall. However, since the influence of the

imbalanced data on the ensemble classifier cannot be

eliminated completely, the correct identification rate of

the stable state samples was still higher than the correct

identification rate of the mutation state by at least 20%.

3. Effect evaluation of point prediction Table 7, Fig. 10a–

c show that the R2 values of the training and testing

sets were all close to 1. The RMSEs of the training set

were 11.86 mm, 12.20 mm, and 26.01 mm, and the

RMSEs of the testing set were 28.19 mm, 14.21 mm,

and 34.44 mm. These results indicated that the training

and testing datasets were well trained and predicted by

the proposed modified model.

4. Effect evaluation of interval prediction As shown in

Table 7, the PICPs were all higher than the corre-

sponding PINCs, demonstrating that the PIs of dis-

placements constructed by the proposed model can

completely encapsulate the measured displacement

monitoring curves. As shown in Fig. 11a–c, the model

flexibly quantified the uncertainty impaction of the

dynamic variations of external factors on the landslide

deformation through the variation of PI widths. For

example, when the landslide deformed dramatically

from May to August in 2007 and from June to July in

2015, the widths of the PIs increased significantly.

These findings indicated that at these times, the

uncertainty in the landslide deformation was extremely

high, and the risk of landslide disaster was also high.

4 Discussion

4.1 Influences of different clustering methods
on prediction results

As shown in Fig. 3, the division of deformation states was

the foundation of the whole interval forecasting frame-

work. To reveal the influences of different clustering

methods on the prediction results, the clustering results and

the overall prediction results obtained by applying the

CFSFDP-based method (i.e., the modified model) and the

Table 3 Input factors of the ensemble regressor

Monitoring sites Landslide deformation states Input factors

ZG93 Stable state P30, Pa¼1:0, Pa¼0:8, MR
�
30, MR30, M R60j j, Dn¼1, Dn¼2, Dn¼3

Mutation state P30, Pa¼1:0, Pa¼0:8, �R60, MR30, M R60j j, Dn¼1, Dn¼2, Dn¼3

ZG118 Stable state P30, Pa¼1:0, Pa¼0:8, MR
�
30, MR30, M R60j j, Dn¼1, Dn¼2, Dn¼3

Mutation state P30, Pa¼1:0, Pa¼0:6, MR
�
30, MR30, M R60j j, Dn¼1, Dn¼2, Dn¼3

XD01 Stable state Pa¼0:8, Pa¼0:6, Pa¼0:4, MR
�
30, MR30, M R60j j, Dn¼1, Dn¼2, Dn¼3

Mutation state P30, Pa¼0:8, Pa¼0:6, MR
�
30, MR30, M R60j j, Dn¼1, Dn¼2, Dn¼3
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K-means-based modified model were compared. As shown

in Tables 5 and 8, the SCs of the results obtained by using

the K-means-based modified model were all below or equal

to those results obtained by applying the CFSFDP-based

modified model, illustrating that the CFSFDP algorithm

had more advantages than the K-means algorithm in the

clustering process of the landslide deformation states.

Moreover, by further comparing Tables 7 and 9, it was

easily determined that the effect of the deformation state

division could directly affect the point prediction accuracy

and the interval prediction quality. The above results

showed that improving the division effect of the defor-

mation state can increase the prediction effect of the pro-

posed model.

4.2 Influences of different unbalanced data
processing methods on the prediction
results

To explore the influences of different unbalanced data

processing methods on the prediction results, we compared

the deformation state identification and displacement pre-

diction results obtained by applying the modified compre-

hensive method and other three data balancing methods. As

shown in Table 10, regardless of which imbalanced data

processing method was used to process the landslide

monitoring data, the ensemble classifier could accurately

Table 4 Hyperparameter settings of the modified model

Prediction stage Parameter Notes

Deformation state division p ¼ 1:0% p is the parameter to determine dc. 1:0% to 2:0% can often yield excellent

performance

mway ¼0 gaussian0 mway are the ways to compute density, including the ‘gaussian’ and the ‘cutoffs’.

The ‘gaussian’ often yields better performance

Deformation state

Identification

b ¼ 1 b is the parameter desired level of balance varying from 0 to 1

Kdensity ¼ 5 Kdensity is the number of nearest neighbors for the KNN algorithm used in ADASYN

density estimation

Kksmote ¼ 5 Kksmote is the number of nearest neighbors for the KNN algorithm used in

subsequent SMOTE-style synthesis of new examples

Ntree ¼ 5000 Ntree is the number of trees

Nmax features ¼ 5 Nmax features is the maximum number of features that Random Forest can try in an

individual tree

Nmin sample leaf ¼ 1 Nmin sample leaf is the minimum size of terminal nodes

Landslide displacement

interval prediction

Niteration ¼ 100 Niteration is the maximum number of iterations used in the GWO algorithm

NSearchAgents ¼ 10 NSearchAgents is the number of search agents used in the GWO algorithm

Fkernel ¼0 RBFkernel0 Fkernel is the type of kernel function

B ¼ 200 B is the number of resampling used in WB mothed

IC ¼ 1� 10�10; 1� 1010½ � IC is the optimum range for the penalty factor C of KELM models used in the GWO

algorithm

Ik ¼ 1� 10�10; 1� 1010½ � Ik is the optimum range for the kernel function parameter k of KELM models used

in the GWO algorithm

Nhidden lawyer ¼ 1 Nhidden lawyer is the number of hidden layers in BPNN models

Nhidden neurons ¼ 4 Nhidden is the number of neurons in the hidden layer of BPNN models

Iweights&biases ¼ �1; 1½ � Iweights&biases is the optimum range for the weights and biases of the BPNN model

used in the GWO algorithm

v ¼0 5�fold cross validation0 v is the cross-validation method used in the training set

Nv ¼ 5 Nv is the number of applying the cross-validation method used in the training

process

Table 5 Evaluation of the clustering results

Monitoring sites Dataset category Silhouette coefficient

ZG93 Training set 0.7309

Testing set 0.8738

ZG118 Training set 0.7333

Testing set 0.8035

XD01 Training set 0.6374

Testing set 0.7886
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identify the landslide deformation state of the training set.

However, for the testing set, the identification accuracies of

the deformation states obtained by using the other three

methods were quite different from those obtained by using

the modified model. Because the modified comprehensive

method combined the advantages of the EGA and ADA-

SYN methods, a suitable amount of mutation state data

with more useful information was adaptively synthesized.

Therefore, compared with the results obtained by using the

other three methods, the specificities and G_means

obtained by the modified method both reached the maxi-

mum levels.

Sections 2.2.2 and 2.2.4 indicate that deformation state

identification is another critical part of the construction of

an interval forecasting model framework. The accuracy of

the identification method can directly affect the perfor-

mance of the hybrid model. Thus, as the critical link

affecting the identification effect of the model on defor-

mation states, the imbalanced data processing method can

inevitably affect the prediction results. As shown in

Tables 7 and 11, the differences between the landslide

Fig. 8 Clustering results of the landslide deformation states

Table 6 Evaluation of

identification results
Monitoring sites Dataset category Evaluation index

OA Sensitive Specificity G_mean

ZG118 Training set 100.00 100.00 100.00 100.00

Testing set 88.89 96.55 57.14 74.28

ZG93 Training set 100.00 100.00 100.00 100.00

Testing set 91.67 96.55 71.43 83.05

XD01 Training set 100.00 100.00 100.00 100.00

Testing set 88.89 93.10 71.43 81.55
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displacement point prediction and interval prediction

results obtained by these four imbalanced methods were

pronounced. The R2 values of the point prediction results

obtained by implanting the modified method were high and

corresponded to low RMSEs. Meanwhile, the MPIWs and

the CWCs of their PIs were the smallest. These results

show that by using the modified method, the underfitting

problem in the ensemble regressor caused by the confusion

Fig. 9 Identification results of the landslide deformation states

Table 7 Evaluation of the comprehensive prediction results obtained by using the modified model

Monitoring

sites

Dataset

category

Evaluation index

Point prediction Interval prediction

R2 RMSE Prediction interval nominal confidence

90% 95% 99%

PICP

(%)

MPIW

(mm)

CWC

(mm)

PICP

(%)

MPIW

(mm)

CWC

(mm)

PICP

(%)

MPIW

(mm)

CWC

(mm)

ZG93 Training set 0.9996 11.86 100.00 153.22 153.22 100.00 182.57 182.57 100.00 239.94 239.94

Testing set 0.9827 28.19 97.22 140.38 140.38 97.22 167.27 167.27 100.00 219.83 219.83

ZG118 Training set 0.9995 12.20 100.00 91.43 91.43 100.00 108.94 108.94 100.00 143.17 143.17

Testing set 0.9955 14.21 97.22 86.61 86.61 97.22 103.21 103.21 100.00 135.64 135.64

XD01 Training set 0.9991 26.01 100.00 189.83 189.83 100.00 226.20 226.20 100.00 297.28 297.28

Testing set 0.9903 34.44 100.00 173.68 173.68 100.00 206.95 206.95 100.00 271.98 271.98
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of different deformation state data was effectively solved to

a certain extent. Thus, with the increase in the identifica-

tion accuracy, the point prediction accuracy of the hybrid

model was improved. Meanwhile, the PI width was

effectively reduced under the same PINC.

From the above results, we conclude that when con-

structing a displacement interval prediction model for step-

like landslides, the improvement in the deformation state

recognition effect is consistent with the improvement in the

comprehensive performance of the proposed model.

Therefore, how to properly manage the problem of the

imbalance between the stable state and mutation state

samples had become a significant point in the construction

of the dynamic identification criteria of the deformation

state. Compared with the traditional methods, the proposed

comprehensive processing method can not only improve

the accuracy of the ensemble classifier but also effectively

increase the accuracy of the point prediction result and the

quality of the PIs, thus highlighting the effectiveness and

superiority of this method itself.

4.3 Performance comparison
between the traditional interval prediction
model and the improved interval prediction
model

To verify the accuracy and superiority of the proposed

modified model, the unmodified model without considering

the dynamic switching of the deformation states was used

as the comparison model. Tables 7 and 10 show that almost

all the R2 values of the modified model were higher than

those of the unmodified model. Almost all the RMSEs of

the modified model were lower than those of the unmodi-

fied model. Moreover, as shown in Fig. 10, although the

Fig. 10 Point prediction results based on the modified (a–c) and unmodified models (d–f)
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predicted values of the mutation state samples obtained

using the modified method still underestimated their actual

values, the errors of the predicted values were decreased

compared with the results obtained by the unmodified

model. For instance, for monitoring site ZG118, when the

Baishuihe landslide underwent severe deformation from

the end of May to August 2007 and from June to July 2015,

the underestimations of the predicted values decreased

from 140.29 mm and 76.98 mm to 36.92 mm and

30.06 mm, respectively. However, although the hysteresis

of the predicted values was improved, the differences

between the predicted values and the actual values some-

times exceeded 100.00 mm. If these prediction results were

directly applied to the early warning of actual step-like

landslide disasters, these differences would not be accept-

able without knowing the reliability of the prediction

results.

In terms of the interval prediction results, the ensemble

regression of the unmodified method was underfitting

Fig. 11 Interval prediction results based on the modified (a–c) and unmodified models (d–f) under the PINC of 99.00%

Table 8 Evaluation of the clustering results obtained by using the

K-means-based modified model

Monitoring sites Dataset category Silhouette coefficient

ZG93 Training set 0.7138

Testing set 0.8405

ZG118 Training set 0.7333

Testing set 0.7756

XD01 Training set 0.6204

Testing set 0.7886
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because the unmodified model was trained according to the

mixed data without distinguishing the different deforma-

tion states of the data. As a result, under the same PINC,

the MPIWs and CWCs of the PIs obtained using the

unmodified model were significantly higher than those

obtained by applying the modified model (Tables 7, 12).

For the modified model, its ensemble regressors were

separately constructed with data from different deforma-

tion states. Therefore, the prediction accuracies of the

modified model were less affected by the mixing of the

training data. The differences in the PI width under dif-

ferent deformation states were very apparent (Fig. 11). The

PI widths under the mutation state were more significant

than those under the stable state. Compared with the PIs

obtained by applying the unmodified method, the PIs

obtained by applying the modified method were more

consistent with the deformation evolution characteristics of

step-like landslides.

Table 9 Evaluation of the comprehensive prediction results obtained by using the K-means-based modified model

Monitoring

sites

Dataset

category

Evaluation index

Point prediction Interval prediction

R2 RMSE Prediction interval nominal confidence

90% 95% 99%

PICP

(%)

MPIW

(mm)

CWC

(mm)

PICP

(%)

MPIW

(mm)

CWC

(mm)

PICP

(%)

MPIW

(mm)

CWC

(mm)

ZG93 Training set 0.9993 15.19 100.00 122.27 122.27 100.00 145.69 145.69 100.00 191.47 191.47

Testing set 0.9715 37.35 97.22 130.45 130.45 100.00 155.44 155.44 100.00 204.28 204.28

ZG118 Training set 0.9994 13.32 100.00 111.28 111.28 100.00 132.60 132.60 100.00 174.27 174.27

Testing set 0.9807 29.08 94.44 114.54 114.54 97.22 136.48 136.48 100.00 179.37 179.37

XD01 Training set 0.9986 32.78 100.00 207.33 207.33 100.00 247.04 247.04 100.00 324.67 324.67

Testing set 0.9842 43.86 100.00 199.35 199.35 100.00 237.54 237.54 100.00 312.18 312.18

Table 10 Evaluation and comparison of different unbalanced data processing methods on the performance of ensemble classifier

Monitoring sites Data balancing method Dataset category Evaluation index

OA (%) Sensitive (%) Specificity (%) G_mean (%)

ZG93 No processing Training set 100.00 100.00 100.00 100.00

Testing set 77.78 89.66 28.57 50.61

ADASYN Training set 100.00 100.00 100.00 100.00

Testing set 83.33 93.10 42.86 63.17

EGA Training set 100.00 100.00 100.00 100.00

Testing set 83.33 93.10 42.86 63.17

ZG118 No processing Training set 100.00 100.00 100.00 100.00

Testing set 83.33 93.10 42.86 63.17

ADASYN Training set 100.00 100.00 100.00 100.00

Testing set 83.33 96.55 28.57 52.52

EGA Training set 100.00 100.00 100.00 100.00

Testing set 91.67 96.55 71.43 83.05

XD01 No processing Training set 100.00 100.00 100.00 100.00

Testing set 80.56 93.10 28.57 51.58

ADASYN Training set 100.00 100.00 100.00 100.00

Testing set 88.89 93.10 71.43 81.55

EGA Training set 100.00 100.00 100.00 100.00

Testing set 88.89 93.10 71.43 81.55
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5 Conclusion

Under the coupling effect of reservoir water level fluctua-

tion and durative heavy precipitation, the displacements of

many reservoir colluvial landslides in the TGR area display

obvious step-like behaviors. At present, the machine

learning models used for landslide displacement prediction

are mostly the point prediction models. This means that

most of these models can accurately predict this kind of

step-like displacement of landslides but are hard to express

the reliability of their prediction results quantitatively.

Thus, based on the idea of interval forecasting and the

deformation state dynamic switching model of step-like

landslides, a novel hybrid interval prediction model was

proposed in this study.

The proposed hybrid interval prediction model consists

of deformation state division, deformation state identifi-

cation, prediction model establishment for the different

deformation states, and dynamic prediction considering the

dynamic switching of the deformation states. Taking the

Baishuihe landslide as an example, the process of using this

model to predict the landslide displacement and its PIs was

introduced in detail. In the prediction performance com-

parison, two core issues related to improving the perfor-

mance of the proposed model were also discussed in detail.

The results show that compared with the existing point

prediction models, the proposed model can provide exact

upper and lower limits of the PIs under certain nominal

confidences to represent the reliability of the prediction

results quantitatively. On the other hand, compared with

the existing interval prediction model, the proposed model

can not only improve the accuracy of the point prediction

results but also promote the quality of the PIs. In addition,

improvements in the deformation state division and the

deformation state identification are found to have a positive

correlation with the improvement in the comprehensive

performance of the proposed model.

Overall, the proposed model performs well in terms of

effectiveness, accuracy, and reliability and can provide

more valid information for decision-makers. Thus, this

model is of great significance for realizing accurate and

reliable early warning systems of landslides whose defor-

mation reflects the characteristics of a step-like evolution in

the TGR area. Furthermore, from the perspective of land-

slide risk assessment, the proposed model is also worth

promoting for use in predicting other types of landslides.
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