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Abstract
Cox processes are natural models for point process phenomena that are environmentally driven, but much less natural for

phenomena driven primarily by interactions amongst the points. The class of log-Gaussian Cox processes (LGCPs) has an

elegant simplicity, and one of its attractive features is the tractability of the multivariate normal distribution carries over, to

some extent, to the associated Cox process. In the statistical analysis of spatial point patterns, it is often assumed isotropy

because of a simpler interpretation and ease of analysis. However, there are many cases in which the spatial structure

depends on the direction. In this paper, we introduce new families of anisotropic spatial LGCPs that are useful to model

spatial anisotropic point patterns that exhibit a degree of clustering. We propose classes of families consisting of elliptical

and non-elliptical models. The former can be reduced to isotropic forms after some rotations, while the latter family goes

beyond this property. We derive analytical forms for the covariance of the associated random field, and some second-order

characteristics. A moment-based estimation procedure is followed to make inference on the parameters that control the

degree of anisotropy. The estimation procedure is evaluated through a simulation study under a variety of scenarios and

various degrees of anisotropy. Our methodology is illustrated on two real datasets of earthquakes in South America and the

Mediterranean Europe.

Keywords Anisotropy � Intensity function � K-function � Log-Gaussian Cox processes � Minimum contrast estimation �
Pair correlation function � Super-ellipse

1 Introduction

An outstanding class of stochastic point processes is the

class of spatial point processes, defined as random mech-

anisms to generate a countable set of points randomly

located on, usually, a planar space. These processes are

applied in many different fields such as geology, seismol-

ogy, economics, image processing, ecology, or biology;

see, as some Examples, Funwi-Gabga and Mateu (2012),

Uria et al. (2013), Serra et al. (2014). The Poisson point

process is the most basic and simplest model of point

processes. This model can be used to build a more flexible

and fundamental class of spatial models named Cox pro-

cesses. A Cox process is obtained as an extension of a

Poisson process by considering the intensity function of the

Poisson process a realization of a random field. Cox pro-

cesses are natural models for point process phenomena that

are environmentally driven, but much less natural for

phenomena driven primarily by interactions amongst the

points.

The simplicity of using a Cox process lies in the fact that

the moment properties of a Cox process are equivalent to

the moment properties of its corresponding intensity ran-

dom field. Indeed, in the stationary case, the intensity of a

Cox process is equal to the expectation of the random field,

and the covariance density of the Cox process is equal to

the covariance function of the random intensity (Diggle

et al. 2013). In addition, the K-function, which is the

reduced second moment measure of a Cox process (Ripley

1976), is simply obtained through the covariance function

of the underlying random field. This close relation between

point process data and geostatistical data provides flexi-

bility in terms of computation and when the spatial corre-

lation is being analyzed.
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The literature offers some subclasses of Cox processes

of particular interest. We can find Thomas processes

(Thomas 1949), Neyman-Scott processes (Neyman and

Scott 1958), Matérn cluster processes (Matérn 1960, 1986),

shot noise Cox processes (Cox and Isham 1980), Poisson-

gamma processes (Wolpert and Ickstadt 1998), shot noise

G Cox processes (Brix 1999), and log-Gaussian Cox pro-

cesses (Coles and Jones 1991; Møller et al. 1998). Møller

et al. (1998) considered the class of log-Gaussian Cox

processes (LGCPs) which is defined as a Cox process with

random intensity KðxÞ ¼ exp ZðxÞf g, where Z is a Gaussian

process. The reader is referred to Sect. 5 of Møller and

Waagepetersen (2003) for a deeper treatment of these

subclasses.

The log-Gaussian construction has an elegant simplicity.

One of its attractive features is that the tractability of the

multivariate Normal distribution carries over, to some

extent, to the associated Cox process. Diggle et al. (2013)

described the class of LGCPs as models for spatial and

spatio-temporal point process data, and suggested a more

useful definition of geostatistics. They noted that a LGCP is

a natural analog for point process data of the linear

Gaussian model for real-valued geostatistical data. In line

with the linear Gaussian model, the LGCP class lacks any

mechanistic interpretation. Its principal virtue is that it

provides a flexible and relatively tractable class of empir-

ical models for describing spatially correlated phenomena.

This makes it extremely useful in a range of applications

where the scientific focus is on spatial prediction rather

than on testing mechanistic hypotheses.

Under ergodicity, a point process is stationary and iso-

tropic, if its statistical properties do not change under

translation and rotation, respectively. Informally, station-

arity implies that one can estimate properties of the process

from a single realization, by exploiting the fact that these

properties are the same in different, but geometrically

similar, subregions of the spatial domain; isotropy means

that there are no directional effects. The condition of iso-

tropy is often made in practice as a pragmatic assumption

to ease the statistical analysis. However, this assumption is

not realistic and it is not satisfied in many real applications,

and failure to account for spatial and directional inhomo-

geneity can result in erroneous inferences. A spatial point

pattern is called anisotropic if its spatial structure depends

on direction.

Directional analysis has mainly been concentrated on

two types of anisotropy, geometric anisotropy, where ani-

sotropy is caused by a linear transformation of a stationary

and isotropic process, and increased intensity of points

along directed lines. Here, we are explicitly interested in

those spatial point patterns with second-order statistical

characteristics that depend on particular angles and direc-

tions. Anisotropy can be present when the spatial point

patterns contain points placed roughly on line segments.

See details in Møller and Rasmussen (2012) who consider

a particular class of point processes whose realizations

contain such linear structures.

Osher and Stoyan (1981) presented a method for the

second-order analysis of anisotropic point processes. They

provided expressions for the anisotropic spatial K-function,

and used this function to define an orientation distribution

function. Guan et al. (2004, 2006) proposed a formal

nonparametric approach to test for isotropy based on the

asymptotic joint normality of the sample second-order

intensity function. Alternative methods based on two-di-

mensional spectral analysis were proposed by Mugglestone

and Renshaw (1998). The complications inherent with

spectral analysis (particularly for more than one dimen-

sion) appear to have discouraged applied statisticians and

ecologists from making use of these methods. Wavelet

analysis has succeeded in a variety of applications and held

promise in the area of spatial pattern analysis (Donoho

1993; Gao and Li 1993; Grenfell et al. 2001). However,

wavelet analysis has only been involved in several works

for the detection of spatial patterns (Harper et al. 2001;

Perry et al. 2002; Rosenberg 2004). In general, there is not

a large treatment of anisotropy for spatial planar point

patterns, and there is currently only one such approach for

three-dimensional point patterns (Redenbach et al. 2009).

All these references are very much focussed on anisotropy

for spatial point processes, which is our focus. However,

and due to the link between LGCPs and geostatistics, there

are also a number of contributions acting directly on the

covariance structure of the Gaussian Random Field; we

refer the reader to different classes of anisotropic covari-

ance functions appeared in Allard et al. (2016), Fuglstad

et al. (2015), or Hristopulos (2012).

Except the contribution by Møller and Rasmussen

(2012), the above mentioned papers (acting on spatial point

processes) are more focused on testing anisotropy and

describing main directions. However, in this paper, we are

interested in point pattern models for anisotropic behaviors,

and in this sense the literature is scarce. In particular, we

highlight the contribution of Møller and Toftaker (2014)

who proposed a new class of anisotropic Cox processes

based on elliptical anisotropic pair correlation function

models. They also showed that in such classes, by a rota-

tion of the original vector coordinates, the anisotropic pair

correlation function in the geometric class can be rewritten

as an isotropic pair correlation function in a new system of

coordinates. Using the rotation matrix is shown to be useful

because it helps to simplify the calculations using isotropic

models instead of anisotropic ones. However, this approach

has two problems. First, it is usually complicated to obtain

close analytical forms for the corresponding second-order

summary statistics of the LGCP model. Second, it is
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challenging to study non-elliptical and anisotropic covari-

ance models that cannot be reduced to an isotropic form

under a rotation.

Therefore, the main objective of our paper is to present a

new integrated perspective on constructing LGCP models

to overcome the above-mentioned challenges. Our methods

can build anisotropic covariance models that belong to

elliptical and non-elliptical classes of covariance functions.

With the non-elliptical classes, we deviate from Møller and

Toftaker (2014). We also present the elliptical ones as for

them we are able to obtain close forms that Møller and

Toftaker (2014) did not show. See ‘‘Appendix’’ A.

In particular, we develop new classes of anisotropic

LGCPs while finding analytical forms for the covariance of

the associated random field, C(.), and for some second-

order characteristics, the pair correlation, g(.), and K-

measure, jðAÞ ¼
R
A gðuÞdu, where A � R2 is a bounded

Borel set, and u is a generic location. Our idea lies on

building an anisotropic covariance function. The diagram

in Fig. 1 shows a scheme of our building block, which

draws the basics of what is presented in Sect. 3.

The plan of the paper is as follows. Section 2 contains

some basics of point processes and their properties. Sec-

tion 3 presents our new classes of anisotropic LGCP

models. Our method is shown to be used to build both

elliptical and non-elliptical anisotropic models. Several

examples are illustrated. Section 4 is devoted to the study

of moment-based estimation of the anisotropic parameters,

and a simulation study to investigate the performance of

the estimation procedure comes in Sect. 5. Finally, in

Sect. 6, we analyze two real datasets of earthquakes in

South America and the Mediterranean Europe. The paper

ends with some final conclusions and a discussion.

2 Notation and setup for point processes

Let X be a point process on S � R2 specified by a so-called

intensity function k : S ! ½0;1Þ which is locally inte-

grable, i.e.
R
B kðnÞdn\1 for all bounded B � S. For any

subset @ � S, let nð@Þ denote the cardinality of a point

configuration @ , setting nð@Þ ¼ 1 if @ is not finite. Then

the point process X takes values in the space defined by

N@ ¼ f@ � S : nð@ \ BÞ\1 for all boundedB � Sg:

For a point process X on S, consider the counting function

NðBÞ ¼ nðX \ BÞ

which gives the random number of points falling in a

bounded set B � S. Throughout the paper, we use u and v

to denote generic points in S � R2, and the events of the

point process X will be denoted by x.

The mean of the counts N(B) is given by

E½NðBÞ� ¼
Z

B

kðuÞdu;

which reduces to kjBj when k is constant, and with |B|

indicating the area of B. In this case, X is said to be

homogeneous, or stationary with intensity k; otherwise X is

said to be inhomogeneous. The variance Var[N(B)] is

defined through the second-order intensity function kð2Þ :
S� S ! ½0;1Þ as

Var½NðBÞ� ¼
Z

B

Z

B

kð2Þðu; vÞdudvþ
Z

B

kðuÞduð1�
Z

B

kðuÞduÞ:

For stationary processes, the variance of N(B) takes the

form
R

B

R

B

kð2Þðu; vÞdudvþ kjBj 1� kjBjð Þ. Also, the covari-

ance function of N(.) for bounded A;B � S is given by

Fig. 1 A graphical summary of our proposal
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Cov NðA; ÞNðBÞ½ � ¼
Z

A

Z

B

kð2Þðu; vÞdudvþ kjA \ Bj � k2jAjjBj;

where A \ B denotes the intersection of A and B (Diggle

2013; Møller and Waagepetersen 2003).

If both k and kð2Þ exist, the pair correlation function, g, is
defined by

gðu; vÞ ¼ kð2Þðu; vÞ=ðkðuÞkðvÞÞ;

using the convention a
0
¼ 0 for a� 0. This scale function is

not a usual correlation function. In the stationary case, g is

reduced to kð2Þðu; vÞ=k2 and it becomes translation invari-

ant, i.e. gðu; vÞ ¼ gðu� vÞ.
The most fundamental example of point processes is the

Poisson point process with intensity function k. For this

process, for any B � S, N(B) follows a Poisson distribution

with mean lðBÞ ¼
R

B

kðuÞdu\1, and for any n 2 N and

B � S, conditional on NðBÞ ¼ n, X \ B has a Binomial

distribution with probability function f ðxÞ ¼ kðxÞ=lðBÞ. It
is easily shown that the pair correlation function is equal to

one, i.e. gðu; vÞ ¼ 1 for a Poisson process. The proof comes

from a direct consequence of the Slivnyak-Mecke theorem.

Here, we are interested in the flexible and fundamental

class of Cox models. A Cox process is obtained as an

extension of a Poisson process in the case that the intensity

function of the Poisson process is considered a realization

of a random field. Suppose that K ¼ fKðxÞ : x 2 Sg is a

non-negative random field. Conditional on the realization

KðxÞ ¼ kðxÞ with x 2 S, if the point process X is a Poisson

process on S with intensity function K, then X is said to be

a Cox process driven by K. A Cox process is said to be

stationary if and only if its intensity is stationary, and

similarly for isotropy. In the stationary case, the intensity

of the Cox process is equal to the expectation of the

intensity of the random field, i.e. k ¼ E½KðxÞ�, and the

covariance density of the Cox process is equal to the

covariance function of the random intensity, i.e.,

CðuÞ ¼ CovfKðxÞ;Kðx� uÞg. This close relation between

point process data and geostatistical data helps describing

the spatial correlation. Also, the reduced second moment

measure, or the K-function (Ripley 1976), of the Cox

process is simply obtained as

KðqÞ ¼ pq2 þ 2pk�2

Z q

0

CðvÞvdv;

where k is the intensity of the Cox process and C(v) is the

covariance density of the Cox process. We note that the K-

function of a Poisson point process over a disc takes the

form KðqÞ ¼ pq2. The class of stationary log-Gaussian

Cox processes (LGCPs) is defined as a Cox process with

KðxÞ ¼ exp ZðxÞf g, where Z is a Gaussian process with

mean l, variance r2 and correlation function r(u) (Møller

et al. 1998). It can be proved that such LGCP has intensity

k ¼ exp lþ 0:5r2
� �

and covariance density

CðuÞ ¼ k2½exp r2rðuÞ
� �

� 1�. Diggle et al. (2013) sug-

gested to re-parameterize the model as

KðxÞ ¼ exp cþ ZðxÞf g, where E½ZðxÞ� ¼ �0:5r2, so that

E½exp ZðxÞf g� ¼ 1 and k ¼ exp cf g. This re-parameteriza-

tion gives a clean separation between first- and second-

order properties.

So far most of the contributions in this context have

limited their attention to the case where K is stationary and

isotropic. However, these assumptions are not realistic in

many real applications. This paper focuses on anisotropic

models for which the distribution of K is not invariant

under rotations.

3 Anisotropic LGCPs

Let X be a LGCP model driven by intensity function

KðxÞ ¼ exp ZðxÞf g. In constructing an anisotropic LGCP

model, in terms of properties of the model, we need Z(x) to

have an anisotropic covariance function. We propose two

strategies to obtain anisotropic LGCPs. The first one, pre-

sented in Sect. 3.1, builds anisotropic covariance functions

through some mechanistic procedures based on kernels

convolution and normal variance mixtures. The second

strategy, presented in Sect. 3.2, provides a direct model of

non-elliptical anisotropic covariance function that is plug-

ged into the random field Z(x). We note that both strategies

can be used to build non-elliptical anisotropic models.

3.1 Constructing anisotropic covariance models
through mechanistic procedures

3.1.1 Method 1: Convolution of kernels

Higdon et al. (1999) proposed an inhomogeneous spatial

covariance function based on the convolution of two ker-

nels centered at the locations of interest. We use this

approach in the anisotropic case. In more detail, an inho-

mogenous and anisotropic spatial covariance function can

be defined by the auto-convolution of an anisotropic kernel

function. Then according to the properties of LGCPs, an

anisotropic LGCP model can be obtained using an aniso-

tropic covariance function. To do this, some anisotropic

kernel functions can be used such as Gaussian kernel

functions, Gaussian radial basis functions, Laplace RBF

kernels, Cauchy kernel functions, Lame kernels, super-el-

lipse kernels, etc. The later type of kernel allows to con-

struct non-elliptical covariance functions. In what follows,

an anisotropic Gaussian kernel function is used as an
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example of this approach to build an elliptical anisotropic

covariance function. Additionally, an exponential super-

ellipse kernel function is considered to build the non-el-

liptical anisotropic covariance function of the Gaussian

process, which represents a new class of non-elliptical

anisotropic LGCPs based on this covariance function. We

emphasize that our main goal is to build anisotropic models

based on anisotropic covariance functions for LGCPs,

which makes a clear difference with the more geostatistical

models in Higdon et al. (1999). Following Higdon et al.

(1999), we can build an inhomogeneous covariance func-

tion based on the convolution of kernels centered at the

locations of interest, as follows

C x; yð Þ ¼
Z

R2

k x; mð Þk y; mð Þdm, ð1Þ

where x, y and m are locations in R2, and k is a kernel

function. It is easy to show that C(x, y) is a non-negative

definite function for spatially-varying kernel functions of

any functional form.

Example 1 Elliptical and anisotropic Gaussian kernel

functions

Here, the elliptical and anisotropic Gaussian kernel func-

tion is used in constructing the anisotropic covariance

function of LGCP models. An anisotropic Gaussian kernel

function has different kernel parameters per dimension

instead of a single kernel parameter for all the elements.

Let

k x; yð Þ ¼ exp �
X2

m¼1

xm � ymð Þ2

2rm

( )

; ð2Þ

be such an anisotropic kernel function, where x ¼ ðx1; x2Þ
and y ¼ ðy1; y2Þ are points in R2. For the anisotropic

Gaussian kernel, each parameter rm is tuned separately.

Substituting (2) into (1) yields an anisotropic covariance

function

Caniso x; yð Þ ¼ p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
exp �

X2

m¼1

xm � ymð Þ2

4rm

( )

; ð3Þ

which can be written as

Caniso x; yð Þ ¼ r2 exp � x� yð ÞsR�1 x� yð Þ
� �

;

where r2 ¼ p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
is the variance, and R is an anisotropic

diagonal matrix with elements 4r1; 4r2ð Þ. This anisotropic
covariance function can be written in terms of an isotropic

exponential covariance function Ciso defined as

CisoðmÞ ¼ r2 exp �mf g, using the following change of

variables (but not through a rotation)

Caniso uð Þ ¼ Ciso usR�1u
� �

;

with u the separation vector of x and y. Finally, note that if

R were the identity matrix, Caniso ¼ Ciso, but in our case, R
is a diagonal matrix containing the anisotropic parameters.

This covariance function belongs to the elliptical class of

covariance models. Møller and Toftaker (2014) studied this

class of covariance model using a suitable rotation to

reduce it to an isotropic model. However, we consider our

anisotropic LGCP model directly and without any rotation.

The pair correlation function and the covariance function

of a general LGCP have a one-to-one correspondence, and

the former can be obtained from the latter.

Let X be a LGCP with intensity

KðxÞ ¼ exp ZðxÞf g;

where Z :ð Þ is a Gaussian process with mean l, variance r2

and covariance function C �ð Þ. The first and second

moments of KðxÞ are obtained as E KðxÞ½ � ¼ exp lþ 1
2
r2

� �
,

and E KðxÞKðx� uÞ½ � ¼ exp 2lþ r2 þ C uð Þ
� �

, respec-

tively. After rewriting the model as KðxÞ ¼ exp cþ ZðxÞf g,
E½exp ZðxÞf g� ¼ 1 and k ¼ exp cf g, and this leads to the

covariance function being reduced to

CðKðxÞ;Kðx� uÞÞ ¼ exp CðuÞf g � 1; the pair correlation

can be then written as

gðuÞ ¼ exp CðuÞf g: ð4Þ

Substituting (3) into (4) we can obtain a close analytical

form for the anisotropic pair correlation function, given by

ganiso uð Þ ¼ exp p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
exp �

X2

k¼1

u2k
4rk

( )( )

: ð5Þ

Equivalently, (5) can be rewritten as

ganiso uð Þ ¼ exp r2 exp �usR�1u
� �� �

; ð6Þ

where again u is the separation vector of x and y, r2 ¼
p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
and R is an anisotropic diagonal matrix with ele-

ments 4r1; 4r2ð Þ.
For a general anisotropic point process, a close rela-

tionship between the reduced second moment measure and

the pair correlation function g is given by

j Að Þ ¼
Z

A

g uð Þdu; ð7Þ

for a bounded set A (Baddeley et al. 2015). Following

Illian et al. (2008) and Baddeley et al. (2015), A could be a

disc, or a sector of a disc, which is the part of the disc of

radius q lying between two lines at orientations h0 and h1.
The use of sector K-function is also explained in Ohser and

Stoyan (1981).
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For completeness, assume A is a disc centred at the

origin with radius q, denoted by Cð0; qÞ and analytically

represented by kuk� q. Substituting (6) into (7), the ani-

sotropic K-function over the disc A, denoted by KG
aniso, is

given by

KG
aniso qð Þ ¼

Z

kuk� q

exp p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
exp �usR�1u
� �� �

du ð8Þ

Example 2 Non-elliptical and anisotropic super-ellipse

kernel functions

We consider here the class of separable kernel functions

with one-dimensional components of the same functional

form. This kernel function can not be reduced to isotropic

functions under rotation. In a coordinate system aligned

with the principal axes, these kernels are expressed as

kðuÞ ¼ r2
Y2

i¼1

hðuiÞ; ð9Þ

where h(.) is a permissible one-dimensional kernel function

(Christakos 1992), r2 is a variance parameter, and

u ¼ u1; u2ð Þ.
A family of separable kernel models was introduced by

Hristopulos (2002) and it is defined in terms of geometrical

generalizations of the ellipse, called super-ellipsoids

(Wallace 1968). In two spatial dimensions a super-ellipsoid

with index n obeys the following equation

u1
r1

�
�
�
�

�
�
�
�

2
n

þ u2
r2

�
�
�
�

�
�
�
�

2
n

¼ ~u1j j
2
nþ ~u2j j

2
n¼ x; ð10Þ

where ~ui ¼ ui
ri
; i ¼ 1; 2. Analogous to a circle, a super-el-

lipse in (10) can be written as

SðhÞ ¼ ax
n
2cosnðhÞ

bx
n
2sinnðhÞ

� 	

; �p\h\p:

The exponent SðhÞ with power n is a signed power function

such that cosnðhÞ ¼ signðcosðhÞÞjcosðhÞjn.
We focus on the class of two dimensional super-ellip-

soid kernel functions that can be reduced to one-dimen-

sional components of the same kernel functional form with

index n, given by

kð~uÞ ¼ r2h j ~u1j
2
n


 �
h j ~u2j

2
n


 �
; ð11Þ

where ~u ¼ ~u1; ~u2ð Þ.
Here, we are interested in using the exponential super-

ellipsoid form as an important and known family of super-

ellipsoid kernel functions. This family is defined as a

particular case of (11)

kð~uÞ ¼ r2 exp � u1
r1

�
�
�
�

�
�
�
�

2
n

� u2
r2

�
�
�
�

�
�
�
�

2
n

 !

; n 6¼ 1; ð12Þ

where the parameters ri; i ¼ 1; 2 are anisotropic correla-

tion lengths in each direction. Equation (12) for n ¼ 1 is

reduced to an elliptical form which is considered in the

previous subsection. Hence, Eq. (12) is different from the

exponential kernel function of the form kðrÞ ¼
r2 exp � r

r

� �m� 

that is considered by Abrahamsen (1997).

Different forms of super-ellipsoid functions for some val-

ues of the isolevel contours n are plotted in Fig. 2. The

contours are rounded rectangles for n\1, ellipses for

n ¼ 1, concave diamonds for 1\n\2, diamonds for

n ¼ 2, and convex diamonds for n[ 2.

Substituting (12) into (1), we obtain a new anisotropic

covariance function of the form

C x; yð Þ ¼
Z

R2

r4 exp � x1 � m1
r1

�
�
�
�

�
�
�
�

2
n

� x2 � m2
r2

�
�
�
�

�
�
�
�

2
n

 

� y1 � m1
r1

�
�
�
�

�
�
�
�

2
n

� y2 � m2
r2

�
�
�
�

�
�
�
�

2
n

!

dm,

ð13Þ

where m ¼ ðm1; m2Þ 2 R2. It is hard to obtain a close form

for (13). The super-ellipsoidal kernel function defined in

(12) is not elliptic because it does not satisfy the relation in

CðuÞ ¼ C0ðuR�1utÞ; u 2 R2 where u is the separation

vector of x and y, R is a 2� 2 symmetric and positive-

definite matrix with positive determinant, and C0 : R !
½0;1Þ is a Borel function (Møller and Toftaker 2014).

Thus, the covariance function constructed in terms of auto-

convolution of super-ellipse functions is not elliptic and so

it is not reducible to an isotropic case under a rotation,

except for the case n ¼ 1, for which we get back the

ellipsoidal covariance function. We thus provide a new

class of LGCPs models in terms of non-elliptical aniso-

tropic covariance functions.

Now, consider X as a LGCP driven by intensity function

KðxÞ ¼ exp ZðxÞf g, where Z(x) is a zero mean Gaussian

random field with variance r2 and covariance function C(.)

defined in (13). Similar to the previous Gaussian LGCP

model in Example 1, the pair correlation function and K-

function over a bounded set A ¼ Cð0; qÞ can be obtained

using (4), (7) and (13), respectively,

g x; yð Þ ¼ exp

Z

R2

r4 exp � x1 � m1
r1

�
�
�
�

�
�
�
�

2
n

� x2 � m2
r2

�
�
�
�

�
�
�
�

2
n

 
8
><

>:

� y1 � m1
r1

�
�
�
�

�
�
�
�

2
n

� y2 � m2
r2

�
�
�
�

�
�
�
�

2
n

!

dm

)

,

ð14Þ

and
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K qð Þ ¼
Z

kuk�q
gðuÞdu, ð15Þ

where g(u) is defined in (14) and u is the separation vector

of x and y. Section 3.2 studies in detail the LGCP in terms

of the exponential super-ellipsoidal covariance function

and its corresponding pair correlation and K-functions.

3.1.2 Method 2: Normal variance mixture covariance
functions

Consider p(X; s) a probability density function for X,

parameterized by s such that for each value of s in some set

A, p(X; s) is a probability density function with respect to

X. Given a probability density function x, which is non-

negative and integrates to 1, the function

f ðxÞ ¼
Z

A

pðX; sÞxðsÞds; ð16Þ

is again a probability density function for X. Jalilian et al.

(2013) introduced a new class of isotropic shot noise Cox

processes in which both the kernel function and the pair

correlation function are given based on a normal variance

mixture. Modeling the shape at the origin and the tail

behavior of the pair correlation function can be easier and

more flexible when using the normal variance mixture. We

now follow a similar procedure as in Sect. 3.1.1 to obtain a

new anisotropic class of LGCPs based on normal variance

mixtures. It is worth recalling that the normal variance

mixture is defined by

f ðuÞ ¼
Z 1

0

U u; sð Þh sð Þds; ð17Þ

where U :; sð Þ is the density of a zero-mean two-dimen-

sional anisotropic Gaussian vector with covariance matrix

sM, M ¼ diagðr1; r2Þ, and h is some prior probability

density of s on Rþ. Any function f defined as in (17) is a

positive definite function on R2 (Schlather 1999). By a

similar argument to the isotropic case, if h is a convolution

of a function h
	

with itself, i.e. h ¼ h
	

 h

	
, then f is the

convolution of a non-negative function k with itself,

f ¼ k 
 k, where the function k is defined by

kðuÞ ¼
Z 1

0

U u; sð Þh
	

sð Þds: ð18Þ

According to the relation between Eqs. (17) and (18), f can

be considered a covariance function. Thus, there is no

need, as in Sect. 3.1.1, to consider a kernel function and to

define the covariance as a convolution of kernels. We can

directly use (17). A huge class of covariance functions are

obtained by choosing h in the class of generalized inverse

Gaussian distributions (Jørgensen, 2012) which includes

Gamma, inverse Gamma and inverse Gaussian distribu-

tions as special cases. The resulting class of normal vari-

ance mixtures is the class of generalized hyperbolic

distributions (Barndorff-Nielsen 1977, 1978). Following

Barndorff-Nielsen and Halgreen (1977), any generalized

inverse Gaussian distribution is infinitely divisible, and

hence any generalized hyperbolic density can be repre-

sented as a convolution. However, for a generalized inverse

Gaussian density h, it is not always easy to identify the

convolution density h
	
. We discuss below two special cases

of generalized hyperbolic distributions where h
	
, and hence

k, are explicitly known and we can obtain the generalized

Cauchy covariance function. The Cauchy covariance

function is polynomially decreasing, and hence more

suitable than the Matérn model for modeling slowly

decaying covariances. The Cauchy covariance is log-con-

cave in a neighborhood around the origin.

Example 3 Cauchy covariance model

Fig. 2 Isolevel contours of the super-ellipsoid functions for different values of the index n ¼ 0:5; 0:75; 1; 1:5; 2; 4
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Assume that s in (18) is a random variable with an inverse

Gamma density with parameters a; b[ 0 of the form

h s; a; bð Þ ¼ bas�a�1 exp �b=sf g=C að Þ; s[ 0: ð19Þ

Let a ¼ 1=2. It can be shown that hð�; 1=2; bÞ is a convo-

lution of hð�; 1=2; b=4Þ with itself.

Following (17) and (18), a covariance function can be

defined through a normal variance mixture with the func-

tion hð�; 1=2; bÞ, as follows

C uð Þ ¼
Z 1

0

1

2ps
ffiffiffiffiffiffiffiffiffiffi
r1r2

p exp � u21
2r1s

� u22
2r2s

� �

b
1
2

C 1
2

� � s�
3
2 exp �b=sf gds

¼ b
1
2

2p
ffiffiffiffiffiffiffiffiffiffiffiffi
pr1r2

p
Z 1

0

s�
5
2 exp �b
=sf gds

¼ b
1
2

b

3
24p

ffiffiffiffiffiffiffiffiffiffi
r1r2

p ;

where b
 ¼ 2br1r2þr2u21þr1u22
2r1r2

. This expression can be

rewritten as an anisotropic generalized Cauchy function

Caniso uð Þ ¼ 1

4pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p 1þ u21
2r1b

þ u22
2r2b

� 	�3
2

; ð20Þ

with anisotropic parameters r
1 ¼ r1b; and r
2 ¼ r2b.
Equivalently,

Caniso uð Þ ¼ r2½1þ usR�1u��
3
2;

where r2 ¼ 1

4p
ffiffiffiffiffiffiffi
r

1
r

2

p is the variance and R is an anisotropic

diagonal matrix with elements 2r
1; 2r


2

� �
. Clearly, this

anisotropic covariance function can be written in terms of

the isotropic function, that is,

Caniso uð Þ ¼ Ciso usR�1u
� �

;

where Ciso �ð Þ is an isotropic Cauchy covariance function

defined by Ciso mð Þ ¼ r2½1þ m��
3
2. As mentioned in

Sect. 3.1.1, the pair correlation function and the covariance

function are exponentially linked in LGCPs. Therefore, the

pair correlation function can be obtained as

ganiso uð Þ ¼ exp
1

4p
ffiffiffiffiffiffiffiffiffiffi
r
1r



2

p ½1þ u21
2r
1

þ u22
2r
2

��
3
2

( )

¼ exp r2½1þ usR�1u��
3
2

n o
:

ð21Þ

Again, we note that, ganiso uð Þ ¼ giso usR�1u
� �

where giso �ð Þ
is an isotropic Cauchy pair correlation function defined by

giso mð Þ ¼ exp r2½1þ m��
3
2

n o
.

Substituting (21) into (7), the anisotropic K-function

over the disc A ¼ Cð0; qÞ, denoted by KC
aniso, is given by

KC
aniso qð Þ ¼

Z

kuk� q

exp
1

4p
ffiffiffiffiffiffiffiffiffiffi
r
1r



2

p ½1þ u21
2r
1

þ u22
2r
2

��
3
2

( )

du:

Example 4 Generalized Cauchy covariance model

Consider now that s follows a Gamma density

h s; a; bð Þ ¼ basa�1 exp �bsf g=C að Þ; s[ 0; ð22Þ

with parameters a; b[ 0 which is a convolution of

hð�; a=2; bÞ with itself. The corresponding covariance

function is then obtained as

C uð Þ ¼
Z 1

0

s

2p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p exp � su21
2r1

� su22
2r2

� �

ba

C að Þ s
a�1 exp �bsf gds

¼ ba

2p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
C að Þ :

C aþ 1ð Þ
b
ð Þaþ1

;

where b
 ¼ bþ u2
1

2r1
þ u2

2

2r2
. We can rewrite it as an aniso-

tropic generalized Cauchy function

Caniso uð Þ ¼ a
2pb

ffiffiffiffiffiffiffiffiffiffi
r1r2

p 1þ u21
2r1b

þ u22
2r2b

� 	�ðaþ1Þ
; ð23Þ

with anisotropic parameters r
1 ¼ r1b; and r
2 ¼ r2b.
Equivalently,

Caniso uð Þ ¼ r2½1þ usR�1u��ðaþ1Þ;

where r2 ¼ a
2p
ffiffiffiffiffiffiffi
r

1
r

2

p is the variance and R is an anisotropic

diagonal matrix with elements 2r
1; 2r


2

� �
. So

Caniso uð Þ ¼ Ciso usR�1u
� �

;

where Ciso �ð Þ is an isotropic Cauchy covariance function

defined by Ciso mð Þ ¼ r2½1þ m��ðaþ1Þ
.

According to (4), the pair correlation function of a

LGCP model can be obtained as

ganiso uð Þ ¼ a

2p
ffiffiffiffiffiffiffiffiffiffi
r
1r



2

p ½1þ u21
2r
1

þ u22
2r
2

��ðaþ1Þ; ð24Þ

or equivalently,

ganiso uð Þ ¼ exp r2½1þ usR�1u��ðaþ1Þ
n o

:

Here, ganiso uð Þ ¼ giso usR�1u
� �

where giso �ð Þ is an isotropic

Cauchy pair correlation function defined by

giso mð Þ ¼ exp r2½1þ m��ðaþ1Þ
n o

.

Using (24) and (7), the anisotropic K-function over the

disc A ¼ Cð0; qÞ, denoted by KGC
aniso, is given by
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KGC
aniso qð Þ ¼

Z

kuk� q

a

2p
ffiffiffiffiffiffiffiffiffiffi
r
1r



2

p ½1þ u21
2r
1

þ u22
2r
2

��ðaþ1Þdu:

3.2 Non-elliptical and anisotropic exponential
super-ellipse covariance model

Let X be a LGCP driven by an anisotropic intensity func-

tion KðxÞ ¼ expfZðxÞg, where Z(x) is a zero-mean Gaus-

sian random field with variance r2 and an anisotropic

covariance function C(.). We are interested in building our

new anisotropic LGCP model based on an anisotropic

exponential super-ellipsoidal covariance function defined

in (12), where u ¼ ðu1; u2Þ is the separation vector and

ri; i ¼ 1; 2 are anisotropic covariance parameters in each

direction that are turned separately. Substituting (12) into

(4), we can obtain a close analytic form for the anisotropic

pair correlation function, given by

g uð Þ ¼ exp r2 exp � u1
r1

�
�
�
�

�
�
�
�

2
n

� u2
r2

�
�
�
�

�
�
�
�

2
n

( )( )

: ð25Þ

Consider a bounded set A ¼ Cðo; qÞ, and substituting (25)

into (7) we can obtain the K-function of our new model

over a disc A, denoted by KESEð:Þ, as

KESEðqÞ ¼
Z

kuk� q

exp r2 exp � u1
r1

�
�
�
�

�
�
�
�

2
n

� u2
r2

�
�
�
�

�
�
�
�

2
n

( )( )

du: ð26Þ

4 A moment-based estimation method

Let S denote a bounded window in R2. Suppose that X is a

LGCP model defined on S, driven by the random intensity

function KðxÞ ¼ exp cþ ZðxÞf g, where Z(x) is a Gaussian

process with anisotropic covariance parameters r1 and r2.
A parameter estimation procedure for these anisotropic

LGCP models is presented in this section. Let kð:Þ be the

intensity of X, a realization of the random intensity K. A
non-parametric kernel estimation method is often used to

estimate the intensity function of a realization of

X ¼ fxigni¼1, and is given by

bkðuÞ ¼
Xn

i¼1

kðu� xiÞ=eðxiÞ; ð27Þ

for any location point u � S, where k(u) is the kernel

function and eðuÞ ¼
R
kðu� vÞdv is an edge correction

(Diggle 1985; Baddeley et al. 2015). For parameter esti-

mation, we consider the least squares estimation method

that is a moment-based estimation technique based, in our

case, on minimizing a measure of the difference between a

theoretical K-function and an empirical one. Note that a

moment-based estimation method can be also constructed

in terms of the pair correlation function, but it is preferred

to consider the K-function rather than the pair correlation

function (Møller and Toftaker 2014). This procedure based

on g-function depends on the kernel estimator ĝ , and so a

suitable choice of the bandwidth in the kernel defined in ĝ

is clearly necessary. Using the K-function, we avoid kernel

estimation.

We also note that there are alternative several inferential

methods we can follow to estimate the parameters of our

models, such as likelihood-based estimation or Bayesian

estimation. For models as the ones we have with parame-

ters providing information on anisotropy, the likelihood

provides several possible local maximum estimates, and its

convergence can be very slow and can not even converge.

In these cases, the moment-based estimators are more

robust. We are not following the Bayesian approach as our

models are shown to have a close form of the summary

statistics that we can work with, and thus there is no need

to be helped by MCMC simulations of a posterior distri-

bution. We thus follow moment-based estimation and show

that this is a convenient and useful method of estimation

for our anisotropic models.

Assume that the model incorporates a vector of

unknown parameters h. Let KT and KE denote the theo-

retical and the empirical K-functions, respectively. A dis-

crepancy criterion to measure the difference between the

model, determined by KT , and empirical data, determined

by KE, is given by

D hð Þ ¼
Zq0

0

w qð Þ KT q; hð Þc�KE qð Þcf g2dq; ð28Þ

where the constant q0, the power transformation c, and the

weighting function w qð Þ are to be chosen. The value bh
obtained by minimizing (28) is considered the estimated

value of the vector of unknown parameters h. It is difficult
to give a general rule to choose the values q0 and c.

Expression (28) is sensitive to q0, and it should not be too

large (Diggle 2013). For data on a rectangular region with

side-lengths a and b, the value of q0 has to be larger than

0:25� min a; bð Þ. The function rmax.rule(.) in the spatstat

package helps to calculate this value. The values of c and

w qð Þ are related to the sampling fluctuations of the

empirical K-function KE qð Þ. These fluctuations increase

with q and so have direct influence on bh. Diggle (2013)

described how to choose q0 and c and suggested that, by

empirical experience with real and simulated data, c ¼ 0:5

and w qð Þ ¼ 1 is a reasonable choice when fitting a model

to regular patterns. However, for aggregated patterns c ¼

0:25 is usually more effective. The variance of

ffiffiffiffiffiffiffiffiffiffiffi
bK qð Þ

q
in
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Poisson processes does approximately not depend on q, so
for patterns which are not far different from complete

spatial randomness, c ¼ 0:5 is a good choice which acts as

a variance-stabilizing transformation (Besag 1977; Diggle

2013). In the general case, an inhomogeneous reduced

second moment measure for any bounded set A in R2 can

be estimated by

jEðAÞ ¼
X

xi;xj2S
xi 6¼xjð Þ

IA xj � xi
� �

bk xið Þbk xj
� � e xi; xj

� �
; ð29Þ

where S is a rectangular window with side-lengths a and b,

I stands for the indicator function that indicates if the

distance between points xi and xj lies in A, and e xi; xj
� �

is a

weighting function that corrects for edge effects. This

weighting function is defined by 1

v S\Sxj�xið Þ for the pairs of

points xi; xj
� �

, where v S \ Szð Þ, represents a measure of

the intersection of the set S with the translated set Sz,

which is the result of shifting the window S by the vector z.

For a rectangular set S, e xi; xj
� �

is the Ohser and Stoyan’s

translation edge correction, and in this case

v S \ Szð Þ ¼ a� nk kð Þ b� gk kð Þ
ab , where z ¼ n; gð Þ (Illian et al.

2008). The function edge.Trans(.) in package spatstat

computes Ohser and Stoyan’s translation edge correction

weights for a point pattern (Ohser 1983). Following Bad-

deley (1999) and Illian et al. (2008), it can be proved that

jEðAÞ is an unbiased estimator of jTðAÞ.
As an illustration of the validity of the least square

method, we present two cases, one elliptical and another

one a non-elliptical example. For an elliptical model,

consider an inhomogeneous and anisotropic two-dimen-

sional LGCP with a Gaussian covariance function as in

Eq. (3). Assume r1 ¼ 0:05, and r2 ¼ 0:8. Consider the

function k xð Þ ¼ exp cþ Z xð Þf g for the intensity function,

with Z a Gaussian random field. Here, we have fixed c ¼ 5.

As a second illustration for a non-elliptical model, consider

an inhomogeneous and anisotropic two-dimensional LGCP

with a non-elliptical exponential super-ellipse covariance

function as in Sect. 3.2. Assume r1 ¼ 0:04, r2 ¼ 0:2 and

r2 ¼ 1. Consider the function k xð Þ ¼ exp cþ Z xð Þf g for

the intensity function, with Z a Gaussian random field with

an exponential super-ellipse covariance function.

Our goal is to estimate the (usually unknown) values of

the anisotropic covariance parameters r1 and r2. We make

use here, and in the next sections, of the R packages

RandomFields (Schlather et al. 2015), spatstat (Baddeley

and Turner 2005), fields, mvtnorm and plotly. In these

packages, we can find all the necessary functions that we

have used for simulation, model fitting and model valida-

tion of our models.

We first simulated a zero mean Gaussian random field

Zð�Þ with a Gaussian covariance function as in Eq. (3) on

the unit square S ¼ 0; 1½ � � 0; 1½ �, as shown as a pixel

image in Fig. 3 (top left). We then obtained the intensity

function kð�Þ, as a realization of the simulated random field.

This intensity is shown as an image in Fig. 3 (top right).

Based on this intensity image, we simulated a realization of

an inhomogeneous Poisson point process with 286 events,

as shown in Fig. 3 (bottom left). Finally, we estimated the

anisotropic parameters. We used (8) as the theoretical K-

function over a disc A, and (29) as the corresponding

empirical estimator for the least square function D hð Þ in

(28), where A denotes a disc centered at the origin with

radius q. Figure 3 (bottom right) shows the least square

function DðhÞ with respect to different values of r1 and r2.
We note that this function has a minimum, and its mini-

mization provides br1 ¼ 0:04381 and br2 ¼ 0:83741, values

that are certainly close to the initial ones, providing a

graphical and simple indication that the least square

method presented in (28) works for parameter estimation.

For second non-elliptical example, we first simulated a

zero mean Gaussian random field Zð�Þ with an exponential

super-ellipse covariance function as in Eq. (12), as

described in Sect. 3.2, on the unit square

S ¼ 0; 1½ � � 0; 1½ �, as shown as a pixel image in Fig. 4 (top

left). Then, we obtained the corresponding intensity func-

tion which is shown as an image in Fig. 4 (top right). In

terms of this intensity pixel image, we simulated a real-

ization of an inhomogeneous LGCP with 243 events, as

shown in Fig. 4 (bottom left). Finally, as described above,

we used the least square function defined in (28) to proceed

with the estimation of the anisotropic parameters, where

(26) was considered as the theoretical K-function, and (29)

as the corresponding empirical K-function. The least square

function DðhÞ with respect to different values of r1 and r2
is shown in Fig. 4 (bottom right) which shows a minimum

value at br1 ¼ 0:04216 and br2 ¼ 0:19973; both are quite

close to the true values, and again confirms that the least

square method works well for parameter estimation.

5 Simulation experiments

We carried out a simulation study for a number of sce-

narios to investigate the performance of our estimation

procedure. We assume to work on the unit square,

S ¼ 0; 1½ � � 0; 1½ � � R2. For each LGCP model described

in Sect. 3, we simulated 200 realizations for known values

of the anisotropic parameters, and estimated them using our

proposed moment-based method as presented in Sect. 4.

We additionally checked the goodness-of-fit of our four

LGCP models.
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We first considered 200 realizations from the anisotropic

LGCP in Example 1 of Sect. 3.1.1, based on the aniso-

tropic Gaussian covariance function in Eq. (3), with scale

parameters given by r1 ¼ 0:05 and r2 ¼ 0:8. We refer to

this case as Model 1. Figure 5, row 1, represents a simu-

lation of the corresponding underlying random field Zð�Þ
with covariance function given in (3), together with the

intensity KðxÞ ¼ exp cþ ZðxÞf g, with a fixed value c ¼ 5

and a realization with 286 points of the anisotropic LGCP

for Model 1.

As a second scenario, we considered 200 realizations

from the anisotropic LGCP in Example 3 of Sect. 3.1.2,

based on the anisotropic generalized Cauchy covariance

function defined in Eq. (20), with anisotropic parameters

given by r1 ¼ 0:2 and r2 ¼ 0:045, and with the scale

parameter of the Cauchy covariance b ¼ 1. We refer to this

case as Model 2. Figure 5, row 2, represents a simulation of

the corresponding underlying random field Zð�Þ with

covariance function given in (20), together with the

intensity KðxÞ ¼ exp cþ ZðxÞf g with c ¼ 6 and a realiza-

tion with 265 points of the anisotropic LGCP for Model 2.

As a third scenario, we considered 200 realizations from

the anisotropic LGCP in Example 4 of Sect. 3.1.2, based

on the anisotropic generalized Cauchy covariance function

defined in Eq. (23), with anisotropic parameters given

by r1 ¼ 3:5 and r2 ¼ 1:7, and with the scale parameters

of the Cauchy covariance a ¼ 2 and b ¼ 1. We refer to this

case as Model 3. Figure 5, row 3, represents a simulation of

the corresponding underlying random field Zð�Þ with

covariance function given in (23), together with the

intensity KðxÞ ¼ exp 6þ ZðxÞf g and a realization with 442

points of the anisotropic LGCP for Model 3.

Finally, and for a fourth scenario, we considered 200

realizations from the non-elliptical and anisotropic LGCP

described in Sect. 3.2, based on the anisotropic exponential

super-ellipse covariance function in (12), with anisotropic

parameters given by r1 ¼ 4 and r2 ¼ 2, and variance

r2x ¼ 1. We refer to this case as Model 4. Figure 5, row 4,

represents a simulation of the corresponding underlying

random field Zð�Þ with covariance function given in (12),

together with the intensity KðxÞ ¼ exp cþ ZðxÞf g with c ¼

Fig. 3 Top left: Simulated random field with a Gaussian covariance

function as in Eq. (3) on the unit square S ¼ 0; 1½ � � 0; 1½ �. Top right:
Intensity image as a realization coming from the exponmential of the

random field. Bottom left: A realization of the inhomogeneous

Poisson process giving rise to an anisotropic LGCP with 286 points.

Bottom right: The least square function
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5 and a realization with 188 points of the anisotropic LGCP

for Model 4.

Models 1–4 in Fig. 5 should show some sort of aniso-

tropy. For a simple assessment of anisotropy, we follow

Baddeley et al. (2015) that suggested to compare the sector

K-function for two 30� sectors centred on the x and y axes,

i.e., the angle between -15� and 15� and the angle between
90� 15� and 90þ 15�, measured anticlockwise from the

x-axis. Anisotropy would be suggested if these two func-

tions were unequal. Figure 6 shows the sector K-functions

for 30� sectors centred on the horizontal and vertical axis

for the particular realization chosen in Fig. 5 for each one

ofModels 1–4. Anisotropy is clear in all cases, in particular

in Models 1,2, for which the two sector K-functions are

certainly different.

Our simulations come from models for which we know

the theoretical analytical form. We thus, as an additional

assessment, compare the empirical K-function coming

from the simulated patterns with the theoretical anisotropic

K-function. We also consider the K-function under a

Poisson process over a disc centered at the origin with

radius q, whose form is KPois qð Þ ¼ pq2 (see Fig. 7).

It is clearly noted that all four models reflect a clustering

behavior as the K-functions are all above the Poisson

function, and, as expected, the empirical and theoretical K-

functions behave in a similar way far from the random

case, represented by the Poisson functions. This is a direct

consequence of the structure imposed by a LGCP with a

varying intensity depending on a random field with a par-

ticular correlation structure. The implication of clustering

is that the conditional intensity of cases at an arbitrary

location y, given a case at a nearby location x, is greater

than the unconditional intensity of cases at y, i.e., clustering

involves a form of dependence between cases.

Finally, we estimated all parameters of the four models

for each one of the 200 realizations. The results in form of

point estimations, mean absolute percentage error (MAPE),

Fig. 4 Top left: Simulated random field with an exponential super-

ellipse covariance function as in Eq. (12) on the unit square

S ¼ 0; 1½ � � 0; 1½ �. Top right: Intensity image as a realization of the

exponential of the random field. Bottom left: A realization of the

inhomogeneous Poisson process giving rise to an anisotropic LGCP

with 243 points. Bottom right: The least square function
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mean squared error (MSE), standard deviations (SD), and

confidence intervals (CI) are shown in Table 1.

We note that the estimations are close to the theoretical

values of the parameters, and the corresponding MAPE,

MSE and SD values are certainly small. Also, the true

values of the parameters h are well inside the 95% confi-

denceintervals, given by bh � 1:96SD bh

 �

, where h stands

for any particular parameter (a;r1; r2; r2).These results are
reinforced by graphical outputs in terms of histograms and

boxplots (see Figs. 8 and 9). The true parameters are

clearly lying inside the distribution of the estimated

parameters. Only in one case, we find a small number of

outliers, but even for this case, the difference with respect

to the mean is so small that they have no particular effect.

Also, Fig. 10 shows the theoretical K-function based on the

true values of parameters and the theoretical K-functions

coming from the estimated values for each model. In all

cases, the theoretical K-function based on the true values

are well inside the theoretical K-functions coming from the

estimated parameters, which is an indication of robust

behavior of the estimation procedure.

We note that the moment-based estimator based on a

minimum contrast method provides a reasonable perfor-

mance for all mentioned models. The estimation for all

parameters are close to the theoretical ones with a small

variation in all cases. They show some symmetry and there

are hardly outlying estimates. The procedure works equally

fine for all the new theoretical models.

6 Application: analysis of earthquake
datasets

Earthquakes are the most unpredictable and devastating

natural disasters which are usually caused when rock

underground suddenly breaks along a fault. This releases a

sudden energy that causes the seismic waves making the

ground shake. When high-intensity earthquakes strike, they

can cause massive devastation, thousands of deaths, and

lots of economical losses in damaged properties. The level

of damages mainly depends on the earthquake magnitude

and depth.

We have considered two datasets of earthquakes, one in

South America and the other in the Mediterranean Europe,

see Fig. 11. The datasets include the occurrence times,

magnitudes, longitude, latitude, and depth. In particular, we

focussed on the epicenters of those earthquakes with

magnitude equal or larger than 4 occurred between January

1950 and June 1998.

6.1 Analysis of earthquakes in South America

We considered earthquake events with magnitude equal or

larger than 4 occurred between January 1950 and June

1998 in South America within a rectangular region of lat-

itude between �58S and 18N, and longitude between

�80W and �40E. The dataset contains 586 earthquakes, as

shown in Fig. 12.

We first assessed the condition of anisotropy as descri-

bed in Sect. 5. Figure 13 shows the corresponding sector K-

functions for 30� sectors centred on the horizontal and

vertical axis for the South America earthquake events. We

see that both sector K-functions are clearly different indi-

cating an anisotropic behavior.

We estimated the intensity function by the non-para-

metric kernel estimator given by (27). This estimated

intensity is plugged into the empirical estimator of the K-

function (see Eq. (29)). Although we fitted all models

(Models 1–4), we only report the results of Models 1,4, as

the other two were not providing a good fit. We thus fit-

tedthe elliptic anisotropic LGCP based on the anisotropic

Gaussian covariance function in (3) (Model 1), and the

non-elliptic anisotropic LGCP based on the anisotropic

exponential super-ellipse covariance function in (12)

(Model 4), respectively. We used the least square method

given in (28) to estimate the anisotropic parameters.

Optimization of the least square function resulted in the

following estimates: r̂1 ¼ 0:15232 and r̂2 ¼ 0:03307 for

Model 1, and r̂1 ¼ 0:35145, r̂2 ¼ 1:254 and r2 ¼ 1:0124

for Model 4.

We highlight the clustering behavior of the earthquakes

indicated by the fact that the empirical K-function esti-

mated from the events is far from (and on top of) the K-

function under a Poisson process, as shown in Fig. 14.

Finally, to formally assess the goodness-of-fit of Models

1,4 to the earthquake events, we simulated 39 point pat-

terns with the estimated parameters coming from the fit of

both models. We calculated the envelopes from the

bFig. 5 Representations of the random fields (First column), and of

intensities and point pattern realizations of the anisotropic LGCP

(Second column) for each one of the four models considered (each

row represents Model 1 up to Model 4). Row 1: Random field Zð�Þ
with covariance function as in (3), and intensity KðxÞ ¼
exp 5þ ZðxÞf g together with a realization of the inhomogeneous

Poisson process, for Model 1. Row 2: Random field Zð�Þ with

covariance function as in (20), and intensity KðxÞ ¼ exp cþ ZðxÞf g,
with a fixed value c ¼ 6, together with a realization of the

inhomogeneous Poisson process, for Model 2. Row 3: Random field

Zð�Þ with covariance function as in (23), and intensity

KðxÞ ¼ exp 6þ ZðxÞf g, together with a realization of the inhomoge-

neous Poisson process, for Model 3. Row 4: Random field Zð�Þ with
covariance function as in (12), and intensity KðxÞ ¼ exp 5þ ZðxÞf g,
together with a realization of the inhomogeneous Poisson process, for

Model 4
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Fig. 6 Assessment of anisotropy

using sector K-functions for the
realizations in Fig. 5. First
column: Sector K-functions for
30� sectors centred on the

horizontal axis. Second column:
Sector K-functions for 30�

sectors centred on the vertical

axis. Each row corresponds to

each one of the four considered

models, respectively
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simulated patterns based on the empirical empty-space F-

functions providing a 95% confidence interval (Baddeley

et al. 2015), and compared them with the empirical F-

function from the data. We mark two points here. The

goodness-of-fit is done through the F-functions to avoid

using the same K-functions in both fitting and assessing

goodness-of-fit. Also, we have used 39 simulations fol-

lowing Baddeley et al. (2015, page 401) to achieve a %95-

confidence interval, using the suggested formula 2
mþ1

,

where m is the number of simulations. However, we have

also run model checking under m ¼ 99 simulations and the

results remain basically unchanged.

As shown in Fig. 15, the empirical F-function runs

within the envelopes indicating that both models provide a

good fit, and thus represent good theoretical models for the

earthquake events in South America.

6.2 Analysis of earthquakes
in the Mediterranean Europe

The second dataset corresponds to earthquake events in the

Mediterranean Europe with magnitude equal or larger than

4 that occurred between January 1950 and June 1998

within a rectangular region of latitude between 30S and

50N, and longitude between �20W and �42E, containing

211 earthquakes, as shown in Fig. 16.

We again used sector K-functions to assess for possible

anisotropic behavior (see Fig. 17). Both sector K-functions

clearly differ indicating the existence of such anisotropic

condition.

We estimated the intensity function using the non-

parametric kernel estimator given by (27) together with the

K-function in (29). Again, after fitting all four models, we

only report here those that provided a good fit. We fitted

Fig. 7 Comparison of empirical K-functions (Em-K) with theoretical ones (Theo-K) over a disc for Models 1–4,First row: Model 1 and Model 2,
and Second row: Model 3 and Model 4 (from left to right, respectively), and with the K-function under a Poisson point process (Poiss-K)
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Models 1,4 and used the least square method to estimate

the anisotropic parameters. The optimum values were r̂1 ¼
0:028339 and r̂2 ¼ 0:25123 for Model 1, and

r̂1 ¼ 0:031325, r̂2 ¼ 1:2125454 and r2 ¼ 0:0031565 for

Model 4.

Figure 18 depicts the empirical and theoretical K-func-

tions together with that under Poissoness. There is an

indication of clustering.

We finally proceeded to formally assess the goodness-

of-fit of both models, and simulated 39 point patterns with

the estimated parameters coming from the fit of Model 1

and Model 4 to the events. The envelopes were obtained

using F-functions as in the previous data analysis. Fig-

ure 19 shows that the empirical F-function runs within the

envelopes indicating that both models provide a good

theoretical model for the earthquakes events in the

Mediterranean Europe.

Table 1 Point estimations,

mean absolute percentage error

(MAPE), mean squared error

(MSE), standard deviations

(SD), and confidence intervals

(CI) of the estimated parameters

for Models 1–4

Models Model 1 Model 2 Model 3 Model 4

Parameters

a - - 2 -

b - 1 1 -

r1 0.05 0.2 3.5 4

r2 0:8 0.045 1.7 2

r2 - - - 1

Point estimations

ba - - 2.009 -

br1 0.04956 0.19979 3.50115 3.96073

br2 0.79477 0.04485 1.71045 2.00761

cr2 - - - 1.00073

MAPE

ba - - 0.0334 -

br1 0.18089 0.01797 0.00985 0.35484

br2 0.06454 0.03456 0.04382 0.15852

cr2 - - - 0.17878

MSE

ba - - 0.00663 -

br1 0.00012 0.00003 0.00162 1.462796

br2 0.00407 0.000004 0.00808 0.07489

cr2 - - - 0.02141

SD

ba - - 0.08113 -

br1 0.01081 0.0052 0.04035 0.85539

br2 0.06378 0.00187 0.0895 0.1936

cr2 - - - 0.10359

CI

ba1 - - ð1:99775; 2:02025Þ -

br1 ð0:04806; 0:05106Þ ð0:19906; 0:20051Þ ð3:49556; 3:50675Þ ð3:84217; 4:07928Þ
br2 ð0:78593; 0:80361Þ ð0:04459; 0:04511Þ ð1:69804; 1:72286Þ ð1:98077; 2:03444Þ
cr2 - - - ð0:98636; 1:01508Þ
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Fig. 8 Histograms and boxplots

for the estimation of r1 (Top
block) and r2 (Bottom block)
using the minimum contrast

method over a disc. First
column: Model 1 case, Second
column: Model 2 case
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Fig. 9 Histograms and boxplots

for the estimation of the

parameters using the minimum

contrast method over a disc.

First column: Plots for the
estimation of r1 (Top block), r2
(Center block), and a (Bottom
block), for Model 3. Second
column: Plots for the estimation

of r1 (Top block), r2 (Center

block), and r2 (Bottom block),
for Model 4
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7 Conclusions and discussion

LGCPs provide a useful class of models, not only for point

process data but also for any problem involving the pre-

diction of an incompletely observed spatial (or spatio-

temporal) process, irrespective of data format. There are

still open developments in statistical computation, param-

eter estimation, and probabilistic prediction for relatively

large data sets, and for particular structural behavior, such

as when main directions are present in the point pattern. In

particular, areas of current methodological research are the

formulation of models and methods for principled statisti-

cal analysis that handle anisotropy in a routinely way.

We have introduced some new classes of elliptical and

non-elliptical anisotropic LGCP models for modeling ani-

sotropic spatial point patterns that exhibit a certain degree

of clustering. The former class of models can be reduced to

isotropic forms after some rotations. The latter family is

beyond this property and is not reducible to isotropic forms

after a rotation. We used two strategies to build these new

classes of LGCPs, providing some anisotropic character-

istics. The first strategy provides some anisotropic covari-

ance functions and then build the anisotropic LGCP in

terms of these covariance functions. This strategy uses two

methods. The first method uses the convolution of aniso-

tropic kernel functions, while the second method obtains

Fig. 10 Theoretical K-function based on the true value of parameters (black color) and theoretical K-function based on the point estimations

(gray color) for each Model 1–4,First row: Model 1 and Model 2, and Second row: Model 3 and Model 4, from left to right, respectively
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the anisotropic covariance function through normal vari-

ance mixture functions. The second strategy builds the

anisotropic LGCP in terms of a non-elliptical anisotropic

covariance function. The second-order properties of these

models can be studied easily since the pair correlation

functions have closed and tractable analytical forms. The

new classes are easy to estimate using a method of

moments.

This paper contributes to the literature enlarging the

family of LGCPs when modeling anisotropic behavior. In a

more practical aspect, we found two good models for

earthquake events.

We have studied the second-order characteristics of our

model over a centred disc with radius q, denoted by

A ¼ Cð0; qÞ. However, following Ohser and Stoyan

(1981), Illian et al. (2008), and Baddeley et al. (2015),

other convenient choices could consider A as a sector of a

disc, which is the part of the disc of radius q lying between

two lines at orientations h0 and h1, or a sector-ring of a

disc, i.e., the sector between two discs, one with radius q1
and the other with radius q2, where 0� q1; q2\q. The
properties of our LGCP models over these bounded sets

can be easily obtained with the same calculations. This is a

valuable topic of coming research for anisotropic LGCPs.

Fig. 11 Locations of earthquakes in the selected regions of South America and the Mediterranean Europe

Fig. 12 Locations of earthquakes with magnitude equal or larger than

4 in South America, occurred between January 1950 and June 1998

within a rectangular region of latitude between �58S and 18N, and

longitude between �80W and �40E
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We have restricted to univariate classes of spatial pat-

terns. However, the extension to the spatio-temporal case

and to the multivariate one in the context of anisotropic

LGCPs will be a welcome line of research. We note that

the log-linear formulation of a LGCP is convenient because

of the tractable moment properties of the log-Gaussian

distribution. In the extension to spatio-temporal models, we

represent the data as the locations, xi, and the

corresponding times, ti, by fðxi; tiÞ; i ¼ 1; � � � ; ng, where
each ðxi; tiÞ 2 S� T for some defined spatial region S and

continuous time-interval T. A spatio-temporal anisotropic

LGCP is defined as a spatio-temporal Cox process driven

by the realization of a random intensity function

Kðx; tÞ ¼ expfZðx; tÞg, where Z(.) is an anisotropic Gaus-

sian process with mean l, variance r2, and covariance

function C(., .). The covariance function can be considered

Fig. 13 Anisotropy analysis using sector K-functions for South America earthquake events depicted in Fig. 12. Left: Sector K-function for a 30�

angle centred on the horizontal axis. Rigth: Sector K-function for a 30� angle centred on the vertical axis

Fig. 14 Empirical K-function for the South America earthquake events (red line), K-function under a Poisson point process (green line), and

theoretical K-functions (black) under Model 1 (left), and Model 4 (right)
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as a separable or non-separable function. Then, we can

follow all the steps by changing the spatial points to spatio-

temporal ones.

In the spatio-temporal context, it also gives the model a

natural interpretation as a multiplicative decomposition of

the overall intensity into deterministic and stochastic

components. However, it can lead to very highly skewed

marginal distributions, with large patches of near-zero

intensity interspersed with sharp peaks. This is again a

topic that is worth of coming research for spatio-temporal

LGCPs exhibiting some kind of anisotropy.

Fig. 15 Envelopes based on the F-function for the earthquake events

in South America. Empirical function comes in black, and the

pointwise envelopes (shaded region) are obtained from simulations of

the LGCP of Model 1 (left), and Model 4 (right). The red line

represents a mean F-function from the simulations

Fig. 16 Locations of earthquake events with magnitude equal or

larger than 4 in the Mediterranean Europe, occurred between January

1950 and June 1998 within a rectangular region of latitude between

30S and 50N, and longitude between �20W and �42E

Fig. 17 Anisotropy analysis using sector K-functions for the Mediterranean Europe earthquake events depicted in Figure 16. Left: Sector K-
function for a 30� angle centred on the horizontal axis. Rigth: Sector K-function for a 30� angle centred on the vertical axis

Stochastic Environmental Research and Risk Assessment (2021) 35:183–213 205

123



Acknowledgments This paper is supported by grants P1-1B2015-40,

UJI-B2018-04, and MTM2016-78917-R, from the Spanish Ministry

of Economy and Competitivity.

Appendix

This Appendix considers some calculations for Models 1–4

under the case of A being an ellipse, or a part of an ellipse

(for example, a sector-ellipse or a ring of an ellipse).

In obtaining the second-order properties of Models 1–3,

since the covariance functions have an elliptical form, we

here also consider A an ellipse, or a part of an ellipse (a

sector-ellipse or a ring of an ellipse). In the elliptical set, as

we have the condition
u2
1

a2 þ
u2
2

b2 � q2, we are only successful

in obtaining the close form for K-functions when a and b

are written in terms of the unknown anisotropic parameters

r1 and r2. Also, the same calculations for Model 4, with an

exponential super-ellipse covariance function, were done

with considering A as a super-ellipse with the form

j u1a j
2 þ j u2b j

2 � q2, where a and b are equal to the unknown

anisotropic parameters r1 and r2.
Although all calculations coming in the Appendix show

close forms for the K-functions, we have preferred shifting

them here as the obtained close forms depend on the

unknown parameters.

Fig. 18 Empirical K-function for the Mediterranean Europe earthquake events (red line), K-function under a Poisson point process (green line),

and theoretical K-functions (black) under Model 1 (left), and Model 4 (right)

Fig. 19 Envelopes based on the F-function for the earthquake events

in the Mediterranean Europe. Empirical function comes in black, and

the pointwise envelopes (shaded region) are obtained from

simulations of the LGCP of Model 1 (left), and Model 4 (right).
The red line represents a mean F-function from the simulations
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Model 1

K-function over an ellipse.

In (7), we considered A as an ellipse centred at the origin

with semi-minor and semi-major axes a ¼ 2
ffiffiffiffiffi
r1

p
q and

b ¼ 2
ffiffiffiffiffi
r2

p
q, denoted by A ¼ Eð0; a; bÞ. The anisotropic K-

function over A, denoted here as KE
aniso qð Þ, is given by

KE
aniso qð Þ ¼

Z Z

u2
1

4r1
þ

u2
2

4r2
� q2

g u1; u2ð Þdu1du2:
ð30Þ

Substitution of (5) into (30) gives

KE
aniso qð Þ ¼

Z Z

u2
1

4r1
þ

u2
2

4r2
� q2

exp p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
exp � u21

4r1
� u22
4r2

� �� �

du1du2:

Then, applying a change of variables to the polar coordi-

nate transformation u1 ¼ 2
ffiffiffiffiffi
r1

p
r cos h and u2 ¼

2
ffiffiffiffiffi
r2

p
r sin h with 0� r� q and 0� h� 2p. The Jacobean is

thus 4r
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
. So,

KE
aniso qð Þ ¼

Z 2p

0

Z q

0

4
ffiffiffiffiffiffiffiffiffiffi
r1r2

p

exp p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
exp �r2
� �� �

rdrdh:

ð31Þ

Using Maclaurin series, a closed form for the K-function is

given by

KE
aniso qð Þ ¼

Z 2p

0

Z q

0

4
ffiffiffiffiffiffiffiffiffiffi
r1r2

p X1

n¼0

p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
exp �r2
� �� �n

n!
rdrdh

¼
X1

n¼0

4
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� �n

n!
Z 2p

0

Z q

0

exp �nr2
� �

rdrdh

¼4p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
q2 þ

X1

n¼1

4 p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� �nþ1

n:n!

1� exp �nq2
� �� �

:

ð32Þ

By the Ratio Test, it can be proved that the series in (32)

converges absolutely, and hence will converge. In a more

explicit expression, if we write

an ¼
p
ffiffiffiffiffiffiffi
r1r2

pð Þnþ1

n:n! exp �nq2
� �

� 1
� �

, then

lim
n!1

anþ1

an

�
�
�
�

�
�
�
� ¼ lim

n!1

p
ffiffiffiffiffiffiffi
r1r2

pð Þnþ2

nþ1ð Þ: nþ1ð Þ! exp � nþ 1ð Þq2
� �

� 1
� �

p
ffiffiffiffiffiffiffi
r1r2

pð Þnþ1

n:n! exp �nq2f g � 1ð Þ

�
�
�
�
�
�
�

�
�
�
�
�
�
�

¼ lim
n!1

np
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
exp � nþ 1ð Þq2
� �

� 1
� �

nþ 1ð Þ2 exp �nq2f g � 1ð Þ

�
�
�
�
�

�
�
�
�
�

¼ap lim
n!1

n exp � nþ 1ð Þq2
� �

nþ 1ð Þ2 exp �nq2f g � 1ð Þ

�
�
�
�
�

� n

nþ 1ð Þ2 exp �nq2f g � 1ð Þ

�
�
�
�
�

� p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
lim
n!1

n exp � nþ 1ð Þq2
� �

nþ 1ð Þ2 exp �nq2f g � 1ð Þ

�
�
�
�
�

�
�
�
�
�

(

þ n

nþ 1ð Þ2 exp �nq2f g � 1ð Þ

�
�
�
�
�

�
�
�
�
�

)

:

The first part at the right-hand side converges to zero

because

lim
n!1

n exp � nþ 1ð Þq2
� �

nþ 1ð Þ2 exp �nq2f g � 1ð Þ

�
�
�
�
�

�
�
�
�
�

¼ lim
n!1

n

nþ 1ð Þ2
:
exp � nþ 1ð Þq2
� �

exp �nq2f g � 1ð Þ

¼ lim
n!1

n

nþ 1ð Þ2

� lim
n!1

exp nq2
� �

exp nq2f g exp q2f g � exp nq2f g exp nþ 1ð Þq2f gð Þ ¼ 0:

The second part again converges to zero using L’Hopital

rule,

lim
n!1

n

nþ 1ð Þ2 exp �nq2f g � 1ð Þ

�
�
�
�
�

�
�
�
�
�

¼ lim
n!1

1

2 nþ1ð Þ
exp nq2f g � 2 nþ 1ð Þ � q2 nþ1ð Þ2

exp nq2f g

¼ 0;

since

lim
n!1

2 nþ 1ð Þ
exp nq2f g ¼ 0; lim

n!1
2 nþ 1ð Þ ¼ 1;

lim
n!1

q2
nþ 1ð Þ2

exp nq2f g ¼ 0:

Thus lim
n!1

anþ1

an

�
�
�

�
�
� is less than 1, and the series defined in (32)

for KE
aniso qð Þ converges.

K-function over a sector-ellipse.

As a second case, we consider A a sector of an ellipse, i.e.,

the part of an ellipse lying between two lines at orientations

h0 and h1. For the sector-ellipse K-function, denoted as
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KSE
aniso �ð Þ, since the upper bound of the inner polar integral

in (31) does not depend on the angles, we only used the

angles h0 � h� h1 instead of 0� h� 2p, and obtained

KSE
aniso qð Þ ¼

Z h1

h0

Z q

0

4
ffiffiffiffiffiffiffiffiffiffi
r1r2

p

exp p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
exp �r2
� �� �

rdrdh

¼2ðh1 � h0Þ
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
q2

þ
X1

n¼1

ðh1 � h0Þ p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� �n ffiffiffiffiffiffiffiffiffiffi
r1r2

p n

n:n!

� 1� exp �nq2
� �� �

:

ð33Þ

The K-function over a sector-ring of an ellipse

As a final case, we considered A a sector-ring of an ellipse.

We assumed A1 is a sector-ellipse centred at the origin with

semi-minor and semi-major axes a1 ¼ 2
ffiffiffiffiffi
r1

p
q1 and

b1 ¼ 2
ffiffiffiffiffi
r2

p
q1, and A2 a sector-ellipse centred at the origin

with semi-minor and semi-major axes a2 ¼ 2
ffiffiffiffiffi
r1

p
q2 and

b2 ¼ 2
ffiffiffiffiffi
r2

p
q2, both lying between two lines at constant

orientations h0 and h1 and q1\q2. With considering A a

sector-ring lying between the sector-ellipse of A1 and the

sector-ellipse of A2, the anisotropic K-function over A,

denoted by KSRE
aniso q1; q2ð Þ is obtained as

KSRE
aniso q1; q2ð Þ
¼ KSE

aniso q2ð Þ n KSE
aniso q1ð Þ

¼
Z h1

h0

Z q2

0

4
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
exp p

ffiffiffiffiffiffiffiffiffiffi
r1r2

p
exp �r2
� �� �

rdrdh

�
Z h1

h0

Z q1

0

4
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
exp p

ffiffiffiffiffiffiffiffiffiffi
r1r2

p
exp �r2
� �� �

rdrdh

¼ 2ðh1 � h0Þ
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
q22

þ
X1

n¼1

ðh1 � h0Þ p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� �n ffiffiffiffiffiffiffiffiffiffi
r1r2

p n

n:n!
1� exp �nq22

� �� �

� 2ðh1 � h0Þ
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
q21

�
X1

n¼1

ðh1 � h0Þ p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� �n ffiffiffiffiffiffiffiffiffiffi
r1r2

p n

n:n!
1� exp �nq21

� �� �

¼ 2ðh1 � h0Þ
ffiffiffiffiffiffiffiffiffiffi
r1r2

p ðq22 � q21Þ

þ
X1

n¼1

ðh1 � h0Þ p
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� �n ffiffiffiffiffiffiffiffiffiffi
r1r2

p n

n:n!

� exp �nq21
� �

� exp �nq22
� �� �

:

Model 2

The K-function over an ellipse

In Model 2, the anisotropic K-function over the centred

ellipse A ¼ Eð0; a; bÞ with semi-minor and semi-major

axes a ¼ 2
ffiffiffiffiffiffiffiffi
r1b

p
q and b ¼ 2

ffiffiffiffiffiffiffiffi
r2b

p
q, denoted by KE

aniso :ð Þ,
is obtained by combination of Eqs. (7) and (21), as follows

KE
aniso qð Þ ¼

Z Z

u2
1

2r1b
þ

u2
2

2r2b
� q2

exp
1

4pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
�

1þ u21
2r1b

þ u22
2r2b

� 	�3
2

)

du1du2:

Using polar coordinates and the Taylor expansion, the

closed form of the K-function is given by

KE
aniso qð Þ

¼ 2b
ffiffiffiffiffiffiffiffiffiffi
r1r2

p Z 2p

0

Z q

0

exp
1

4pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p ½1þ r2��
3
2

� �

rdrdh

¼ 4pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p Z q

0

X

n¼0

1 1
4pb

ffiffiffiffiffiffiffi
r1r2

p ½1þ r2��
3
2

n on

n!
rdr

¼ 4pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p X

n¼0

1 ½4pb ffiffiffiffiffiffiffiffiffiffi
r1r2

p ��n

ð2� 3nÞn! ½ð1þ q2Þ
2�3n
2 � 1�

¼
X

n¼0

1 ½4pb ffiffiffiffiffiffiffiffiffiffi
r1r2

p �1�n

ð2� 3nÞn! ½ð1þ q2Þ
2�3n
2 � 1�:

ð34Þ

Using the Ratio Test, it is easy to show that this series

converges. Assume that an ¼ ½4pb ffiffiffiffiffiffiffir1r2
p �1�n

2�3n
2
n!

½ð1þ q2Þ2�3n � 1�, then

lim
n!1

anþ1

an
¼ lim

n!1

½4pb ffiffiffiffiffiffiffir1r2
p �1�ðnþ1Þ

ð2�3ðnþ1ÞÞðnþ1Þ! ½ð1þ q2Þ
2�3ðnþ1Þ

2 � 1�
½4pb ffiffiffiffiffiffiffir1r2

p �1�n

ð2�3nÞn! ½ð1þ q2Þ
2�3n
2 � 1�

¼ lim
n!1

1

nþ 1
:
2� 3n

�1� 3n
:½4pb ffiffiffiffiffiffiffiffiffiffi

r1r2
p ��1

ð1þ q2Þ
2�3ðnþ1Þ

2 � 1

ð1þ q2Þ
2�3n
2 � 1

" #

¼0:

The K-function over a sector-ellipse.

We also obtain the sector-ellipse K-function for an angle

h0 � h� h1, with semi-minor and semi-major axes a ¼
2
ffiffiffiffiffiffiffiffi
r1b

p
q and b ¼ 2

ffiffiffiffiffiffiffiffi
r2b

p
q. In particular, KSE

aniso is obtained

as the form
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KSE
aniso qð Þ ¼ h1 � h0ð Þ 2b

ffiffiffiffiffiffiffiffiffiffi
r1r2

pð Þ1
X

n¼0

½4pb ffiffiffiffiffiffiffiffiffiffi
r1r2

p ��n

ð2� 3nÞn! ½ð1þ q2Þ
2�3n
2 � 1�:

ð35Þ

Using the same procedure as in (34), this series can be

shown to converge.

The K-function over a sector-ring of an ellipse

Finally, the anisotropic K-function over the sector-ring of

an ellipse A with a1 ¼ 2
ffiffiffiffiffiffiffiffi
r1b

p
q1, b1 ¼ 2

ffiffiffiffiffiffiffiffi
r2b

p
q1, a ¼

2
ffiffiffiffiffiffiffiffi
r1b

p
q2 and b ¼ 2

ffiffiffiffiffiffiffiffi
r2b

p
q2, is given by

KSRE
aniso q1; q2ð Þ ¼ KSE

aniso q2ð Þ n KSE
aniso q1ð Þ

¼
Z h1

h0

Z q2

0

exp
1

4pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p ½1þ r2��
3
2

� �

rdrdh

�
Z h1

h0

Z q1

0

exp
1

4pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p ½1þ r2��
3
2

� �

rdrdh

¼ h1 � h0ð Þ 2b
ffiffiffiffiffiffiffiffiffiffi
r1r2

pð Þ
X

n¼0

1 ½4pb ffiffiffiffiffiffiffiffiffiffi
r1r2

p ��n

ð2� 3nÞn! ½ð1þ q22Þ
2�3n
2 � 1�

� h1 � h0ð Þ 2b
ffiffiffiffiffiffiffiffiffiffi
r1r2

pð Þ
X

n¼0

1 ½4pb ffiffiffiffiffiffiffiffiffiffi
r1r2

p ��n

ð2� 3nÞn! ½ð1þ q21Þ
2�3n
2 � 1�

¼ h1 � h0ð Þ 2b
ffiffiffiffiffiffiffiffiffiffi
r1r2

pð Þ
X

n¼0

1 ½4pb ffiffiffiffiffiffiffiffiffiffi
r1r2

p ��n

ð2� 3nÞn!

� ½ð1þ q22Þ
2�3n
2 � ð1þ q21Þ

2�3n
2 �:

providing a convergent series.

Model 3

The K-function over an ellipse

Similarly to the previous model, by combining Eqs. (7) and

(24), and using polar coordinates and the Taylor expansion,

the K-function over the ellipse A ¼ Eð0; a; bÞ with semi-

minor and semi-major axes a ¼ 2
ffiffiffiffiffiffiffiffi
r1b

p
q and b ¼ 2

ffiffiffiffiffiffiffiffi
r2b

p
q,

is obtained as

KE
aniso qð Þ ¼

Z

uk k� q

a
2pb

ffiffiffiffiffiffiffiffiffiffi
r1r2

p ½1þ u21
2r1b

þ u22
2r2b

��ðaþ1Þdu

¼ 2b
ffiffiffiffiffiffiffiffiffiffi
r1r2

p Z 2p

0

Z q

0

exp
a

2pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p ½1þ r2��ðaþ1Þ
� �

rdrdh

¼
X

n¼0

1 2an 2pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� 
1�n

n!

Z q

0

½1þ r2��nðaþ1Þrdr

¼
X

n¼0

1 an 2pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� 
1�n

n! 1� nðaþ 1Þð Þ ½ð1þ q2Þ1�nðaþ1Þ � 1�:

ð36Þ

We can show that this series converges using the Ratio

Test, as follows. Let an ¼ 2b
n! 2p

ffiffiffiffiffiffiffiffiffiffi
r1r2

p� 
1�n

an
2�2na ½ð1þ q2Þ1�na � 1�, then

lim
n!1

anþ1

an
¼ lim

n!1

anþ1

nþ1ð Þ!ð1� nþ1ð Þðaþ1ÞÞ 2pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� 
1� nþ1ð Þ½ð1þ q2Þ1� nþ1ð Þðaþ1Þ � 1�
an

n!ð1�nðaþ1ÞÞ 2pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� 
1�n½ð1þ q2Þ1�nðaþ1Þ � 1�

¼ lim
n!1

a
nþ 1

:
1� nðaþ 1Þ

1� nþ 1ð Þðaþ 1Þ :½2pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p ��1

� ð1þ q2Þ1� nþ1ð Þðaþ1Þ

ð1þ q2Þ1�nðaþ1Þ � 1
� 1

ð1þ q2Þ1�nðaþ1Þ � 1

" #

¼ lim
n!1

a
nþ 1

:
1� nðaþ 1Þ

1� nþ 1ð Þðaþ 1Þ :½2pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p ��1

� ð1þ q2Þ1�ðaþ1Þ � ð1þ q2Þnðaþ1Þ

ð1þ q2Þ � ð1þ q2Þnðaþ1Þ

" #

¼0:

The K-function over a sector-ellipse

Here, we now consider A as a centred sector-ellipse with

semi-minor and semi-major axes a ¼ 2
ffiffiffiffiffiffiffiffi
r1b

p
q and

b ¼ 2
ffiffiffiffiffiffiffiffi
r2b

p
q. So, the anisotropic sector-ellipse K-function

over A is given by the convergent series

KSE
aniso qð Þ ¼ ðh1 � h0Þb

ffiffiffiffiffiffiffiffiffiffi
r1r2

p½ �
X

n¼0

1 an 2pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� 
�n

n! 1� nðaþ 1Þð Þ

� ½ð1þ q2Þ1�nðaþ1Þ � 1�:
ð37Þ

The K-function over a sector-ring of an ellipse

We finally obtain the anisotropic K-function over the

centred sector-ring of an ellipse with a1 ¼ 2
ffiffiffiffiffiffiffiffi
r1b

p
q1,

b1 ¼ 2
ffiffiffiffiffiffiffiffi
r2b

p
q1, a ¼ 2

ffiffiffiffiffiffiffiffi
r1b

p
q2 and b ¼ 2

ffiffiffiffiffiffiffiffi
r2b

p
q2. The

anisotropic sector-ring K-function over A is given by

KSRE
aniso q1; q2ð Þ ¼ KSE

aniso q2ð Þ n KSE
aniso q1ð Þ

¼ ðh1 � h0Þb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p½ �
X

n¼0

1 an 2pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� 
�n

n! 1� nðaþ 1Þð Þ ½ð1þ q22Þ
1�nðaþ1Þ � 1�

� ðh1 � h0Þb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p½ �
X

n¼0

1 an 2pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� 
�n

n! 1� nðaþ 1Þð Þ ½ð1þ q21Þ
1�nðaþ1Þ � 1�

¼ ðh1 � h0Þb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p½ �

�
X

n¼0

1 an 2pb
ffiffiffiffiffiffiffiffiffiffi
r1r2

p� 
�n

n! 1� nðaþ 1Þð Þ ½ð1þ q22Þ
1�nðaþ1Þ � ð1þ q21Þ

1�nðaþ1Þ�;

which, using similar arguments as before, is easy to show

that this series converges.
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Model 4

The K-function of LGCP over a super-ellipse

Here, we assume that a bounded set A is an area of a

superellipse centred at the origin with semi-minor and

semi-major axes a ¼ r1q and b ¼ r2q, denoted here as

A ¼ SuEð0; a; bÞ, with the form

u1
a

�
�
�
�
�
�
2
nþ u2

b

�
�
�
�
�
�
2
n � 1: ð38Þ

Substituting (25) into (7) we obtain the K-function of our

new model, denoted by KESEð:Þ, as

KESEðqÞ ¼
Z Z

u1
r1

�
�
�
�
�
�
2
n

þ u2
r2

�
�
�
�
�
�
2
n

� q
2
n

gðuÞdu1du2

¼nr1r2q
2 C

2 n
2

� �

CðnÞ þ n2r1r2
C2 n

2

� �

CðnÞ
X1

k¼1

r2k

k!kn
CðnÞ � C n; kq2

� �� �
:

ð39Þ

By the Ratio Test, it can be proved that the series in (39)

converge absolutely and hence converge.

Proof The close form of the K-function in (39) and its

convergence

First step To reduce the complexity of this proof, we first

calculate the four following terms.

The first term

We know that

Beta mþ 1; nþ 1ð Þ ¼ m!n!

ðmþ nþ 1Þ! :

On the other hand, we have

m!n! ¼
Z 1

0

e�uumdu

Z 1

0

e�mmndm

¼4

Z 1

0

e�x2x2mþ1dx

Z 1

0

e�y2y2nþ1dy

¼
Z 1

�1

Z 1

�1
e�x2þy2 jxj2mþ1jyj2nþ1dxdy

¼
Z 2p

0

Z 1

0

e�r2 jrcosðhÞj2mþ1jrsinðhÞj2nþ1rdrdh

¼4

Z 1

0

e�r2r2mþ2nþ3dr

Z p
2

0

cos2mþ1ðhÞsin2nþ1ðhÞdh

¼2

Z 1

0

e�ttmþnþ1dr

Z p
2

0

cos2mþ1ðhÞsin2nþ1ðhÞdh

¼2ðmþ nþ 1Þ!
Z p

2

0

cos2mþ1ðhÞsin2nþ1ðhÞdh:

Therefore,

Z p
2

0

cos2mþ1ðhÞsin2nþ1ðhÞdh ¼ m!n!

2ðmþ nþ 1Þ!

¼Betaðnþ 1;mþ 1Þ
2

:

The second term

To obtain the close form for the integral
Z q

0

re�kr
2
n
dr;

we use the changing of variable kr
2
n ¼ t and the definition

of the Gamma function. So,

Z q

0

re�kr
2
n
dr ¼

Z kq
2
n

0

ne�ttn�1

2kn
dt

¼
Z 1

0

ne�ttn�1

2kn
dt

�
Z 1

kq
2
n

ne�ttn�1

2kn

¼ n

2kn
CðnÞ � C n; kq

2
n


 �h i
:

The third term

Here, to obtain the integral
Z Z

u1
r1

�
�
�
�
�
�
2
n

þ u2
r2

�
�
�
�
�
�
2
n

�q
2
n

du1du2;

we use the change of variables u1
r1
¼ t1 and u2

r2
¼ t2. So
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Z Z

t1j j
2
nþ t2j j

2
n �q

2
n

r1r2dt1dt2:

The defined super-ellipsoidal shapes are symmetric about

the origin of the coordinates, and we substitute the integral

with 4 times the integral on the first quadrant of the

coordinates. Then, we apply the change of variables for-

mula to the polar coordinate transformation t1 ¼ n cosn h
and t2 ¼ r sinn h with 0\r\q and 0\h\2p. The Jaco-

bean is thus

J ¼

dt1

dr

dt1

dh
dt2

dr

dt2

dh

2

6
4

3

7
5

¼ cosn h �nr sin h cosn�1 h

sinn h nr cos h sinn�1 h

� 	

¼nr cosn�1 h sinn�1 h;

Consequently,
Z Z

u1
r1

�
�
�
�
�
�
2
n

þ u2
r2

�
�
�
�
�
�
2
n

�q
2
n

du1du2

¼ 4r1r2

Z Z

t
2
n
1
þt

2
n
2
�q

2
n;t1;t2 � 0

dt1dt2

¼ 4nr1r2

Z p
2

0

Z q

0

rsinn�1ðhÞcosn�1ðhÞdrdh

¼ 4nr1r2

Z p
2

0

sinn�1ðhÞcosn�1ðhÞdh
Z q

0

rdr

¼ nr1r2q
2 C

2ðn
2
Þ

CðnÞ ;

The fourth term

Here, we obtain the integral

Z Z

u1
r1

�
�
�
�
�
�
2
n

þ u2
r2

�
�
�
�
�
�
2
n

�q
2
n

exp �k
u1
r1

�
�
�
�

�
�
�
�

2
n

þ u2
r2

�
�
�
�

�
�
�
�

2
n

 !( )

du1du2:

Similar to the previous term, first we apply the change of

variables u1
r1
¼ t1 and u2

r2
¼ t2, and substitute the integral

with 4 times the integral on the first quadrant of the

coordinates. So, the integral is equal to

Z Z

t1j j
2
nþ t2j j

2
n �q

2
n

r1r2 exp �k t1j j
2
nþ t2j j

2
n


 �n o
dt1dt2

¼4r1r2

Z Z

t
2
n
1
þt

2
n
2
�q

2
n;t1;t2 � 0

exp �k t
2
n

1 þ t
2
n

2


 �n o
dt1dt2:

Then, we apply the change of variables formula to the polar

coordinate transformation t1 ¼ r cosn h and t2 ¼ r sinn h
with 0\r\q and 0\h\2p. The Jacobean is thus

J ¼

dt1

dr

dt1

dh
dt2

dr

dt2

dh

2

6
4

3

7
5

¼ cosn h �nr sin h cosn�1 h

sinn h nr cos h sinn�1 h

� 	

¼nr cosn�1 h sinn�1 h;

Consequently,

4nr1r2

Z p
2

0

Z q

0

exp�kr
2
nrsinn�1ðhÞcosn�1ðhÞdrdh

¼ 4nr1r2

Z p
2

0

sinn�1ðhÞcosn�1ðhÞdh
Z q

0

r exp�kr
2
ndr:

We now substitute the first and second terms in 4.1.1 and

4.1.2 into the above relation, to obtain

Z Z

u1
r1

�
�
�
�
�
�
2
n

þ u2
r2

�
�
�
�
�
�
2
n

�q
2
n

exp �k
u1
r1

�
�
�
�

�
�
�
�

2
n

þ u2
r2

�
�
�
�

�
�
�
�

2
n

 !( )

du1du2:

¼
n2r1r2C2ðn

2
Þ

CðnÞkn CðnÞ � Cðn; kr2nÞ
h i

:

Finally, we can obtain the close form for K-function as

KESEðqÞ ¼
Z Z

u1
r1

�
�
�
�
�
�
2
n

þ u2
r2

�
�
�
�
�
�
2
n

� q
2
n

gðuÞdu1du2

¼
Z Z

u1
r1

�
�
�
�
�
�
2
n

þ u2
r2

�
�
�
�
�
�
2
n

� q
2
n

exp r2 exp � u1
r1

�
�
�
�

�
�
�
�

2
n

� u2
r2

�
�
�
�

�
�
�
�

2
n

 !( )

du1du2

Using Taylor expansion,
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KESEðqÞ ¼
Z Z

u1
r1

�
�
�
�
�
�
2
n

þ u2
r2

�
�
�
�
�
�
2
n

� q
2
n

X1

k¼0

r2k

k!
exp �k

u1
r1

�
�
�
�

�
�
�
�

2
n

þ u2
r2

�
�
�
�

�
�
�
�

2
n

 !( )

du1du2

¼
Z Z

u1
r1

�
�
�
�
�
�
2
n

þ u2
r2

�
�
�
�
�
�
2
n

� q
2
n

du1du2

þ
X1

k¼1

r2k

k!

Z Z

u1
r1

�
�
�
�
�
�
2
n

þ u2
r2

�
�
�
�
�
�
2
n

� q
2
n

exp �k
u1
r1

�
�
�
�

�
�
�
�

2
n

þ u2
r2

�
�
�
�

�
�
�
�

2
n

 !( )

du:

With substitution of the three and fourth terms, 4.1.3 and

4.1.4 intop the above expression, we obtain

KESEðqÞ ¼ nr1r2q
2 C

2 n
2

� �

CðnÞ þ n2r1r2
C2 n

2

� �

CðnÞ
X1

k¼1

r2k

k!kn
CðnÞ � C n; kq2

� �� �
:

Second step. Convergence of K-function.

Assume that ak ¼ r2k
k!kn CðnÞ � Cðn; kq2Þð Þ, and using the

Ratio Test, we have

limk!1
akþ1

ak

�
�
�
�

�
�
�
�

¼ limk!1

r2ðkþ1Þ

ðk þ 1Þ!ðk þ 1Þn CðnÞ � Cðn; ðk þ 1Þq2Þ
� �

r2k

k!kn
CðnÞ � Cðn; kq2
� �

¼ limk!1
r2

k þ 1
� k

k þ 1

� �n

�CðnÞ � Cðn; ðk þ 1Þq2Þ
CðnÞ � Cðn; kq2Þ

¼ 0\ 1

Since limk!1
r2
kþ1

¼ 0 and limk!1
k

kþ1


 �n
¼ 1, we have

lim
k!1

CðnÞ � Cðn; ðk þ 1Þq2Þ
CðnÞ � Cðn; kq2Þ

¼ lim
k!1

R1
0

tn�1e�tdt �
R1
ðkþ1Þq2 t

n�1e�tdt
R1
0

tn�1e�tdt �
R1
kr2 t

n�1e�tdt

¼ lim
k!1

R ðkþ1Þr2
0

tn�1e�tdt
R kr2
0

tn�1e�tdt

¼ CðnÞ
CðnÞ ¼ 1:

Therefore, limk!1
akþ1

ak

�
�
�
�

�
�
�
�\1. Consequently, the series in

(39) converges.

The K-function of a Poisson point process
over a super-ellipse.

The pair correlation function for a Poisson point process is

equal to 1. i.e, gðuÞ ¼ 1 where u is separation vector.

According to (7), the anisotropic j-measure for Poisson

point process over a bounded set A, denoted here as

jPois Að Þ, is given by

jPoisðAÞ ¼
Z

A

du:

Consider A as an area of a super-ellipse centred at the

origin with semi-minor and semi-major axes a ¼ r1q and

b ¼ r2q, i.e., A ¼ SuEð0; a; bÞ. The anisotropic K-function
for a Poisson point process on A, denoted here as KESE

Pois qð Þ,
is given by

KESE
PoisðqÞ ¼

Z Z

u1
r1

�
�
�
�
�
�
2
n

þ u2
r2

�
�
�
�
�
�
2
n

� q
2
n

du1du2:

Similarly to the K-function of a spatial LGCP in (39), it is

easy to obtain

KESE
PoisðqÞ ¼ nr1r2q

2 C
2ðn

2
Þ

CðnÞ :
ð40Þ

To follow the proof of (40) refer to the term 4.1.3 in the

proof of (39).
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