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Abstract
Air temperature is a vital meteorological variable required in many applications, such as agricultural and soil sciences,

meteorological and climatological studies, etc. Given the importance of this variable, this study seeks to estimate minimum

(Tmin), maximum (Tmax), and mean (T) air temperatures by applying a linear autoregressive (AR) time series model and

then developing a hybrid model by means of coupling the AR and a non-linear time series model, namely autoregressive

conditional heteroscedasticity (ARCH). Hence, the hybrid AR-ARCH model was tested. To that end, the Tmin, Tmax, and T

data from 1986 to 2015 at two weather stations located in Northwestern Iran were used for both daily and monthly time

scales. The results showed that the hybrid time series model (i.e., AR-ARCH) performed better than the single AR for

estimating the air temperature parameters at the study sites. Multi-layer perceptron (MLP) was then employed to estimate

the air temperatures using lagged temperature data as input predictors. Next, the single AR and hybrid AR-ARCH time

series models were utilized to implement the hybrid MLP-AR and MLP-AR-ARCH models. It is worth noting that

developing the hybrid MLP-AR and MLP-AR-ARCH models, as well as AR-ARCH one is the novelty of this study. Three

statistical metrics including root mean square error (RMSE), mean absolute error (MAE), and normalized RMSE

(NRMSE) were used to investigate the performance of whole the developed models. The hybrid MLP-AR and MLP-AR-

ARCH models were found to perform better than the single MLP when estimating the daily and monthly Tmin, Tmax, and T;

however, the MLP-AR models outperformed the MLP-AR-ARCH ones. At the end of this study, the performance of MLP

was evaluated under an external condition (i.e., estimating the temperature components at any particular site using the

temperature data of an adjacent location). The results indicated that the temperature data of a nearby station can be used for

estimating the temperatures of a desired station. Most accurate results during the test stage were obtained under a local

assessment through the hybrid MLP-AR(1) at the Tabriz station when estimating the monthly Tmax (RMSE = 0.199 �C,
MAE = 0.159 �C, NRMSE = 1.012%) and hybrid MLP-AR(12) at the Urmia station when estimating the daily Tmax

(RMSE = 0.364 �C, MAE = 0.277 �C, NRMSE = 1.911%).

Keywords Air temperatures � Autoregressive � Autoregressive conditional heteroscedasticity � Estimation �
Multi-layer perceptron

1 Introduction

Air temperature is an important weather parameter required

in different applications of various agricultural sciences

such as agronomy, soil science, agricultural meteorology

(Mehdizadeh 2018a), and studies related to climate change

caused by air temperature changes (Ustaoglu et al. 2008). It

is also an essential variable in atmospheric and environ-

mental studies to predict natural hazards, such as drought

and frost caused by variations in air temperature (Kaymaz

2005; Ustaoglu et al. 2008). Air temperature consists of

three basic components including the minimum, maximum

and mean temperatures. Knowing the minimum tempera-

ture is useful to find strategies to counter the risk of

frostbite. In turn, maximum temperature in a region helps& Quoc Bao Pham
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to determine the potential of solar energy when designing

solar power plants.

In terms of agriculture, plant growth is strongly influ-

enced by the air temperature, such that a plant can only

grow within a certain range of air temperature (Cobaner

et al. 2014; Webber et al. 2016). A site’s suitability for

planting a given agricultural crop is commonly determined

by the air temperature regimes (Hudson and Wackernagel

1994). Also, seeds grow optimally at a specific range of air

temperatures (Cobaner et al. 2014). In addition, soil tem-

perature, an important soil parameter, is greatly affected by

weather variables including air temperature, relative

humidity, solar radiation, etc. In fact, air temperature is the

most important meteorological parameter affecting soil

temperature regimes; so, there exists a strong correlation

between air and soil temperatures (Behmanesh and Meh-

dizadeh 2017; Mehdizadeh et al. 2018a, 2020a, b). More-

over, irrigation scheduling is usually based on crop

evapotranspiration which is affected by air temperature.

In recent years, artificial intelligence (AI) methods have

been extensively and successfully used to estimate mete-

orological parameters time series such as air temperature.

AI models have the ability to approximate a target

parameter based on a series of input predictors without

understanding the physical process. In addition to these AI

approaches, various time series models have also been

developed (Box and Jenkins 1976); however, these models

have received less attention compared to AI methods for air

temperature forecasting. Numerous studies have been

published regarding air temperature modeling using AI-

based models (Ustaoglu et al. 2008; Smith et al. 2009;

Dombayk and Golcu 2009; Bilgili and Sahin 2010; Pani-

agua-Tineo et al. 2011; Sahin 2012; Cobaner et al. 2014;

Pang et al. 2017; Noi et al. 2017; Sanikhani et al. 2018;

Azad et al. 2020). Some of their findings are presented

below.

Ustaoglu et al. (2008) forecasted the daily minimum,

maximum and mean air temperatures of Geyve and

Sakarya basins, Turkey. They applied feed forward back

propagation (FFBP), radial basis function (RBF), general-

ized regression neural networks (GRNN), and multiple

linear regression (MLR). The RBF was found to perform

slightly better than the other methods. Sotomayor (2010)

investigated the ability of back propagation (BP) type of

artificial neural networks (ANN) and multivariate adaptive

regression splines (MARS) to forecast rainfall and tem-

perature in the Mantaro river basin, Peru. The temperature

estimates generated by the MARS were superior to the BP

model. Khatib et al. (2012) applied the GRNN method to

estimate hourly air temperatures in Malaysia, and reported

on the ability of this technique to accurately forecast

temperature time series. The minimum and maximum air

temperatures of Chennai, India, were estimated via the

MARS and support vector machine (SVM) techniques by

Ramesh and Anitha (2014). The authors concluded that the

MARS technique had a higher accuracy than the SVM

technique. Cobaner et al. (2014) estimated mean monthly

air temperatures of 275 stations located in Turkey, through

the adaptive neuro-fuzzy inference system (ANFIS), ANN,

and MLR. They found that the ANFIS performed better

than the ANN and MLR. Kisi and Sanikhani (2015)

modeled the mean monthly temperatures of 50 stations in

Iran by using the ANN, ANFIS-subtractive clustering,

ANFIS-grid partitioning, gene expression programming

(GEP), and support vector regression (SVR). The SVR

performed the best out of the different techniques they

used. The potential of SVR and multi-layer perceptron

(MLP) was tested by Salcedo-Sanz et al. (2016) to estimate

mean monthly air temperatures of Australia and New

Zealand. They reported a better performance of SVR

compared to the MLP. The ability of four AI models,

which included ANN, ANFIS, MARS, and SVM, were

evaluated by Mehdizadeh (2018a) to estimate the mean

monthly air temperatures of 50 stations located in Iran. The

author documented that the models performed reliably.

Sanikhani et al. (2018) used the GRNN, MARS, random

forests (RF), and extreme learning machine (ELM) for

forecasting the long-term mean monthly air temperatures

of Madhya Pradesh, Central India. They concluded that the

models could forecast air temperatures via geographical

inputs and periodicity term. Wagle et al. (2019) assessed

the modeling performance of long short-term memory

(LSTM) to estimate surface air temperature and its reliable

accuracy was reported by the authors. In another research,

Cifunentes et al. (2020) reviewed recent works published

on air temperature estimation through the application of AI

models and concluded that deep learning and SVR models

could be employed when predicting the air temperature

with a dependable level of precision. Azad et al. (2020)

implemented new hybrid models by coupling the ANFIS

with four different types of optimization algorithms for

estimating the monthly ambient temperatures of 34 stations

in Iran. They found that the hybrid models better estimated

the monthly air temperatures compared to conventional

ANFIS.

The main goals of this study are to (1) apply a linear

autoregressive (AR) and then implement a hybrid linear-

nonlinear time series model (i.e., autoregressive-autore-

gressive conditional heteroscedasticity; AR-ARCH) to

estimate the air temperature of Tabriz and Urmia, North-

western Iran, on both daily and monthly scales; (2) develop

other types of hybrid models through hybridizing the single

AR and hybrid AR-ARCH with an AI-based model,

namely the MLP; (3) compare the performance of all the

single and hybrid models developed in this study; and (4)

evaluate the accuracy of MLP under an external condition.
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An external condition means that the air temperatures at a

particular site are estimated using the temperature data of a

neighboring location. Literature review reveals that the AI-

based models have been extensively applied to estimate air

temperatures compared to the time series-based models. On

the other side, the hybrid models have recently received

remarkable attention; however, the hybrid models imple-

mented through coupling the AI and time series models

have been rarely reported in literature when estimating the

air temperature parameters. The main contributions of this

research, which have not been addressed in previous works,

are the use of a single AR, to develop the hybrid AR-

ARCH, MLP-AR, and MLP-AR-ARCH models and to

evaluate the performance of MLP under an external

condition.

2 Materials and methods

2.1 Case study and data gathering

Two weather stations in Iran, the Tabriz and Urmia sta-

tions, were chosen as case studies. Both locations are in

Northwestern Iran (Fig. 1) and are classified as having a

semi-arid climate according to the climate classification

developed by de Martonne (1925).

The air temperature data used in this study, which

includes the daily and monthly minimum (Tmin), maximum

(Tmax) and mean (T) temperatures between 1986 and 2015,

are compiled by the Iran Meteorological Organization

(IMO). For both stations and time scales, the data from

1986 to 2009 were used as the training data sets; while the

data between 2010 and 2015 were used as the test datasets.

The time series graphs of the daily and monthly air tem-

peratures of the Tabriz and Urmia stations during the

studied period are depicted in Figs. 2 and 3, respectively.

As can be seen, temperature components have similar

trends from year to year. Table 1 also summarizes some of

the daily and monthly statistical parameters of the data

used, including the minimum, maximum, mean, and stan-

dard deviation. These statistical parameters are similar for

the training and test periods at the two study sites. On the

same table, Tmin and Tmax respectively refer to the mini-

mum and maximum values of the standard deviation

indicator on both daily and monthly time scales.

Before implementing the models to estimate air tem-

peratures, all the data were standardized using the fol-

lowing equation:

TS ¼
Tm � Tm

rTm
ð1Þ

where TS, Tm, Tm, and rTm correspond to the standardized

air temperature, the measured air temperature, the mean of

the measured air temperatures, and the standard deviation

of the measured air temperatures, respectively.

2.2 AR and ARCH time series models

Different time series models have been developed to esti-

mate the time series of observed data. AR and other

Fig. 1 The geographical position of study locations in Northwest of Iran
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derivations of this model, such as autoregressive moving

average (ARMA) and autoregressive integrated moving

average (ARIMA), are classified as linear models. This

means that in the AR, each event at a given time depends

on the values of events at earlier times. An AR model can

be formulated as follows (Mehdizadeh 2020):

Fig. 2 Time series of the daily and monthly air temperature data at Tabriz station during 1986–2015
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ZtðpÞ ¼
Xp

i¼1

ðui:Zt�iÞ þ et ð2Þ where Zt and Zt�i denote the standardized data at times

t and t-i, respectively; p is the AR model order; ui shows

the ith coefficient of AR; and et represents the stochastic

series or error rate.

Fig. 3 Time series of the daily and monthly air temperature data at Urmia station during 1986–2015
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Other than the linear AR, a non-linear ARCH model was

tested in this study. In linear models like the AR, more

attention is paid to the data’s mean than to its changing

variance over time. The ARCH, a non-linear time series

model, was initially developed by Engle (1982) and con-

siders variations in the variance of the data. It can be

expressed by the following formulas:

r2t ¼ ao þ
Xm

i¼1

bie
2
t�i ð3Þ

e
0

t ¼ rt:Zt ð4Þ

where r2t denotes the conditional variance; ao and bi are the

coefficients of ARCH; and e
0
t illustrates the stochastic series

achieved by the ARCH. A first order ARCH model (i.e.,

m = 1 in Eq. 3) was used in this study.

2.3 MLP

One of the most common used types of artificial neural

networks is the Multilayer Perceptron (MLP). In this

model, weights and biases can be trained to produce a

specific goal (Teo et al. 2001; Wang et al. 2006; Fang et al.

2014). The learning rules used in this regard are called

perceptron training rules. Perceptron networks are very

noteworthy because they have a good ability to evolve by

input vectors. These networks are especially useful in

solving simple classification problems. This type of neural

network is very fast and reliable in solving problems

(Gupta and Wang 2010; Wang and Teo 2001; Zhu and

Wang 2010). It is an effective technique that can capture

the non-linear relationship between output and input (Ja-

hani and Mohammadi 2019). The major feature of MLP is

that it completes information processing based on the

interactive relationship between neurons, without requiring

an advanced mathematical model design. Here, the

researchers applied a 3-layered MLP model with a

Table 1 Daily and monthly

statistical parameters of air

temperature data at the study

areas

Station Parameter Scale Dataset Minimum (�C) Maximum

(�C)
Average

(�C)
Standard

deviation (�C)

Tabriz Tmin Daily Training - 21.60 28.00 7.67 9.39

Test - 18.00 28.20 8.00 9.46

Monthly Training - 12.62 22.97 7.61 8.89

Test - 9.45 22.13 7.94 9.00

Tmax Daily Training - 9.20 41.00 18.74 11.35

Test - 6.80 41.00 19.76 11.30

Monthly Training - 3.15 35.76 18.67 10.80

Test - 0.26 35.74 19.70 10.77

T Daily Training - 13.95 34.30 13.20 10.28

Test - 11.80 34.10 13.88 10.26

Monthly Training - 7.89 29.31 13.14 9.83

Test - 4.85 28.82 13.82 9.86

Urmia Tmin Daily Training - 18.20 23.00 5.27 8.19

Test - 17.60 22.80 5.27 8.17

Monthly Training - 11.81 18.98 5.21 7.71

Test - 9.96 17.00 5.22 7.67

Tmax Daily Training - 6.60 39.20 17.75 10.45

Test - 7.20 39.90 19.06 10.62

Monthly Training - 1.58 33.59 17.68 9.94

Test - 0.52 34.07 19.01 10.10

T Daily Training - 11.20 29.40 11.51 9.17

Test - 12.40 28.95 12.17 9.23

Monthly Training - 6.69 26.29 11.45 8.80

Test - 5.24 25.54 12.11 8.86

Fig. 4 Multi-layer perceptron used structure
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Levenberg–Marquardt algorithm (LM) error-correction

learning algorithm. Figure 4 illustrates a schematic dia-

gram of the MLP. This network was trained for 1000

epochs, at a learning rate of 0.0012 and a momentum

coefficient of 0.85. This model also included an input layer,

a hidden layer, and an output layer. Equation (5) represents

the net input into the hidden and output layers.

yi ¼
XN

j¼1

wjixj þ wio ð5Þ

where N refers to the total number of nodes in the top layer

of the node, i; wji is the weight between the nodes i and j in

the upper layer; xj denotes the output derived from node j;

wio presents the bias in node i; and yi denotes the input

signal of node i that passed through the transfer function.

The MLP’s network is trained to produce a set of out-

puts using a set of inputs. Each of these input or output

categories can be thought of as a vector. Training is per-

formed sequentially using input vectors and adjusting

network weights, according to a predetermined method.

During network training, network weights gradually con-

verge to values for which the desired output vector is

generated by applying an input vector. The important thing

about MLP training is to decide whether to stop the training

process, because if network training is not stopped prop-

erly, the network becomes prone to over-fitting problems.

In these cases, to stop such problems, the technique of

stopping training is used. That is, the whole data is divided

into three categories (training and testing), whenever the

network authentication error increases, the training process

will stop. In the present study, the above-fit problem was

performed by controlling the evaluation indicators of the

models and observing the error chart versus repetitive

periods in the training and validation stages.

2.4 Models development

The single AR models were developed by testing the dif-

ferent orders (i.e., p in Eq. 2) and then selecting the optimal

AR models by looking for the lowest Akaike information

criterion (AIC). In addition, the hybrid AR-ARCH models

were implemented by these following steps:

• Calculating the error rates obtained via the optimal AR

models (i.e., et).
• Computing the values of e2t series.

• Fitting the ARCH model to the e2t values achieved in the
previous step and therefore developing the hybrid AR-

ARCH models.

The single MLP models were developed by using the

one day and one month lagged data to estimate the daily

and monthly air temperatures of current day or month.

Moreover, the hybrid MLP-AR and MLP-AR-ARCH

models were developed by summing the outputs of the

single MLP (i.e., deterministic term) with the outputs of the

single AR and hybrid AR-ARCH models (i.e., stochastic

term). The hybrid models were developed because the time

series models can represent the stochastic term of the data;

while the AI-based models, such as MLP, are able to

capture the deterministic term of the data. Therefore, an

accurate estimation approach needs to consider both terms,

which the hybrid models developed in this study have

taken into consideration.

All steps in the development of models explained above

are related to the local assessment of applied models. A local

assessment means that the air temperatures of a particular

location are estimated using the temperature data at that same

site. In addition to the local assessment of models, the per-

formance of MLP was also evaluated under an external

assessment using the air temperatures of an adjacent site to

estimate the air temperatures at each desired location.

2.5 Performance assessment criteria

Here, the root mean square error (RMSE), mean absolute

error (MAE), and normalized RMSE (NRMSE) were used

for assessing the efficiency of all the models to estimate the

daily and monthly air temperature as follows (Guan et al.

2020):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Tm;i � Te;i

� �2

N

s

ð6Þ

MAE ¼
PN

i¼1 Tm;i � Te;i
�� ��
N

ð7Þ

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
Tm;i�Te;ið Þ2
N

r

Tm
� 100% ð8Þ

where Tm;i, Te;i, Tm, and N denote the ith measured air

temperature, the ith estimated air temperature via the single

and hybrid models, mean of the measured air temperature

data, and the total number of observational data, respec-

tively. A lower value of these metrics indicates a better

performance by any given model to estimate the daily and

monthly Tmin, Tmax and T.

3 Results and discussion

3.1 Local assessment of the single and hybrid
models

First, the different AR models containing the various orders

(i.e., p in Eq. 2) were examined. Then, the AR models that
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presented the smallest AIC error criterion were selected as

the best AR models. For example, the AR(15), AR(12) and

AR(14) are the best AR models on a daily scale for esti-

mating Tmin, Tmax and T at Urmia station, respectively. In

addition, the optimal AR models for estimating Tmin, Tmax

and T on a monthly scale at this location are the AR(4),

AR(3) and AR(4) models. The values of the statistical

indicators including the RMSE, MAE, and NRMSE for the

single AR models during both training and test stages at

Tabriz and Urmia are summarized in Tables 2 and 3. As

can be seen, the single AR models are able to estimate

Tmin, Tmax and T on both studied time scales, specifically

on a monthly scale with a high level of accuracy.

After that, the performance of single linear AR models

was improved by combining them with a non-linear time

series model named ARCH. Accordingly, the hybrid AR-

ARCH models were developed and tested for estimating

the daily and monthly temperature components. Tables 2

and 3 represent the values of error criteria calculated for

the hybrid AR-ARCH models. The achieved results clearly

demonstrate that hybridizing the linear AR with a non-

linear ARCH model leads to better estimates of Tmin, Tmax

and T at the study locations on both daily and monthly

scales. For example, based on Table 2, the values of

RMSE, MAE and NRMSE for the single AR(26) when

estimating the Tmin at Tabriz station on a daily scale are,

respectively, 2.221 �C, 1.694 �C, 28.947% (training

Table 2 Error statistics of the standalone and hybrid models at Tabriz station (local assessment)

Parameter Scale Models Training Test

RMSE (�C) MAE (�C) NRMSE (%) RMSE (�C) MAE (�C) NRMSE (%)

Tmin Daily AR(26) 2.221 1.694 28.947 2.343 1.781 29.302

AR(26)-ARCH 0.445 0.340 5.806 0.465 0.356 5.816

MLP 2.148 1.653 28.008 2.290 1.758 28.645

MLP-AR(26) 0.387 0.284 5.045 0.437 0.306 5.470

MLP-AR(26)-ARCH 1.899 1.449 24.750 1.936 1.504 24.220

Monthly AR(3) 0.539 0.410 7.078 0.672 0.473 8.465

AR(3)-ARCH 0.393 0.295 5.167 0.424 0.307 5.337

MLP 1.565 1.179 20.573 1.714 1.245 21.588

MLP-AR(3) 0.379 0.204 4.977 0.431 0.245 5.423

MLP-AR(3)-ARCH 0.830 0.580 10.904 1.002 0.653 12.625

Tmax Daily AR(21) 2.937 2.294 15.672 3.132 2.481 15.850

AR(21)-ARCH 0.903 0.707 4.820 0.948 0.753 4.798

MLP 2.270 1.721 12.116 2.375 1.820 12.017

MLP-AR(21) 0.407 0.312 2.170 0.433 0.334 2.190

MLP-AR(21)-ARCH 2.226 1.767 11.880 2.356 1.882 11.921

Monthly AR(1) 0.770 0.581 4.123 0.884 0.672 4.487

AR(1)-ARCH 0.577 0.439 3.093 0.630 0.489 3.198

MLP 1.910 1.457 10.234 1.941 1.511 9.851

MLP-AR(1) 0.165 0.112 0.883 0.199 0.159 1.012

MLP-AR(1)-ARCH 1.048 0.790 5.613 1.258 0.926 6.388

T Daily AR(26) 2.574 1.988 19.492 2.681 2.085 19.314

AR(26)-ARCH 1.011 0.781 7.655 1.037 0.808 7.475

MLP 1.812 1.377 13.725 1.855 1.417 13.366

MLP-AR(26) 0.412 0.316 3.117 0.438 0.333 3.158

MLP-AR(26)-ARCH 1.792 1.403 13.573 1.817 1.429 13.093

Monthly AR(1) 0.637 0.480 4.849 0.740 0.544 5.355

AR(1)-ARCH 0.494 0.373 3.757 0.523 0.396 3.787

MLP 1.663 1.262 12.661 1.725 1.257 12.482

MLP-AR(1) 0.311 0.216 2.366 0.255 0.194 1.846

MLP-AR(1)-ARCH 0.976 0.709 7.432 1.144 0.853 8.275
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period), 2.343 �C, 1.781 �C, 29.302% (test period); while,

these statistics improve to 0.445 �C, 0.340 �C, 5.806%

(training period), 0.465 �C, 0.356 �C, 5.816% (test period)

via the hybrid AR(26)-ARCH model. Assessing the per-

formance of single and developed hybrid time series

models when estimating temperature parameters revealed

that the accuracy of single AR models was improved most

via the hybrid AR-ARCH models for Tmin estimation on a

daily basis.

In addition to the single and hybrid time series models,

an AI-based model including the MLP was developed in

this study. As previously noted, the performance of this

method depends on the optimal number of neurons in the

hidden layer. Therefore, a series of trials were conducted to

determine the optimum numbers for the hidden layer nodes

by selecting for least error. Table 4 tabulates the optimal

number of hidden layer nodes for the MLP models devel-

oped at the study locations for both time scales. As seen,

these range from 2 (estimating monthly Tmax) to 26 (esti-

mating daily Tmin) at Tabriz station, and 3 (estimating daily

T and monthly Tmin) to 17 (estimating monthly T) at Urmia

station for local assessment. To implement the MLP

models, one day and one month lagged Tmin, Tmax and T

data were used as inputs to estimate the temperature time

series of a current day and month. The error criteria RMSE,

MAE and NRMSE computed for the single MLP models at

Tabriz and Urmia stations are shown in Tables 2 and 3,

respectively. Clearly, the lagged temperature data can be

Table 3 Error statistics of the standalone and hybrid models at Urmia station (local assessment)

Parameter Scale Models Training Test

RMSE (�C) MAE (�C) NRMSE (%) RMSE (�C) MAE (�C) NRMSE (%)

Tmin Daily AR(15) 1.783 1.355 33.850 1.967 1.467 37.357

AR(15)-ARCH 0.249 0.137 4.727 0.253 0.140 4.801

MLP 2.185 1.668 41.499 2.325 1.799 44.151

MLP-AR(15) 0.404 0.302 7.664 0.452 0.328 8.579

MLP-AR(15)-ARCH 1.830 1.379 34.758 2.007 1.489 38.106

Monthly AR(4) 0.576 0.440 11.047 0.718 0.482 13.755

AR(4)-ARCH 0.399 0.296 7.649 0.438 0.315 8.396

MLP 1.354 0.990 25.992 1.527 1.086 29.261

MLP-AR(4) 0.322 0.226 6.185 0.385 0.258 7.377

MLP-AR(4)-ARCH 0.778 0.594 14.928 0.813 0.609 15.585

Tmax Daily AR(12) 2.784 2.176 15.688 3.070 2.443 16.103

AR(12)-ARCH 1.001 0.784 5.641 1.094 0.868 5.737

MLP 2.188 1.672 12.331 2.333 1.779 12.238

MLP-AR(12) 0.315 0.243 1.774 0.364 0.277 1.911

MLP-AR(12)-ARCH 2.049 1.624 11.548 2.199 1.759 11.532

Monthly AR(3) 0.888 0.688 5.023 1.140 0.878 5.994

AR(3)-ARCH 0.433 0.326 2.448 0.508 0.406 2.670

MLP 1.853 1.391 10.482 2.074 1.637 10.907

MLP-AR(3) 0.412 0.257 2.332 0.406 0.328 2.136

MLP-AR(3)-ARCH 1.106 0.783 6.258 1.415 1.038 7.444

T Daily AR(14) 2.205 1.695 19.160 2.414 1.839 19.842

AR(14)-ARCH 0.841 0.646 7.308 0.913 0.695 7.505

MLP 1.659 1.258 14.415 1.745 1.324 14.340

MLP-AR(14) 0.232 0.176 2.018 0.262 0.194 2.155

MLP-AR(14)-ARCH 1.566 1.210 13.607 1.657 1.272 13.622

Monthly AR(4) 0.673 0.513 5.882 0.854 0.647 7.049

AR(4)-ARCH 0.394 0.294 3.441 0.443 0.340 3.655

MLP 1.432 1.074 12.516 1.677 1.252 13.844

MLP-AR(4) 0.431 0.293 3.767 0.495 0.366 4.089

MLP-AR(4)-ARCH 0.960 0.650 8.390 0.863 0.633 7.123
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used to estimate the daily and monthly temperature com-

ponents of current day and month.

Besides the hybrid AR-ARCH time series model, this

study developed other types of hybrid models by combin-

ing the single AR and hybrid AR-ARCH models with the

MLP, which led to the conception and implementation of

hybrid artificial intelligence-time series models (i.e., MLP-

AR and MLP-AR-ARCH). The values of statistical indi-

cators obtained for the mentioned hybrid models are shown

in Tables 2 and 3. Evaluating the performance of single and

hybrid models revealed that better estimates of daily and

monthly Tmin, Tmax and T parameters can be achieved by

integrating the AR and AR-ARCH models with the MLP

via the hybrid MLP-AR and MLP-AR-ARCH models,

particularly by the MLP-AR. For example, based on the

Table 3, for the single MLP the values of RMSE, MAE and

NRMSE for Tmin estimation on a daily scale are, respec-

tively, 2.185 �C, 1.668 �C, 41.499% (training period),

2.325 �C, 1.799 �C, 44.151% (test period); while, the

aforementioned statistics improve to 0.404 �C, 0.302 �C,
7.664% (training period), 0.452 �C, 0.328 �C, 8.579% (test

period) for the hybrid MLP-AR(15); as well as 1.830 �C,
1.379 �C, 34.758% (training period), 2.007 �C, 1.489 �C,
38.106% (test period) for the hybrid MLP-AR(15)-ARCH

model. As already noted, a time series like the AR and AR-

ARCH, and AI techniques such as MLP can capture and

estimate the stochastic and deterministic components of the

data, respectively; while, the hybrid models developed in

this study include both terms in their estimations.

Similarly, previous works have confirmed the suitability

and higher precision of hybrid models generated via

combining AI and time series models compared to the

single AI models. These studies developed hybrid models

by coupling the various time series and AI approaches for

the hydrological and meteorological time series estimation

including reference evapotranspiration (Mohammadi and

Mehdizadeh 2020; Mehdizadeh 2018b), river flow (Me-

hdizadeh and Kozakalani Sales 2018; Fathian et al. 2019;

Mehdizadeh et al. 2019a, b; Mohammadi et al. 2020a, b),

precipitation (Mehdizadeh 2020; Mehdizadeh et al.

2017, 2018b), wind speed (Mehdizadeh et al. 2020c), soil

temperature (Moazenzadeh and Mohammadi 2019; Me-

hdizadeh et al. 2020d), solar radiation (Mohammadi and

Aghashariatmadari 2020). It was found that the estimates

of hybrid models were better than that of the single AI

methods.

Radar diagrams were then prepared to graphically show

the estimation accuracy of all the developed models in

Table 4 Optimal number of

hidden layer neurons for the

MLP models developed at the

study locations

Station Type of assessment Scale Parameter Hidden layer neurons

Tabriz Local Daily Tmin 26

Tmax 4

T 21

Monthly Tmin 17

Tmax 2

T 23

External Daily Tmin 2

Tmax 2

T 5

Monthly Tmin 9

Tmax 1

T 14

Urmia Local Daily Tmin 16

Tmax 14

T 3

Monthly Tmin 3

Tmax 9

T 17

External Daily Tmin 16

Tmax 21

T 24

Monthly Tmin 1

Tmax 9

T 21
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terms of RMSE values during the test phase, which are

depicted in Figs. 5 and 6, respectively, for the Tabriz and

Urmia stations. It can be obviously observed that the hybrid

AR-ARCH, MLP-AR, and MLP-AR-ARCH models yiel-

ded lower RMSE than the corresponding standalone AR

and MLP ones. This verifies the superior performance of

the implemented hybrid models compared to the single

models to estimate the air temperature parameters (Tmin,

Tmax and T).

Fig. 5 Radar graphs for the RMSE values obtained through the different models at Tabriz station during the test stage
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3.2 External assessment of the MLP models

Following the local assessment of the MLP model, it was

externally assessed as well. This type of evaluation is

particularly important when the local data in a given station

is not available as input for the AI approaches. In those

cases, the data of a nearby station could be used to estimate

Tmin, Tmax and T parameters at the desired station. The

sites used in this study, the Urmia and Tabriz, are located

close to each other in Northwestern Iran and have similar

Fig. 6 Radar graphs for the RMSE values obtained through the different models at Urmia station during the test stage
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climatic characteristics (i.e., semi-arid). Hence, they can be

qualified as neighboring stations, and the daily and monthly

Tmin, Tmax and T parameters at one station were estimated

using the same day or month data of the adjacent station.

The optimal hidden layer nodes at the studied regions for

the external assessment of MLP are presented in Table 4.

As can be seen, it varies between 1 (for estimating monthly

Tmax) and 14 (for estimating monthly T) at Tabriz station,

as well as 1 (for estimating monthly Tmin) and 24 (for

estimating daily T) at Urmia station. Tables 5 and 6,

respectively, report the values of error indices obtained by

the MLP model for an external assessment. A performance

comparison of the single MLP developed in both local and

external evaluation conditions (i.e., Tables 2, 3 and 5, 6)

demonstrates that the accuracy of MLP models developed

under the external condition is higher than for a local one

for both time scales and Tmin, Tmax and T. As an example,

the values of RMSE, MAE and NRMSE in Table 3 for the

single MLP under a local assessment for the Tmax on a

daily scale at Urmia station are, respectively, 2.188 �C,
1.672 �C, 12.331% (training period), 2.333 �C, 1.779 �C,
12.238% (test period); while, the above-mentioned statis-

tics improve to 1.329 �C, 1.009 �C, 7.491% (training per-

iod), 1.389 �C, 1.078 �C, 7.287% (test period) via the

single MLP under an external condition (Table 6). There-

fore, it can be concluded that proper selection of adjacent

stations can improve the results of AI techniques for an

external assessment over that of a local evaluation.

This evaluation type of the AI-based models such as

MLP used in the current study is also considered in the

previous works when estimating the meteorological and

hydrological parameters time series. Here, some of these

studies are briefly presented. The climatic parameters of

nearby location were used by Mehdizadeh (2018b) to

estimate daily reference evapotranspiration of target site. In

the field of streamflow modeling, Sanikhani and Kisi

(2012) and Mehdizadeh et al. (2019b) evaluated the per-

formance of AI models in modeling the streamflows of

target station using the data of adjacent hydrometric

location. Moreover, other researches were reported in lit-

erature on the applicability of adjacent station’ data for

modeling the intended parameter at the target site including

the pan evaporation estimation (Lu et al. 2018), wind speed

prediction (Deo et al. 2018), and drought modeling (Me-

hdizadeh et al. 2020e). The outcomes of these works

indicated that the data of adjacent station could be applied

to model the studied problem at the target location under an

external evaluation.

3.3 Performance comparison of all models
developed

As concluded from the previous sections, the hybrid time

series model (i.e., AR-ARCH) performed better than the

single AR when estimating the temperature parameters at

both daily and monthly scales. Additionally, the hybrid

MLP-AR and MLP-AR-ARCH models yielded better

results compared to the single MLP models; however, the

MLP-AR models developed at the study locations per-

formed the best. Evaluating the performance of single AR

and MLP under a local condition proved that the single AR

models have better accuracy than the MLP models at both

stations on a monthly scale. On the contrary, the MLP

models of local condition performed better when estimat-

ing the Tmin, Tmax and T on a daily scale at Tabriz station.

For the values of the Urmia station on a daily scale, the AR

performed better than the MLP at local condition to esti-

mate Tmin and vice versa the MLP models showed better

statistics compared to the AR models for estimating Tmax

and T. As for the hybrid models (i.e., AR-ARCH, MLP-AR

and MLP-AR-ARCH), the hybrid AR-ARCH models out-

performed the hybrid MLP-AR-ARCH models of local

condition when estimating all temperature parameters for

both study locations. However, the MLP-AR models

developed for a local condition outperformed the hybrid

AR-ARCH, except when estimating the daily Tmin and

monthly T at Urmia, where the AR-ARCH models present

a slightly better accuracy than the MLP-AR models at a

Table 5 Error statistics of the standalone MLP models at Tabriz station (external assessment)

Parameter Scale Training Test

RMSE (�C) MAE (�C) NRMSE (%) RMSE (�C) MAE (�C) NRMSE (%)

Tmin Daily 1.934 1.513 25.214 1.961 1.533 24.523

Monthly 0.771 0.594 10.127 0.664 0.535 8.367

Tmax Daily 1.407 1.063 7.510 1.375 1.041 6.958

Monthly 0.488 0.374 2.614 0.636 0.496 3.230

T Daily 1.277 0.990 9.671 1.234 0.968 8.888

Monthly 0.517 0.385 3.931 0.449 0.346 3.252
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local condition. Also, the MLP models under an external

condition led to better estimates of the daily and monthly

Tmin, Tmax and T parameters for both study regions. The

most accurate models at the Tabriz station for estimating

Tmin, Tmax, and T on a monthly scale are, respectively,

MLP-AR(3) (RMSE = 0.379 �C, MAE = 0.204 �C,
NRMSE = 4.977% at the training stage, RMSE = 0.431 �
C, MAE = 0.245 �C, NRMSE = 5.423% at the test stage),

MLP-AR(1) (RMSE = 0.165 �C, MAE = 0.112 �C,
NRMSE = 0.883% at the training stage, RMSE = 0.199 �
C, MAE = 0.159 �C, NRMSE = 1.012% at the test stage),

and MLP-AR(1) (RMSE = 0.311 �C, MAE = 0.216 �C,
NRMSE = 2.366% at the training stage, RMSE = 0.255 �
C, MAE = 0.194 �C, NRMSE = 1.846% at the test stage).

Moreover, the most precise estimates of the temperature

parameters at Urmia station were obtained by the AR(15)-

ARCH when estimating the daily Tmin (RMSE = 0.249 �C,
MAE = 0.137 �C, NRMSE = 4.727% at the training stage,

RMSE = 0.253 �C, MAE = 0.140 �C, NRMSE = 4.801%

at the test stage), the MLP-AR(12) when estimating the

daily Tmax (RMSE = 0.315 �C, MAE = 0.243 �C,
NRMSE = 1.774% at the training stage, RMSE = 0.364 �
C, MAE = 0.277 �C, NRMSE = 1.911% at the test stage),

and the MLP-AR(14) when estimating the daily T

(RMSE = 0.232 �C, MAE = 0.176 �C, NRMSE = 2.018%

at the training stage, RMSE = 0.262 �C, MAE = 0.194 �C,
NRMSE = 2.155% at the test stage).

Regarding the ability of single and hybrid models to

estimate the daily and monthly temperature parameters at

the study sites, Tables 2 and 3 clearly show that the models

performed better when estimating Tmin and T than for Tmax

considering the lower values of RMSE and MAE indica-

tors. However, these criteria cannot be used as reliable

statistics to compare the accuracy of models to estimate the

different air temperature components since their values

depend on the measured values. Therefore, a dimensionless

index, like the NRMSE, can be helpful for comparing the

performance of different models. It can be concluded that

the entire single and hybrid models performed better when

estimating Tmax on both daily and monthly scales than for

the Tmin and T parameters given their smaller NRMSE

values.

4 Conclusions

In this study, a single AR time series model and an AI-

based MLP were used to estimate daily and monthly air

temperature parameters which include Tmin, Tmax and T.

Two sites in Northwestern Iran, namely the Tabriz and

Urmia, were used as case studies. The results showed that

the single MLP outperformed the AR on a daily scale, and

vice versa the single AR performed much better than the

single MLP on a monthly scale for estimating all temper-

ature components. In addition, three types of hybrid models

were developed via coupling the linear AR with a non-

linear ARCH, as well as coupling the previously mentioned

time series models with the MLP. Accordingly, the hybrid

AR-ARCH, MLP-AR and MLP-AR-ARCH models were

tested. It was found that the hybrid AR-ARCH outper-

formed the single AR. Furthermore, the hybrid MLP-AR

and MLP-AR-ARCH were better than the single MLP;

however, the hybrid MLP-AR models performed best when

estimating the daily and monthly air temperatures of the

study regions on both time scales. An external assessment

of the MLP was also conducted to evaluate if the data of an

adjacent station could be used to estimate the temperature

components of a target site. The results revealed that the

air temperatures of a given station could be estimated using

the data of a neighbor station and the performance of MLP

under an external condition was better than the local one.

Investigating the performance of the single and hybrid

models when estimating the temperature components

demonstrated that all the models performed best when

estimating the daily and monthly Tmax considering the

NRMSE values.

Future research could implement diverse kinds of hybrid

models by coupling the linear moving average (MA),

Table 6 Error statistics of the standalone MLP models at Urmia station (external assessment)

Parameter Scale Training Test

RMSE (�C) MAE (�C) NRMSE (%) RMSE (�C) MAE (�C) NRMSE (%)

Tmin Daily 1.762 1.391 33.464 1.868 1.460 35.461

Monthly 0.694 0.544 13.315 0.618 0.486 11.839

Tmax Daily 1.329 1.009 7.491 1.389 1.078 7.287

Monthly 0.498 0.393 2.819 0.666 0.538 3.506

T Daily 1.094 0.854 9.511 1.139 0.885 9.360

Monthly 0.430 0.327 3.755 0.470 0.341 3.878
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ARMA and ARIMA models with non-linear ones such as

ARCH, generalized ARCH (GARCH), etc. The afore-

mentioned time series models could also be hybridized

with AI-based approaches such as ANN, ANFIS, SVM and

so on to more accurately estimate air temperatures. Addi-

tionally, the hybrid models developed in this study could

be used to estimate other meteorological and hydrological

data, such as soil temperature, rainfall, streamflow, etc.
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