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Abstract
The existence of shallow landslide brings huge threats to the human lives and economic development, as the Lang County,

Southeastern Tibet prone to landslide. Landslide susceptibility mapping (LSM) is considered as the key for the prevention

of hazard. The primary goal of the present study is to assess and compare four models: classification and regression tree,

gradient boosting decision tree (GBDT), adaptive boosting-decision tree and random forest for the performance of

landslide susceptibility modeling. Firstly, a landslide inventory map consisting of 229 historical shallow landslide locations

was prepared and the same number of non-landslide points was determined by k-means clustering. Secondly, 12 condi-

tioning factors were considered in the landslide susceptibility modeling. The prediction performance of the four models

were estimated by fivefold cross validation and relative operating characteristic curve (ROC), area under the ROC curve

(AUC) and statistical measures. The results showed that the GBDT performed best in the training and validation dataset,

with the highest prediction capability (AUC = 0.986 and 0.940), highest accuracy value (95.3% and 88.1%) and highest

kappa index (0.904 and 0.772), respectively. Therefore, the GBDT was considered to be the most suitable model and

applied to the whole study area for LSM. The results of this study also demonstrate that the performance can be enhanced

with the use of ensemble learning. The sampling strategy of non-landslide points can be improved by combining with

clustering analysis which are more reasonable.
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1 Introduction

In geomorphology, a ‘‘landslide’’ is the movement of a

mass of rock, debris or earth down a slope, under the

influence of gravity (Cruden and Varnes 1996). According

to different variables, landslides can be divided into dif-

ferent types (Varnes 1978). Rainfall-induced shallow

landslides is a natural phenomenon mainly occurring in

mountainous areas which are widespread all over the world

and caused damages on both human lives and economy

directly or indirectly (Trigila and Iadanza 2012). Generally,

damages can be decreased to a certain extent by predicting

the likely location of future disasters (Pradhan 2010).

Therefore, landslide susceptibility prediction is the first

step towards estimation or reduction of landslide hazard

and risk.

The effectiveness of LSM depends greatly on the

modeling methodology adopted. The approaches of LSM

can be broadly classified as qualitative and quantitative

(Liang et al. 2020a), which are also known as direct or

indirect methods. Indirect approach like machine learning

techniques such as neural networks, support vector

machines, decision tree and logistic regression, have been

used over large-scale study areas (Liang et al. 2020b;

Merghadi et al. 2020; Lian et al. 2014; Colkesen et al.

2016). However, the performance of different learning

machines fluctuates in different situations because of the

inductive preference, which is an essential attribute of

machine learning algorithms. Most single classifiers, of

which generalization ability is slightly better than that of
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random guessing, are less robust. There is a room for

improvement and the emergence of ensemble learning

made it possible (Woods and Kaatupitiya 2013).

The goal of ensemble learning methods is to construct a

collection (an ensemble) of individual classifiers to reduce

predictive error and improve the performance (Fan et al.

1999; Dietterich 2000). Due to the superior prediction

capacity with high robustness, more and more ensemble

learning approaches were applied and explored in LSM

study (Bui et al. 2014; Youssef et al. 2015a, b; Pham and

Prakash 2019). Boosting and Bagging were originally

introduced by Schapire (1990) and Breiman (1994)

respectively, which are two of the most popular and earliest

techniques for machine learning and are usually used as the

based idea of ensemble techniques (Dietterich 2000).

However, these techniques rarely applied and discussed in

LSM and need to be further exploration and comparison for

a more improved model.

In general, the spatial prediction of geological disasters

can be regarded as a binary classification process (Bennett

et al., 2016). It is recommended to prepare equal amounts

of disaster presence and absence observations (1:1 sam-

pling) during the modeling process (Heckmann et al. 2014;

Kornejady et al. 2017). In previous researches, negative

samples were selected randomly or subjectively (Nefesli-

oglu et al. 2008; Hussin et al. 2015). However, there is

significant uncertainty because the random points may be

located in a highly prone area. Where there is a large

amount of classification noise (i.e., training and test

examples with incorrect class labels) it may cause over-

fitting or under-fitting, resulting in low generalization

ability of the model and affecting the accuracy of spatial

prediction. High-purity samples are an important condition

to ensure the performance of the model and clustering

analysis is considered to be an effective method (Mingoti

and Lima 2006).

The main objective of the present study is to explore and

compare the potential application and performance of the

decision tree and its three ensembles based on Boosting

and Bagging for the selection of the best model for land-

slide susceptibility prediction. On the other hand, K-means

clustering method is used to select negative samples that

can better represent the characteristics of non-disasters

areas and improve the purity of the samples. The Lang

County in Southeastern Tibet chosen as the study area is

prone to shallow landslides because of climatic and topo-

graphic conditions. Geomorphological, topographical and

trigging factors were considered in modeling. The perfor-

mance of the models were estimated by k-fold (k = 5 in

this paper) cross validation using the receiver operating

characteristic (ROC) curve, three statistical evaluation

measures (Accuracy, Sensitivity, and Specificity) and

kappa coefficient. Analysis and data processing has been

done using ArcMap 10.2, SPSS, SPSS Modeler 18.0 and

Python 3.7 software.

2 Materials

2.1 Study area

The study area, Lang country was located in Nyingchi City,

Southeastern Tibet, which is bounded by longitudes of

92�250 E and 93�310 E, latitudes of 28�410 N and 29�290 N
(Fig. 1). It covers an area of about 4200 km2 with a pop-

ulation of more than 15,000. The study area belongs to

Qinghai-Tibet Plateau with the annual rainfall of

350 * 600 mm, mainly concentrated in June to August.

The study area belongs to the Yarlung Zangbo River

deep fault zone in geological structure, with strong neo-

tectonic activity and frequent earthquakes. The seismic

intensity within the area has a degree of VIII on the

modified Mercalli index. The strata is mainly composed of

Jurassic, Triassic, Cretaceous and Quaternary.

The disasters in the study area mainly consist of rain-fed

high frequency landslide, which pose a great threat to local

villagers and engineering activities.

2.2 Data collection and preparation

2.2.1 Shallow landslide inventory

The statistically-based susceptibility models are based on

an important assumption: future landslides will be more

likely to occur under the conditions which led to the

landslides past and present (Varnes 1984; Furlani and

Ninfo 2015). Therefore, landslide inventory mapping as the

initial step is essential. In this study, data comes from

historical landslide records (from 1970 to 2010), field

surveys (from 2000 to 2003) (Figs. 2 and 3) and Google

Earth satellite images interpretation (20) (Fig. 4). All

landslide inventories consist of polygons which bound the

whole landslide perimeter and finally, a total of 229 land-

slide polygons were obtained. In this study, the identified

landslides were shallow type according to Varnes classifi-

cation system (1978), which were triggered by Rainfall.

2.2.2 Conditioning factors

Occurrence of landslides is controlled by multiple factors

such as geomorphological, topographical and triggering

factors (including natural and human factors). According to

availability, reliability, and practicality of the data (van

Westen et al. 2008), 12 landslide conditioning factors

including annual rainfall (F1), maximum elevation differ-

ence (F2), altitude (F3), plan curvature (F4), profile
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curvature (F5), slope angle (F6), topographic wetness index

(F7), distance to roads (F8), distance to faults (F9), distance

to streams(F10), slope aspect (F11), and lithology (F12)

were involved for landslide susceptibility modeling.

Topographic related factors (altitude, slope angle, slope

aspect, maximum elevation difference, plan curvature,

profile curvature and topographic wetness index) were

derived from the (Digital Elevation Model) DEM with a

resolution of 30 9 30 m from Shuttle Radar Topography

Mission (SRTM) data. Altitude affect slope instability,

precipitation properties and vegetation cover type, which

was frequently used in LSM (Feizizadeh et al. 2014; Hong

et al. 2015). Altitude was reclassified into 5 classes with an

interval of 200 m (Fig. 5a). Slope angle was another major

contributing factor, which controls the subsurface flow and

the soil moisture (Magliulo et al. 2008). It was reclassified

into 6 classed with an interval of 5� (Fig. 5b). Slope aspect
map was reclassified into 8 classes according to the 8

cardinal directions (Fig. 5c). Maximum elevation

Fig. 1 Location map of the

study area showing landslide

inventory

(a) (b)

Fig. 2 Field investigation photos. a landslide in Jindong township; b traction landslide in Zhuogang Village

Fig. 3 The panorama of Jigoshan landslide
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difference was obtained by calculating the difference

between the maximum and minimum values of elevation in

the same slope unit. It was reclassified into 6 classes with

an interval of 300 m (Fig. 5d). Curvature and topographic

wetness index are morphometric parameters that represents

basic terrain (Evans 1979). Topographic wetness index was

reclassified into 6 classes (Fig. 5g). The plan curvature and

profile curvature were reclassified into 7 classes (Figs. 5e,

f).

Fault information were extracted from a geological map

at a scale of 1:50,000. Faults decrease the rock strength,

which act as potential weak planes in slopes (Bucci et al.

2016). The distance to faults maps with six classes

(Fig. 5h) were constructed for\ 3000, 3000–6000,

6000–9000, 9000–10,000, and[ 10,000 m. Similarly,

distance to roads (Fig. 5i) and distance to rivers (Fig. 5j)

were constructed.

NDVI, which can be used to quantitatively estimate its

impact on landslides and vegetation density (Chen et al.

2017), was prepared through information extracted from

Landsat 8 LOI images (2016.5.11). It was reclassified into

six classes (Fig. 5k).

Rainfall as the most important external factors inducing

landslides was selected. Considering that the rainfall in the

study area is mainly concentrated in June–August, the

annual average rainfall was applied. In addition, the ele-

vation will be used as a cooperative influence on rainfall.

Consequently, the rainfall map (Fig. 5l) was constructed

from the annual average of rainfall data (1981 * 2000)

using the collaborative kriging method in the spatial

interpolation function of ArcGIS by collecting data of 9

precipitation stations near the area under study as a

reference.

2.2.3 Mapping units

The selection of the mapping unit is an important pre-

requisite for susceptibility modelling (Guzzetti, 2006a).

The mapping units are generally divided into four cate-

gories: grid cells, slope units, unique-condition units and

watershed units (Zezere et al. 2017) among which the most

popular one used is grid cells (Reichenbach et al. 2018).

The comparison of the four mapping units may be referred

to another literature (Guzzetti et al. 2006b). Slope units can

be expressed as an individual slope or a small catchment

based on the landslide type and suitable for landslide sus-

ceptibility mapping at principal. Accordingly, slope units,

which allowed to better characterize the detachment area

and represent the geomorphological and geological condi-

tions of landslides, were applied in this study. ArcGIS is

used to divide the study area into 1460 slope units and

make artificial corrections according to remote sensing

image. Landslide locations (229) were represented as a

single point per landslide (Fig. 1). On the other hand, each

factor was reclassified into 4 to 7 classes based on the equal

spacing principle and the mean value in the unit was

counted as the representative value of the unit (Fig. 2).

3 Methods

3.1 K-means clustering

K-means is popular for cluster analysis in data mining due

to its efficiency and simple implementation (Anil 2010;

Likas et al. 2003). The k-means clustering aims to partition

n observations into k clusters, in which each data point is

assigned to the cluster with the nearest mean, thus serving

as the centroid of the cluster (Hartigan and Wong 1979).

(a)
(b)

Fig. 4 Stereo remote sensing map of landslides in Lang country (Tong et al., 2019): a Landslides in Geda town; b Landslides in Zhongda town

1246 Stochastic Environmental Research and Risk Assessment (2021) 35:1243–1256

123



Fig. 5 Study area thematic maps: a Altitude; b Slope angle DTR; c Slope aspect; d MED; e Plan curvature; f Profile curvature; g TWI; h DTF;

i DTR; j DTS; k NDVI; l Rainfall
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The brief implementation process of K-means is as

follows:

(1) Predetermined initial clustering center;

(2) Calculating the distance between each point and the

initial clustering center (dk) and determining a

preliminary classification (MacQueen 1967);

(3) Reacquiring the cluster centers of each new category

and calculating the distance, and iterating repeatedly

until the following equation is satisfied:

unþ1 � unj j
unþ1

� e ð1Þ

where un?1 represents the sum of squares of dis-

tances from each point to the cluster center after the

nth clustering; e represents the precision value.

In this paper, 229 positive samples (that is, disaster

points) are used as the initial clustering center. The units

farthest from the cluster center in each category were taken

as a negative sample. The negative samples selected in this

way will be representative and represent the characteristics

of non-disaster areas. The final binary response variables

consisted of an identical number of landslide presence and

absence observations (1:1). Therefore, 229 negative sam-

ples were determined. Finally, the so-called cutoff value of

the model result that discriminates between event and non-

event is equal to 0.5.

3.2 Bagging and boosting

Bagging (also known as bootstrap aggregating), is one of

the earliest ensemble methods introduced by Breiman

(1994). The training set is constructed by multiple samples,

which are generated from sampling randomly and

replacement. Each subset is used to construct the predictive

functions individually and then aggregated to make a final

decision through voting procedure. It has been effectively

used for generating classifier ensemble and accuracy is

improved by controlling the variance of classification error.

The out of bag (OOB) error is used to evaluated the gen-

eration ability of bagging and expressed as below:

E ¼ 1

N

X

Ct xjð Þ2N

Y
L Xð ÞOOB 6¼ y

� �
ð2Þ

where N represents the samples; X represents a vector and

x represents variable; y represents the output; H represents

the classifier and T is the number of classifiers; g regards as
1 if it is true and 0 or else.

Boosting is another commonly used ensemble strategy

and originally proposed by Schapire (1990). Boosting

obtain sequentially training subsets by randomly sampling

with replacement over weighted data. It provide controls

both bias and variance while Bagging performs batter in

terms of variance reducing (Jie et al. 2020). The errors of

classifiers (E) is calculated as:

E ¼
X

xj2N;Ct xjð Þ6¼yj

Weight xj
� �

=m ð3Þ

where m is the sequence of examples; N represents the

samples; xj and yj represent the elements of samples.

In this paper, both Bagging and Boosting are adopted to

compare and improve the performance of DT, which is a

weak classifier, in landslide susceptibility modeling.

3.3 CART

CART is a non-parametric and non-linear technique and

first introduced by Breiman et al. (1984). It divides the data

into subsets based on independent factors and meanwhile,

it splits a node into yes/no answers as predicting values

(Pourghasemi and Rahmati 2018), which is appropriate for

generating both regression and classification trees (Samadi

et al. 2014). CART is a well-known DT algorithm and runs

in SPSS Modeler in this study.

3.4 Random Forests (RF)

RF is a popular integrated method and first proposed by

Breiman (2001). It is constructed based on two powerful

ideas: Bagging and random feature selection (Wu et al.

2014; Fernández-Delgado et al. 2014). Bagging technique

is applied to select the trees at each node, random samples

of variables and observations as the training data set for

model calibration. More detailed statistical explanation on

RF can be found in Breiman (2001) and Segal (2004). In

this study, the scikit-learn package (Pedregosa et al. 2011)

in Python version 3.7 was used for RF modeling. Two

hyper-parameters, the number of trees (k) and the number

of variables applied to divided the nodes (m), are required

to determined in advance (Youssef et al. 2016). To ensure

the algorithm convergence and favorable prediction results,

the number of trees k has been fixed to 500 and the number

of predictive variables m has been selected as 5 (Breiman

et al. 2001). The error was assessed by mean decrease in

node impurity (mean decrease Gini index) (Calle and Urrea

2010).

3.5 GBDT

GBDT is another ensemble learning machine with CART

as the base classifier and Gradient Boosting as the

ensemble method. It is an iterative decision tree algorithm,

which transforms several weak learning classifiers into a

strong learning classifier with high precision (Friedman
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2001). The parameters of the weak classifier are set to

approximate the gradient direction of the loss function

established in the previous iteration. The GBDT was

applied in Python 3.7 using the GBDT class library of

scikit-learn.

3.6 AdaBoost-DT

AdaBoost (known as adaptive boosting) is of the boosting

family and was introduced by Freund and Schapire (1997).

An adaptive resampling technique is applied to choose

training samples and then the classifiers are trained itera-

tively while the misclassified samples are given more

weight in each iteration. Accordingly, the final classifier is

a weighted sum of the ensemble predictions obtained by

each training (Hong et al. 2018). DT as a common weak

classifier expect considerate performance once combined

with AdaBoost algorithm. AdaBoost-DT is applied in

Python 3.7 using the AdaBoost class library of scikit-learn.

3.7 Performance assessment

Models would have a poor scientific value without a proper

evaluation and/or validation. (Chung and Fabbri 2003). In

earlier studies, single hold-out model performance mea-

sures were derived using one training and independent test

set (Reichenbach et al. 2018). However, there is a need for

a more reliable estimation of the model performance. The

ability of the models to classify independent test data was

elaborated using a k-fold cross validation procedure (k = 5

in this paper), where the data is randomly partitioned into k

disjoint sets, and one set at a time is used for model testing

while the combined remaining k1 sets are used for model

training (James et al. 2013).

Accuracy, Sensitivity, and Specificity are the three sta-

tistical evaluation measures generally applied to assess the

performance of the landslide susceptibility models (Bui

et al. 2016a, b).

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

FP + TN

ð4Þ

where True Positives (TP), i.e., cells predicted unstable and

observed unstable, True Negatives (TN), i.e., cells pre-

dicted stable and observed stable, False Positives (FP), i.e.,

cells predicted unstable but observed stable and False

Negatives (FN), i.e., cells predicted stable but observed

unstable.

The kappa index is the consistency test index of binary

classification results and its value varies from - 1 to 1. It is

equal to 1 if the two results are in perfect agreement, and is

equal to - 1 if they are completely different. It can be

determined based on the equation below:

Kappa ¼ Pp � Pexp

1� Pexp

ð5Þ

where Pp represents the observed agreements and Pexp is

the expected agreements.

Finally, the overall performance of the models is

assessed by ROC curve, which illustrates the sensitivity

(also recall) and 1-specificity for model validation. The

Area Under Curve (AUC) is the most popular metrics to

estimate the quality of model, varying from 0.5 (diagonal

line) to 1, with higher values indicating a better predictive

capability of the model. (Green and Swets 1966; Swets

1988).

In present study, both ROC curve, the contingency

tables and Kappa index were used to evaluate the suscep-

tibility models established for landslide.

3.8 Mapping landslide susceptibility

The ultimate purpose of this paper is to select the best

method for landslide susceptibility mapping. The simplest

approach to select an optimal model for prediction is to

compare multiple evaluation indicators from cross-valida-

tion, where the modeling method with the lowest error

estimate is determined as the best one to use (Goetz et al.

2015). According to the landslide susceptibility index, the

study area was reclassified into five classes such as very

low (0 * 0.2), low (0.2 * 0.4), moderate (0.4 * 0.6),

high (0.6 * 0.8) and very high (0.8 * 1) based on the

equal spacing principle.

4 Results and verification

4.1 Evaluation and comparison of different
models

The performance of the four models was evaluated and

compared using the chosen indexes including ROC curve,

the contingency tables and Kappa index. Analyses of the

contingency tables and Kappa index using the training set

are shown in Table 1. The GBDT model indicates the best

performance for classifying landslides (sensitiv-

ity = 97.0%), followed by the RF model (sensitiv-

ity = 92.8%), the Ada-DT model (sensitivity = 89.7%) and

CART model (sensitivity = 88.3%). In terms of the clas-

sification of non-landslides zones, the best performance is

GBDT model (specificity = 93.8%), followed by the RF

model (specificity = 93.1%), the Ada-DT model (speci-

ficity = 92.6%) and the CART model
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(specificity = 92.4%). In addition, the GBDT model also

has the highest accuracy (95.3%) and Kappa coefficient

(0.904), indicating good agreement between the models

and the training data. The GBDT has higher values in these

three parameters compared to those of the other three

models. The performance of CART is the worst among the

four models, but it presented satisfactory performance.

Regarding the values of AUC, all the models achieve a

great performance. Among the, the GBDT model has the

greatest value of ACU (0.986), which is the same as the RF

model. Similarly, the CART model performed the worst

with the value of 0.944 (Table 2). Ensemble algorithms can

effectively enhance performance accuracy of a single

model. The standard error values of AUC were all less than

0.05 and the errors associated with probability estimation

were not obvious (Fig. 6).

To confirm the practicability of the proposed models,

the performance of models in the validation set was more

valuable and the results were showed in Tables 3 and 4. It

can be noticed that the GBDT model perform the best with

the highest values of sensitivity, specificity, accuracy,

Kappa and AUC, which was 86.9%, 89.4%, 88.1%, 0.772

and 0.940, respectively. By comparing with the training

data, the performance of the 4 models has declined, espe-

cially the RF model. The RF model performed the worst

with the value of sensitivity, specificity, accuracy, Kappa

and AUC, which was 74.7%, 67.3%, 70.4% 0.433 and

0.791, respectively. The performance of CART and Ada-

DT was relatively close and satisfactory. The standard error

values of AUC were increased compared to the training set.

The RF model indicated the highest standard error values

of AUC, which was 0.021, followed by the CART model

(0.017), Ada-DT model (0.014) and GBDT model (0.012).

4.2 Generation of landslide susceptibility map

The above analyses verified that the GBDT model showed

a superior capability and robustness in predicting the

landslide susceptibility over the other 3 models. Therefore,

the GBDT was considered to be the most suitable model

and applied to the whole study area for landslide suscep-

tibility mapping. The landslide susceptibility map was

reclassified into five classes: very low (0 * 0.2), low

(0.2 * 0.4), moderate (0.4 * 0.6), high (0.6 * 0.8), very

high (0.8 * 1) by using the equal spacing method (Fig. 7).

The map should satisfy two spatial effective rules: (1) the

existing disaster points should belong to the high-suscep-

tibility class and (2) the high-susceptibility class should

cover only small areas (Bui et al. 2012). The number of

units belonging to high and very high class reached 46 and

340, accounting for 3.2% and 23.2%, respectively (Figs. 7

and 8). Landslide locations were mostly predicted in the

dark (red or deep red) areas. The number of units belonging

to very low and low class reached 770 and 260, accounting

for 53.2% and 17.6%, respectively (Figs. 7 and 8). The

units belonging to moderate class accounted for the

smallest proportion, at 2.8% (Fig. 7). Most of the non-

landslide points screened by K-means clustering were

predicted to fall in low or very low susceptibility areas.

The very-high susceptibility areas of landslide are

mainly distributed around the 306- provincial highway,

which runs through the three townships in the study area,

including Lang Town, Zhongda Town and Dongga Town.

These areas are closed to faults and streams. Streams scour

eroded slopes, and loose rock and soil tend to accumulate,

which can easily cause landslides. More importantly, the

areas are densely populated with highway projects and

human activities which have been caused frequent

disasters.

The very-low susceptibility region was almost entirely

distributed on the south side of the 306-provincial highway

with high elevation, sparse population and lush vegetation.

The low or moderate susceptibility region was mainly

distributed on the north side of the 306-provincial highway.

This area is far from streams and faults, but the terrain is

undulating and the rainfall is sufficient.

Table 1 Models’ performance using training dataset

Indexes CART GBDT Ada-DT RF

TP (%) 92.8 93.6 92.9 93.1

TN (%) 87.7 97.1 89.3 92.8

FP (%) 7.2 6.4 7.1 6.9

FN (%) 12.3 2.9 10.7 7.2

Sensitivity (%) 88.3 97.0 89.7 92.8

Specificity (%) 92.4 93.8 92.6 93.1

Accuracy (%) 90.2 95.3 91.1 93.0

Kappa 0.802 0.904 0.820 0.895

Table 2 ROC analysis of the three models using training data

Models AUC Standard Error 95% confidence interval

CART 0.944 0.005 0.934–0.955

GBDT 0.986 0.002 0.981–0.991

Ada-DT 0.961 0.004 0.953–0.970

RF 0.986 0.001 0.982–0.992
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4.3 Relative importance of conditioning factors
for landslide

Determining the factors that have the obvious impact on

the occurrence of landslide is an essential task for condi-

tioning, stabilizing and reducing landslide risks. Based on

the Gini index (the larger the value of the obtained result,

the greater the contribution to the occurrence of landslide)

(Breiman 2001), seven parameters, including elevation,

MED, NDVI, rainfall, DTS, DTR and DTF had the obvious

impact on landslide susceptibility. On the other hand, TWI,

Slope angle and Slope aspect have insignificant impact on

the occurrence of landslide (Fig. 9). The conditioning

Fig. 6 Analysis of ROC curve for the landslide susceptibility map: a Success rate curve of landslide using the training dataset; b Prediction rate

curve of landslide using the validation dataset

Table 3 Models’ performance using verification dataset

Indexes CART GBDT Ada-DT RF

TP (%) 87.1 89.8 88.0 61.6

TN (%) 85.6 86.5 84.7 79.1

FP (%) 12.9 10.2 12.0 38.4

FN (%) 14.4 13.5 15.3 20.9

Sensitivity (%) 85.8 86.9 85.2 74.7

Specificity (%) 86.9 89.4 87.6 67.3

Accuracy (%) 86.3 88.1 86.3 70.4

Kappa 0.731 0.772 0.731 0.433

Table 4 ROC analysis of the models using validating data

Models AUC Standard Error 95% confidence interval

CART 0.886 0.017 0.853–0.919

GBDT 0.940 0.012 0.916–0.963

Ada-DT 0.913 0.014 0.885–0.941

RF 0.791 0.021 0.761–0.844

Fig. 7 Landslide susceptibility map using the GDBT model
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factors with significant effects were selected and normal-

ized as shown in Table 5. The weight values of elevation,

MED and NDVI were greater than 0.1, which were 0.30,

0.22, 0.11, respectively. The weight values of rainfall and

DTS, DTR and DTF were close to 0.1, which were 0.09,

0.09, 0.07 and 0.07, respectively. The weight values of

Slope angle, slope aspect and TWI, and Slope aspect were

close to 0, which were 0.02, 0.02 and 0.01, respectively.

5 Discussion

5.1 Method used for modeling

A literature review declares that each model has its own

strengths and weaknesses based on different assumptions

and requirements (Reichenbach et al. 2018; Merghadi et al.

2020), and generally its performance varies with the

characteristics of different study areas. The freedom of

choice to decide which modeling method is most suit-

able for a particular application is challenging (Goetz et al.

Fig. 8 Numbers and percentage of units in different susceptibility classes for landslide: a Numbers of units in different susceptibility classes for

landslide; b Percentages of different susceptibility classes for landslide

Fig. 9 Parametric importance graphics obtained from GBDT model

Table 5 Conditioning factors

assigned by the GBDT
Method Elevation MED NDVI Rainfall DTS DTR DTF Slope Angle Slope aspect TWI

GBDT 0.30 0.22 0.11 0.09 0.09 0.07 0.07 0.03 0.01 0.01
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2015). Although, many types of methods have been applied

to and compared in landslide susceptibility mapping to

obtain the best one for a given region (Goetz et al., 2015;

Ciurleo et al., 2017; Binh et al. 2020; Liang et al. 2020b).

However, most base learners are less robust due to their

own limitations. Therefore, it is essential to investigate new

methods or techniques for landslide susceptibility assess-

ment. Our study implements a detailed comparison to

evaluate the performances of some ensemble machine

learning models based on DT (CART, GBDT, Ada-DT and

RF) in predicting landslide susceptibility mapping. Bag-

ging and boosting are two algorithms commonly used in

ensemble learning. GBDT and Ada-dt are two representa-

tive algorithms in Boosting, while RF is based on bagging.

CART is a tree-building algorithm that can be used for both

classification and regression task.

The results of this study proved that the performance of

landslide model can be enhanced with the use of machine

learning ensembles. For training data sets, GDBT, Ada-DT

and RF had better prediction performance than CART,

which is in agreement with the findings of Bui et al.

(2016a) which concluded that the prediction performance

of landslide model is enhanced with the used of machine

learning ensemble framework. This enhancement is related

to the ability for reducing both bias and variance and avoid

over-fitting problems (Dou et al. 2020). The GDBT model

performed better than Ada-DT although both of them were

based on boosting algorithm. For the verification group, the

performance of GDBT and Ada-DT was still excellent,

while RF has declined, even lower than CART. Therefore,

the performance of GBDT was the best and stable among

all models in our study. Based on different integration

algorithms, the performance of the model varies and may

fluctuate, but it is generally higher than that of a single

primitive learner. In this paper, the GBDT model showed a

superior capability and robustness in landslide suscepti-

bility prediction over the other 3 models.

5.2 Determination of non-landslide points

Landslide susceptibility modeling is considered as a binary

classification process, and construction of the binary clas-

sification needs both positive and negative database (Ben-

nett et al. 2016). Positive database consists of landslide

locations with the values of ‘‘1’’, while negative (non-

landslide) database with the values of ‘‘0’’. Most previous

studies emphasized a complete and accurate disaster

inventory map, which consisted of a certain number of

disaster points (Reichenbach et al. 2018). However, the

determination of non-landslide points is rarely discussed.

In most cases, negative samples were selected randomly or

subjectively (Ciurleo et al. 2016; Cao et al. 2019), which is

controversial. It is believed that non-landslide points

should only be selected from low-prone areas, which is

difficult to achieve by selecting randomly or subjectively.

Clustering is a effective method to solve the problem. The

aim of the modelling of landslide susceptibility is to pre-

dicted the area prone to disaster or not prone to disaster.

For a certain study area, the landslide area is very small

compared to the non-landslide area. However, an equal

number of non-landslide points (1:1) was need to the

landslide database to avoid an over-estimation of non-

landslide areas (Ayalew and Yamagishi 2005; Du et al.

2020), which means that the determination of non-landslide

points is equally important. In this study, the existing

landslide points were used as the initial clustering center,

and the points with the farthest distance through iterative

calculation were found as non-slide points. Therefore, 229

non-landslide points were determined through K-means

clustering. The result showed that most of the non-land-

slide points fell in the areas with low or very low suscep-

tibility which can be stated as the non-disaster points

obtained by K-means clustering were reliable and

representative.

6 Conclusion

In the present study, the CART and three ensemble

learning machines, namely GBDT, Ada-DT and RF were

explored and compared in the performance of landslide

susceptibility prediction in Longzi County, Southeastern

Tibet, China. An improved sampling method was applied

to select non-landslide samples with the use of K-means

clustering. The performance of the models was evaluated

using ROC curves, three statistical measures and Kappa

coefficient and The following conclusions can be drawn:

1. GBDT model showed a superior capability and

robustness with the highest accuracy value (88.1%)

and AUC value (0.940) compared with the other three

models and was selected as the optimized model for the

whole study area.

2. Although the performance of the model varies and may

fluctuate based on different integration algorithms, the

accuracy desire improvement with the integration of

Boosting and Bagging algorithm.

3. According to comprehensive analysis of landslide

conditioning factors based on GBDT model, Elevation,

maximum elevation difference, NDVI, rainfall, DTS,

DTR and DTF have relatively obvious importance

compared to the rest factors. The zoning map obtained

by GBDT model was reasonable in predicting the

distribution of historical disaster points and the range

of highly susceptibility regions.
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4. The non-landslide samples selected by k-means clus-

tering are more reasonable and representative, which

avoids errors caused by random or subjective selection.

5. The combination of unsupervised learning and super-

vised learning further improves the reliability and

accuracy of the landslide susceptibility modeling.

This study discussed the application of new learning

machines that use decision trees as primitive learners and

Boosting and Bagging as integrated ideas in landslide

susceptibility mapping. Overall, the optimized model is

effective for the improved management of land use and

reducing the burden of landslides. In the future, more forms

of comparison or combination for LSM still need to be

explored. However, there are some limitations in our study:

1. More case studies, such as Stacking as an integration

idea, support vector machine as a primitive learner,

etc., should be conducted to explore and evaluate the

the potential overall performance;

2. Other clustering methods, such as fuzzy C-means

clustering and system clustering, can be used for

comparison and verification;

3. Several hyperparameters applied in machine learning

should be turned repeatedly.
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