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Abstract
In the drought prone district of Dholpur in Rajasthan, India, groundwater is a lifeline for its inhabitants. With population

explosion and rapid urbanization, the groundwater is being critically over-exploited. Hence the current groundwater

potential mapping study was undertaken to ascertain the areas that are more likely to yield a larger volume of groundwater

against those areas that have poor groundwater potential and accordingly perpetuate the much needed damage control.

Thematic layers for 14 groundwater influencing factors were considered for the study region, including elevation, slope,

aspect, plan curvature, profile curvature, topographic wetness index (TWI), geology, soil, land use, normalized difference

vegetation index (NDVI), surface temperature, precipitation, distance from roads, and distance from rivers. These were

then subjected to an overlay operation, with the groundwater inventory which comprised of the locations of observational

groundwater wells. The resulting geospatial database was then used to train two decision tree based ensemble models:

gradient boosted decision trees (GBDT) and random forest (RF). The predictive performance of these models was then

compared using various performance metrics such as area under curve (AUC) of receiver operating characteristics (ROC),

sensitivity, accuracy, etc. It was found that GBDT (AUC: 0.79) outperformed RF (AUC: 0.71). The validated GBDT model

was then used to construct the groundwater potential zonation map. The generated map showed that about 20.2% of the

region has very high potential, while 22.6% has high potential to yield groundwater, and approximately 19.9–17.5% of the

study region has very low to low groundwater potential.

Keywords Groundwater potential mapping � Machine learning � Ensemble models � Random forest � Gradient boosted
decision trees

1 Introduction

Groundwater is one amongst the world’s most over-utilized

and under-appreciated natural resources. Water in the sat-

urated zone, residing below the surface of the earth in

aquifers, is referred to as groundwater (Fitts 2002). Water

from surface water bodies (rivers, ponds, streams, canals,

etc.) and rainfall, seeps through the earth’s crust via

interconnected networks of channels like crevices, frac-

tures, cracks, crushed zones (fault zones or shear zones),

and joints and get collected in the underground reservoirs

contributing to the water table (Banks et al. 2002). Most

aquifers are identified by the general groundwater charac-

teristics such as consistent temperature, extensive avail-

ability, economical extraction, and drought resilience (Jha

et al. 2007). Also, due to its confined nature, the water

remains shielded from most surface adversities like gas

leaks, radiation exposure, etc. and hence become the major

source of fresh water in emergency situations and other-

wise. As a result a large portion of freshwater demands for

domestic and drinking purposes is met by means of these

dormant water bodies. An alarming yet an unsurprising

pattern of declining water table levels, thus, have emerged

owing to various unsustainable human practices. The

groundwater is being extracted at a much faster pace than

the rate at which it can be naturally replenished. Ever

increasing population cascading to an exponential increase
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in water demands, coupled with rapid urbanization and

industrialization to support the said population, plays havoc

with the fine balance of replenishment and evaporation.

Rigorous agricultural practices for obtaining higher yields,

with little or no regard for resources overlays a heavy cost

on the dwindling water table. This stands true, especially in

a country like India, where a majority of the population

relies on agriculture as their only source of livelihood, thus

superimposing the pressure on an already precarious

resource.

The latency associated with groundwater due to the

aquifers being cocooned below earth’s surface, often leads

to an unobserved and hence uninhibited mining for

groundwater. Consequentially, many of the underground

aquifers and groundwater springs have run dry, well before

their lifetime. Attempts to find new springs or boring

deeper into the existing ones will not only increase the

chances of contamination but can also cause land subsi-

dence. So there is a critical need for undertaking studies for

delineating regions on the basis of their potential for

groundwater yields. Such studies could help governments

with assessment, planning, and conservation of ground-

water as well as in land use planning for viable develop-

ment. Aquifer location identification is a tedious task on

account of their inherent physiognomy. Conventionally,

test drilling and stratigraphy analysis have been relied on

for this purpose, but are found unfeasible in regards of their

time, cost and skilled manpower requirements (Sander

et al. 1996). Geophysical survey lacks in precision and

need to be validated by borehole data, thus making them

expensive and inefficient (Mukherjee et al. 2012). Tech-

nologies such as Remote Sensing (RS) and Geographic

Information System (GIS) have completely revolutionized

the way such extensive studies were historically conducted.

With satellite images delivering accurate data at high

temporal resolution and with such high spatial precision

that the need for conducting field surveys has been sig-

nificantly obliterated. This has resulted in a plethora of

mapping studies such as landslide susceptibility mapping

(Bragagnolo et al. 2020a, b; Hu et al. 2020; Sameen et al.

2020; Sansare and Mhaske 2020; Tang et al. 2020; Van

Dao et al. 2020; Wang et al. 2020; Wu et al. 2020), flood

susceptibility mapping (Bui et al. 2020; Chen et al. 2020a;

Costache and Bui 2020; Feloni et al. 2020; Feng et al.

2020; Mishra and Sinha 2020; Pourghasemi et al. 2020;

Sansare and Mhaske 2020; Sarkar and Mondal 2020), and

forest fire susceptibility mapping (Abedi Gheshlaghi et al.

2020; Çolak and Sunar 2020; Rahimi et al. 2020; Sevinc

et al. 2020; Venkatesh et al. 2020), mineral potential

mapping (de Quadros et al. 2006) etc., employing RS for

obtaining data for regions that were traditionally consid-

ered inaccessible. These studies have focused on generat-

ing zonation maps delineating the zones on the basis of

their relative potential/susceptibility/vulnerability/prone-

ness using a variety of statistical techniques such as

weight-of-evidence (Mastere 2020; Zaheer et al. 2020;

Rahmati et al. 2016; Kayastha et al. 2012; Ozdemir 2011;

Corsini et al. 2009; de Quadros et al. 2006; Lee and Choi

2004), frequency ratio (Sarkar and Mondal 2020; Rahmati

et al. 2016; Naghibi et al. 2015; Tehrany et al. 2015;

Ozdemir 2011; Lee and Pradhan 2007), evidential belief

function (Althuwaynee et al. 2014; Nampak et al. 2014;

Althuwaynee et al. 2012; Carranza and Hale 2003), ana-

lytical hierarchy process (Kaur et al. 2020; Rahmati et al.

2015; Althuwaynee et al. 2014; Pourghasemi et al. 2012;

Yalcin et al. 2011; Yalcin 2008), etc. The aforementioned

techniques usually rely on the knowledge base of an expert

and hence are expensive in terms of cost, time and effort

and are handicapped by the possibility of human error.

With the advancements in the field of data science,

geospatial mapping is also experiencing a surge in the

number of studies applying machine learning models like

support vector machine (Tehrany et al. 2015; Pradhan

2013; Tien Bui et al. 2012; Yilmaz 2010), decision trees

(Wu et al. 2020; Pradhan 2013; Tien Bui et al. 2012),

artificial neural networks (Bragagnolo et al. 2020a, b; Bui

et al. 2020; Chen et al. 2020a; Tang et al. 2020; Van Dao

et al. 2020; Yilmaz 2010; Corsini et al. 2009), naı̈ve bayes

(Tien Bui et al. 2012; Porwal et al. 2006), k-nearest

neighbors (Beaudoin et al. 2014; Gjertsen 2007), etc. These

studies exhibited good results with high accuracy and

generated reliable maps with a high degree of precision.

Consequentially, the machine learning techniques hold

promise for groundwater potential mapping studies as well.

Subsequently a lot of groundwater potential mapping

studies have been undertaken using machine learning and

RS with the help of GIS, in various parts of the world such

as Ghana (Sander et al. 1996), Turkey (Ozdemir 2011),

Italy (Corsini et al. 2009), Malayasia (Nampak et al. 2014),

Iran (Naghibi et al. 2015; Rahmati et al. 2015, 2016). The

number of studies on the Indian subcontinent (Mukherjee

et al. 2012; Jha et al. 2007) is highly disproportionate to the

sheer size of its surface area and population. Although few

studies have been undertaken in the last decade (Kaur et al.

2020; Pham et al. 2019), there still remains a large scope

for understanding the subterranean hydrological aspect of

the Indian geography. Also, a rapidly growing population

and an unsustainable pace of economic growth has the

country facing an acute water crisis, amplifying the pres-

sure on the already critical groundwater resources to meet

such unprecedented challenges. The situation is particu-

larly distressing for the desert state of Rajasthan that has

witnessed a 62.7% decline in groundwater from 2008 to

2018 (CGWB 2018). Considering the lack of studies in this

part of the world, in conjunction with the worsening state

of water resources in the region, the current study was
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undertaken to investigate and get a better insight into the

situation.

A new feat in the machine learning field has been the up

and coming ensemble and optimization techniques such as

Bagging, Boosting, Stacking and Voting (Wu et al.

2020).These have superseded the performance of the

individual base models significantly by learning from their

weaknesses and strengths. These hold a bright scope for

providing better results in the intensive geospatial analysis

of groundwater potential mapping as well and to bridge the

gap in the hydrological comprehension around the world

and in India in particular. The following study is one such

step in this direction. Decision tree based ensemble tech-

niques such as, Gradient Boosted Decision Trees (GBDT)

and Random Forest (RF) models have found applications in

a variety of geospatial mappings for instance, landslide

susceptibility mappings (Arabameri et al. 2019a; Chen

et al. 2017, 2018; Dou et al. 2019; Lombardo et al. 2015;

Thai Pham et al. 2018), flood susceptibility mappings

(Chen et al. 2020b; Choubin et al. 2019; Khosravi et al.

2018; Yariyan et al. 2020), gully erosion mappings (Ara-

bameri et al. 2019b; Avand et al. 2019; Garosi et al. 2018;

Gayen et al. 2019; Hosseinalizadeh et al. 2019; Zabihi et al.

2019) etc. The high predictive accuracies achieved by tree

based ensemble in such studies are generally attributed to

their numerous abilities, namely simple parameterization,

adaptability to accommodate different type of predictors,

flexibility in fitting the predictors, interpretability (Kuhnert

et al. 2010), and computational practicality as compared to

other machine learning models such as support vector

machine and artificial neural networks (Rodriguez-Galiano

and Chica-Olmo 2012).

In this study, GBDT and RF, owing to their previous

good performances in similar studies (Chen et al. 2020a;

Wu et al. 2020; Naghibi et al. 2016; Zabihi et al. 2016)

were chosen to be applied in the groundwater potential

mapping for the Dholpur district in Rajasthan, India. The

main difference between the current study and the afore-

mentioned literature from this field is that, while these

works have explored decision tree based ensemble models

and established their efficacy individually and against other

statistical and machine learning approaches (such as naı̈ve

bayes, k-nearest neighbors, frequency ratio, etc.) in various

geospatial applications and also amongst a few hydrolog-

ical studies, however they have yet not been compared

against each other particularly in a groundwater mapping

study. This holds significance, especially given the fact that

both these approaches of GBDT and RF are ensembles on

the same baseline model of decision trees and a juxtapo-

sition of their respective performances is logically relevant

to the field. Also, to the best of our knowledge, no similar

study has been undertaken in the study area and the state of

these resources in this region exemplifies the severity of the

need for such a study. These decision tree ensembles were

compared on performance metrics such as accuracy, area

under curve (AUC) of receiver operating characteristic

(ROC), sensitivity, etc. and the validated model was used

to generate the groundwater potential zonation map for the

region under study so as to get the study area delineated

into different regions on the basis of their probability to

yield groundwater. In all, the specific objectives of the

study are to (1) explore and compare the predictive capa-

bilities of GBDT and RF models for groundwater potential

mapping, and (2) generate an accurate and reliable

groundwater potential map for the region delineating it into

low to high potential zones.

2 Study area

Dholpur district is situated in the eastern part of the desert

state of India, Rajasthan as displayed in Fig. 1. The region

under study spans over an area of 3339 sq. km and lies

within the eastern longitudes 77�1301200 and 78�1504400 and
the northern latitudes 26�2104400 and 26�5702500. The district
is landlocked with the districts of Bharatpur and Karauli

surrounding it from the northwest, south and southwest

directions within the state of Rajasthan itself. While on the

east it shares its borders with the states of Uttar Pradesh

and Madhya Pradesh. It experiences a semi-arid type cli-

mate with the summers being very hot lasting from March

to June and the winters being equally cold, sustained from

November to February. In the remaining months, it

receives monsoon rains with the average precipitation of

560 mm. The district has the history of witnessing the

highest occurrence of mild droughts as per Central Ground

Water Board (CWGB 2018).

The highest yielding aquifers in the region deliver

groundwater volume in the range from 200 to 800 cubic

meters per day. The lowest yielding wells tend to be the

ones, taking the longest to recuperate. The depth to

groundwater level varied from 5 to 40 mbgl. Southwestern,

northern and northeastern parts of the district witnessed

deeper water levels, greater than 20 mbgl. Also the water

extracted is found fit for drinking, industrial and agricul-

tural purposes. Although a fluoride concentration varying

between 0.33 and 2.93 mg/l (exceeding the permissible

limit of 1.5 mg/l), and nitrate concentration in the range of

5.1–202.5 mg/l (far exceeding the safety limit of 45 mg/l

for drinking purposes) was found in isolated places (Cen-

tral Ground Water Board (CGWB) 2018).
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3 Spatial data generation

The geospatial dataset was produced for the study region

by the amalgamation of the groundwater inventory with

their respective topological, morphometric, hydrological,

anthropogenic, and meteorological factor’s values influ-

encing the groundwater potential at those locations. These

have been discussed in further details below:

3.1 Groundwater inventory

Data of a total of 19 groundwater wells was sourced from

the Central Ground Water Board (CGWB) for the year

2018, as shown in Fig. 2. These wells gave an average

yield of 200 cubic meters or more per day and hence were

included as groundwater inventory for reliable results from

the geospatial mapping. The points were mapped in QGIS

and were validated by means of newspaper stories and

articles in state office journals.

3.2 Groundwater influencing factors

The majority of the academicians and researchers consider

the groundwater potential at a location as the probability of

the location to yield an optimum volume of groundwater on

underground exploration (Dı́az-Alcaide and Martı́nez-

Santos 2019). The concept of optimum volume is in itself

very subjective to the region under study and varies from

one to the other. The factors that predominately affect this

variation are included in the ambit of groundwater influ-

encing factors. These factors themselves exhibit an inher-

ent variability in the studies undertaken worldwide. Based

on the literature survey and data availability, a set of 14

groundwater influencing factors was considered. The

influencing factors included in the study are elevation,

slope, aspect, plan curvature, profile curvature, topographic

wetness index (TWI), land use, normalized difference

vegetation index (NDVI), geology, soil texture, surface

temperature, precipitation, distance from roads and dis-

tance from rivers. The aforementioned factors and their

influence on the absence or presence of groundwater have

been briefly described below.

Fig. 1 Study area
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Elevation at location refers to the altitude above the

earth’s surface. It plays an important role in determining a

region’s groundwater potential as the variation in elevation

brings variation in the region’s climatic and environmental

conditions which in turns affects the region’s soil and

vegetation, thus influencing the region’s water retention

and porosity of the span of land (Al-Abadi and Shahid

2015).The elevation for the study area varies between 100

and 350 m and is displayed in Fig. 3a. The Slope is

responsible for the gradient of the land that affects the

trajectory for surface water runoff and infiltrate. The

steeper the slope, greater would be the runoff, which sub-

sequently leads to a lesser volume to seep through the

surface, hence lower the recharge. It is depicted in Fig. 3b.

The direction of the slope (north, northeast, east, etc.) is

referred to as the Slope Aspect, and it indirectly affects the

groundwater potential by influencing the location’s expo-

sure to sunshine, rainfall and wind. It has been deduced that

south facing slopes experience greater exposure to sunshine

and stronger winds and lower humidity, thus reducing the

water infiltration (Zabihi et al. 2016). Slope aspect of the

region is shown in Fig. 3c. Plan curvature as shown in

Fig. 3d affects the flow convergence and divergence and is

indicated by curvature of the line intersecting the surface

by the horizontal plane (Lee et al. 2012). On the other

hand, Profile curvature, is defined as the curvature of the

line formed by intersecting the surface with the vertical

plane. It is shown in Fig. 3e.

TWI has a direct proportionality with groundwater

recharge and is calculated as in the Eq. (1).

TWI ¼ ln
c

tan d

� �
ð1Þ

Here d is the slope at the point while c is the area of the

upslope that runs off to the point. The TWI for the region is

shown in Fig. 3f. Land use for a region demonstrates the

effect and the degree of the effect that the human activities

have on that region’s landscape and resources. It is shown

in Fig. 3g where it demarcates the study area’s terrain into

categories such as forests (broadleaved deciduous and

needle leaved evergreen), croplands (irrigated and rain

fed), urban areas, shrub lands, grasslands, bare areas, and

water bodies. The NDVI is included in this study to

account for the direct relationship found between the water

table levels and the density of vegetation in the same

region, i.e., the greener the region, higher are the chances

for natural groundwater replenishment. The NDVI is cal-

culated using Eq. (2) using the near infrared (NIR) and red

(R) values from bands 5 and 4 respectively, of the Landsat

image obtained for the region in the year 2018.

NDVI ¼ NIR� R

NIRþ R
ð2Þ

Geology for the study area is shown in Fig. 3i and it

directly influences the runoff and the infiltration properties

of the terrain. The study region has a larger span of its area

covered in clayey soil type and a smaller portion with

loamy type as depicted in Fig. 3j. The soil texture defines

the porosity and the coarseness which directly affects the

recharge and replenishment cycle.

The water table at a location is directly affected by the

meteorological conditions at that location. The

Fig. 2 Locations of the

groundwater wells
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temperature in the region affects the residual volume of

surface water bodies left for infiltration after the surface

evaporation, while the precipitation in the region directly

affects the degree of natural replenishment from rainfall.

These are depicted in Fig. 3k and l respectively. The

groundwater is directly influenced by the location’s prox-

imity to the closest water body; hence the influencing

factor of distance from rivers has been included in this

Fig. 3 a–d Groundwater influencing factor: Elevation, Slope, Aspect,

and Plan curvature. e–h Groundwater influencing factor: Profile

curvature, TWI, Land use, and NDVI. i–l Groundwater influencing

factor: Geology, Soil texture, temperature, and precipitation. m,

n Groundwater influencing factor: Distance from rivers and distance

from roads
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study as shown in Fig. 3m. Anthropological factors that

account for the effect of human activities on the ground-

water have been taken into consideration through the well’s

proximity to roads. It is shown in Fig. 3n. Table 1 gives a

brief summary of the aforementioned influencing factors

and their respective maps. Each influencing factor was

transformed into a grid spatial database by 30 9 30 m size

and the grid of the Dholpur area was constructed by 3507

columns and 2269 rows (3,710,000 pixels; 3339 sq.km).

Fig. 3 continued
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4 Methodology

Figure 4 displays the approach adopted in the study.

Firstly, the data for the 14 groundwater influencing factors

specific to the study region were collected and then were

merged with the groundwater inventory that comprised of

the locations of the groundwater wells in the region. The

data for an equal number of ‘‘non-groundwater locations’’,

as obtained from CGWB, state office reports, and news-

paper articles, were also appended into the dataset to avoid

bias during model development. The compiled dataset

generated was then randomly split in the ratio of 80:20 for

training and testing purposes. The training subset of the

data set was used to train the competing ensemble models

Table 1 Groundwater influencing factors

Influencing

factor

Source Data

type

Year Resolution/Scale Depiction

Elevation The Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) Global Digital Elevation Model (GDEM)

Raster 2018 1 arc second

(approximately

30 m)

3(a)

Slope Derived from DEM – – – 3(b)

Slope

Aspect

Derived from DEM – – – 3(c)

Plan

Curvature

Derived from DEM – – – 3(d)

Profile

Curvature

Derived from DEM – – – 3(e)

TWI Derived from DEM – – – 3(f)

Land Use European Space Agency (ESA) Climate Change Initiative (CCI) Raster 2018 300 m 3(g)

NDVI Landsat 8 OLI Raster 2018 30 m 3(h)

Geology US Geological Survey (USGS) EarthExplorer Shapefile 2005 – 3(i)

Soil Texture Land and Water Development Division, FAO Shapefile 2017 – 3(j)

Temperature APHRODITE (Asian Precipitation—Highly-Resolved Observational Data

Integration Towards Evaluation)

Raster 2015 0.25� 3(k)

Precipitation APHRODITE (Asian Precipitation—Highly-Resolved Observational Data

Integration Towards Evaluation)

Raster 2015 0.25� 3(l)

Distance to

rivers

DIVA GIS Shapefile 2011 – 3(m)

Distance to

roads

DIVA GIS Shapefile 2011 – 3(n)

Fig. 3 continued
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of GBDT and RF. The trained models were then used on

the testing subsets to evaluate their respective perfor-

mances. The split ratio of 80:20 was chosen after working

with all other possible splits of 90:10, 80:20, 70:30, 60:40

and 50:50, and observing that the majority of machine

learning models performed consistently well at 80:20 split

whilst the other splits favored some models over the others

and thus to avoid this bias, the split percentage of 80:20

was applied. The performance of GBDT and RF models at

the aforementioned splits is depicted in Appendix

(Table 6). The performances were compared on the per-

formance metrics of accuracy, specificity, sensitivity, AUC

etc. The validated model was then used to build the

groundwater potential map for the region. Depending upon

the potential assigned to a specific location in the study

region by the trained model, the study area was divided

into zones such as very low, low, moderate, high and very

high groundwater potential zones. The GBDT and RF

models as well as the performance metrics employed to

compare their performance have been described in the

following sections.

4.1 Gradient boosted decision trees

Given a dataset for training the model, each training record

i is of the form yi; xi
!� �

where y; x~ð Þ are both known, as

they are part of the training set, x~¼ x1; x2; x3. . .xnf g are

the attributes/features in the training set i.e. the ground-

water influencing factors in our geospatial dataset, and the

output or the goal is to predict the value for y based on x.

This is achieved by identifying a mapping F� x~ð Þ : x~! y

such that expected value of the loss function # y;F x~ð Þð Þ is
minimized as shown in Eq. (3).

F� x~ð Þ ¼ argmin
F x~ð Þ

Ey;x~# y;F x~ð Þð Þ ð3Þ

Here F� x~ð Þ is expanded as F x~ð Þ ¼
PM

m¼0 bms x~; amð Þ.
Here s x~; a~ð Þ depicts a base learner with a~¼ a1; a2; . . .f g as

Aster DEM 

Elevation 

Slope 

Aspect 

Plan Curvature 

Profile Curvature 

Topographic Wetness 
Index 

Geology Geology 

Soil Map Soil Texture 

LANDSAT  Normalized 
Difference 
Vegetation Index 

Meteorological 
Temperature 

Precipitation 

Land Use Land use 

Distance from Roads

Distance from Rivers
Topographical 

Groundwater 
Inventory 

Dataset (Prepared by overlay of all 
thematic on the groundwater inventory)

Gradient 
Boosted 
Decision 
Trees 

Random
Forest 

Tr
ai
ni
ng

Trained 
Gradient 
Boosted 
Decision 
Trees 

Trained 
Random
Forest 

Testing

Random Split (80:20) 

Model Evaluation 

AUC of ROC

Accuracy

Sensitivity 

Specificity

Groundwater Potential Zonation Map 
(GWPZ) generation 

GWPZ map 
using validated 

model 
Negative 
Predictive Value 

Positive 
Predictive Value 

14 Groundwater influencing factors 

Fig. 4 Methodology
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its parameters. In every stage of training, the expansion

coefficients bmf gM0 and the parameters of the base function

amf gM0 are simultaneously fit to make a better prediction.

Initially, the training is started with a guess for F0 x~ð Þ and
then for m = 1,2…M we do the following steps iteratively

(Eqs. 4 and 5).

bm; a~mð Þ ¼ argmin
b;a~

XN
i¼1

# yi;Fm�1 x~ið Þ þ bs x~i; a~ð Þð Þ ð4Þ

and

Fm x~ð Þ ¼ Fm�1 x~ð Þ þ bms x~; a~mð Þ ð5Þ

Here the loss function #ðy;F x~ð Þ) is assumed to be differ-

entiable and the function s x~; a~ð Þ is fit by minimizing the k-

class multinomial negative log likelihood (Friedman 2002).

The optimal value of coefficient bm can now be found out

using the optimally fit s x~; a~mð Þ as in Eq. (6).

bm ¼ argmin
b

XN
i¼1

# yi;Fm�1 x~ið Þ þ bs x~i; a~mð Þð Þ ð6Þ

The base learner s x~; a~ð Þ is a decision tree where in each

iteration m, the tree segments the input feature x~ space into

Z-disjoint regions Rzmf gZz¼1 and predicts a separate con-

stant value in each one as in Eq. (7).

s x~; Rzmf gZ1
� �

¼
XZ
z¼1

y
...

zm
1 x~2 Rzmð Þ ð7Þ

Here y
...

zm
is the majority class predicted in each region Rzm

i.e. the majority of the points in the Rzm region are pre-

dicted to be belonging to this class. Since the decision tree

produces a constant value y
...

zm
within each region Rzm, hence

the expansion coefficients along with the base learner

function’s value can be deduced (Friedman 2002).

4.2 Random forest

The random forest ensemble machine learning model is

actually a collection of decision trees, hence called a

‘forest’, and each decision tree is constructed from a subset

of input records wherein the subset used is sampled ran-

domly, thus justifying the ‘random’ in random forests

(Breiman 2001). This works by drawing a bootstrap from

the original dataset. Unlike the original decision tree model

wherein, for each node of the decision tree, the splitting

variable is chosen from among all the variables in the

dataset, herein, the unpruned classification decision tree is

built by making a choice for the splitting variable from a

randomly sampled set of variables (Liaw and Wiener 2002)

for the generated bootstrap. The size of the subset of

variables, from which the final splitting variable for the

node is chosen from, is a parameter of the random forest

classifier. N such unpruned classification trees are built,

thus N is the second of the two parameters for the random

forest ensemble. After having built N such trees as men-

tioned above, the predictions for the inputs are made by

means of taking a majority vote of all classes predicted by

all the generated trees. Gini index is used as the criteria for

selecting the splitting variable, and it is a measure of the

degree of impurity of the feature with respect to the output

classes. In the training set X~
N

i¼1 gini index for an input x~i to

belong to class Ci is given as:

XX
j 6¼i

u Ci;X~
� �

Nj j

0
@

1
A u Cj;X~

� �

Nj j

0
@

1
A ð8Þ

Here
u Ci;X~ð Þ

Nj j

� 	
is the probability of x~i belonging to the

class Ci.

4.3 Performance metrics

The performances of the two models applied in this study

were compared on the basis of the following commonly

used measures. Positive predictive value (Eq. 9) is the ratio

of the number of points that were correctly classified as

groundwater well to the total number of points that were all

predicted as being groundwater. Negative predictive value

(Eq. 10) is the ratio of the points that were correctly

classified as non-groundwater to the total number of points

that were classified as non-groundwater. Sensitivity

(Eq. 11) is the ratio of the number of points that were

correctly classified as groundwater to the total number of

points that were originally known to be groundwater.

Specificity (Eq. 12) is the ratio of the number of points that

were correctly classified as non-groundwater to the total

number of points that were originally known to be non-

groundwater. Accuracy (Eq. 13) is the ratio of total number

of points that were correctly classified to the total number

of points.

Positive Predictive Value ¼ TP

TPþ FP
ð9Þ

Negative Predictive Value ¼ TN

TN þ FN
ð10Þ

Sensitivity ¼ TP

TPþ FN
ð11Þ

Specificity ¼ TN

TN þ FP
ð12Þ

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð13Þ

Here TP, TN, FP and FN are true positives, true nega-

tives, false positives and false negatives respectively. The
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presence of groundwater is taken as the positive class and

the absence of groundwater, i.e. non-groundwater is the

negative class. The receiver operating characteristic (ROC)

curve and the area under curve (AUC) of ROC are amongst

the most commonly used methods for evaluating the per-

formance of the machine learning models. The ROC curve

is plotted between sensitivity and 1-specificity. The area in

the graph under the plotted ROC curve is called AUC and

it can achieve the highest value of 1. The value of AUC in

the different range has the following deductions about the

performance of the model: AUC 2 0:5; 0:6ð Þ implies poor

predictive model, AUC 2 0:6; 0:7ð Þ implies a fair predic-

tive model, AUC 2 0:7; 0:8ð Þ implies a good predictive

model, AUC 2 0:8; 0:9ð Þ implies a very good predictive

model, and AUC[ 0:9 implies an ideal model.

5 Results and discussion

The results obtained by comparing the models and

groundwater potential zonation maps generated using

those models are discussed in the following sections.

5.1 Model performance

A summary of the results obtained by training and testing

both GBDT and RF models is shown in Table 2. GBDT

has three parameters that need to be tuned for obtaining

optimal performance, namely: Number of trees, Learning

rate, Maximum depth of trees. While RF has two param-

eters, namely: Number of trees and Maximum depth of

trees. GBDT is an ensemble model which is sequential in

nature; hence the parameter ‘‘no. of trees’’ identifies the

number of iterations executed one after the other i.e. the

number of times a new base learner (decision tree) is

generated by working on the shortcoming of the decision

tree in the previous iteration. In RF, the parameter ‘‘no. of

trees’’ simply signifies the number of trees that need to be

generated (possibly in parallel) as part of the forest, among

which a majority vote for the final output class is applied to

predict the output for an unlabeled input record, by

traversing all the trees in the forest with the attribute values

of the unlabeled record.

After preliminary analysis, it was found that tuning only

the ‘‘no. of trees’’ parameter brought significant change in

the values of the performance metrics for both GBDT and

RF and tuning the values for other parameters of ‘‘learning

rate’’ and ‘‘maximum depth’’ did not reveal any excep-

tional change in the performances of the respective mod-

els. The value for the parameter ‘‘maximum depth’’ was

thus set at 30 for both GBDT and RF, while the learning

rate was fixed at 0.01. The value for the parameter ‘‘no. of

trees’’ was tuned by evaluating the performance for both Ta
bl
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GBDT and RF. Thus the performance metrics for GBDT

and RF were compared at values of 100, 200, 300, 400 and

500 for this parameter.

It was observed that RF achieved an almost perfect

accuracy in the training phase at all values of the param-

eter. While GBDT had an accuracy of 0.87, when no. of

trees were fixed at 100, but it improved there on after,

increasing to 0.93 when no. of trees were increased to 300

as can be seen from Fig. 5a. In the testing phase (Fig. 5b),

however, the GBDT performed better than RF, with RF

achieving a peak 0.75 at 400 trees and there after it goes on

a decline, while GBDT giving the same best accuracy of

0.75 achieved at an early peak of 200 trees and performs

consistently well thereafter too. Hence, in terms of accu-

racy, while RF fared better than GBDT, in the training

phase, the situation was reversed during the test phase, with

GBDT performing better than RF. The predictive perfor-

mance for both the models in the test phase declined from

their respective performance levels at the time of training.

Nevertheless, both models displayed satisfactory magni-

tudes of accuracy to be considered as effective predictors in

the current study.

AUROC witnessed a trend similar to the one achieved

by accuracy in the training and testing phases as can be

deduced from Fig. 5c and d, with both GBDT and RF

performing uniformly well at almost all values for no. of

trees in the training phase by attaining an almost ideal

AUC. In the testing phase, GBDT performed slightly better

than RF, giving results similar to those for accuracy. With

the no. of trees fixed at 200, both GBDT and RF, produced

an AUC of 0.75, and there on after, both models are wit-

nessed retaining relative stagnancy on the AUC scale. All

in all, the results corroborate both GBDT and RF as good

performers in the undertaken groundwater potential

analysis.

Also, it was deduced that the parameter, no. of trees

tuned to the value of 300, gave optimal results, as both

models achieved their peak performances by that point and

retained those performances thereafter, thereby remaining

consistently good predictors and not showing any more

significant improvement to the increase in no. of trees. The

ROC curves for GBDT and RF in the training and testing

phase with parameter ‘‘no. of trees’’ fixed at the value 300

are depicted in Fig. 6. Generally, with machine learning

models, it cannot be hypothesized with absolute certainty

that the predictor with the lowest training error would also

lead to the lowest error at the testing phase. In other words,

it cannot be laid with high confidence that among a set of

classifiers, the classifier that performs the best, during

training, on the basis of any particular performance statistic

such as accuracy, would inevitably turn out to be the best at

the time of testing as well. This uncertainty is introduced

due to bias variance trade-off where bias (error introduced

due to model’s simplification of learning via various

assumptions) and variance (error owing to the influence of

training set on model’s learning) are the main components

of the prediction error. This is especially true in case of

certain models, where the model is trained in a
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Fig. 5 a, b Trend in the

accuracy of GBDT and RF with

increasing value of parameter

‘‘no. of trees’’ in the training

and testing phase of the

respective models. c, d Trend in

the AUROC of GBDT and RF

with increasing value of

parameter ‘‘no. of trees’’ in the

training and testing phase of the

respective models
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characteristic way so as to be a custom fit for the particular

training data in question, which might lead to the model

performance being worse in the testing phase as the model

had not been exposed to the test data and the training set

happened to be widely different from the data on which the

model is being tested on.

Here specifically, the RF performed well and even better

than GBDT during the training phase, but the situation was

reversed at the time of testing. The reasoning for this

behavior can again be chalked up to the variance bias

trade-off explained as follows. Both GBDT and RF are

ensemble techniques, namely gradient boosting and bag-

ging respectively, based on decision trees (Alam et al.

2019). With GBDT, a new decision tree is generated by

enhancing the performance of the tree generated in the

previous iteration. Gradient boosting reduces error by

mainly reducing the bias component of the model. The

variance is also reduced to some extent owing to the

aggregation of outputs from many previous models which

themselves had relatively low variance owing to pruning of

decision tree over successive iterations in gradient boost-

ing. On the other hand, RF reduces error during training by

focusing on the variance component of the error. This is

possible here because the generated decision trees are

deliberately made uncorrelated as they are constructed

from a subset of input records wherein the subset used is

sampled randomly. The decrease in correlation maximizes

the reduction in variance successively. Thus, both RF and

GBDT tend to decrease the variance, however, boosting

also improves the bias. The impact of these error reduc-

tions is witnessed in the testing phase with the models

being validated on data that was not exposed to the model

during their development in training.

In order to avoid uncertainty in the results and validate

the models on the entirety of the dataset for an impartial

comparison of RF and GBDT models, a 5 fold cross vali-

dation was undertaken. The dataset was divided into 5

folds: with one fold being used for validation while, the

remaining 4 folds were employed for training the models.

The process is repeated 5 times for achieving test results on

every fold. The results are summarized in Table 3.

It can thus be deduced from Table 3, that GBDT out-

performs RF by achieving an accuracy of approximately

74% and an AUC of 0.79, while RF attained an average

accuracy of 59% with an AUC of 0.71.

5.2 Relative importance of influencing factors

The ranking for the groundwater conditioning factors in the

order of their relative influence to the presence of

groundwater by the GBDT model are listed in Table 4.

The results indicate that Profile curvature, Distance from

rivers and NDVI are important factors in the current

groundwater potential mapping. The influencing factors for

the groundwater wells along with their respective ground-

water potentials are listed in Table 5.

5.3 Generation of groundwater potential map

The trained GBDT model was used to generate the

groundwater potential zonation map for the study region as

shown in Fig. 7.

The zones were delineated on the basis of the range of

potential they belonged to. The five classes of groundwater

potential, namely very low, low, moderate, high and very

high were generated using the quantile classification

scheme (Tehrany et al. 2015). The region with groundwater

potential in the range of 0–0.51 was classified as belonging

to ‘‘very low’’ potential zone, while the ‘‘low’’ zone has

potential in the range of 0.51–0.57. The regions with

potential in the ranges of 0.57–0.63 and 0.63–0.66 were

delineated as ‘‘moderate’’ and ‘‘high’’ potential zone

respectively. Finally, ‘‘very high’’ potential zone was

delineated for potential values greater than 0.66. It was

found that approximately 20.2% of the region has very high

potential for yielding groundwater, while 22.6% of the

study area has high groundwater potential. 19.9 and 17.5%

of the region was found to have very low to low
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groundwater potential. It can be observed that low to very

low potential zones are concentrated around the southern,

southwestern and central parts of the region. Such evalu-

ations can help augment efforts for groundwater manage-

ment through measured abstractions, land use planning,

site identification for artificial recharge, etc.

5.4 Comparison with related work

A variety of groundwater potential delineation mappings

have been carried out around the world, particularly in the

arid and semi-arid climate zones that are frequently at the

receiving end of recurring droughts threatening the local

water, food and energy security of the region (Moghaddam

et al. 2020). For instance, Rahmati et al. (2015) employed

the integrated analytical hierarchy process for delineating

the groundwater resource potential zones in the Kurdistan

plain of Iran (Rahmati et al. 2015). They employed five

groundwater conditioning factors, namely slope, rainfall,

lithology, drainage and lineament density and upon model

validation they achieved an AUC of 0.7366 and hence

showed reasonably good accuracy in predicting the

groundwater potential. Another similar study that

employed the conventional geospatial mapping techniques

was undertaken at the Varamin Plain, Tehran province,

Iran (Razandi et al. 2015). In this study, the standard

approaches of analytical hierarchy process, frequency

ratio, and certainty factor models were applied for map-

ping the groundwater potential in the aforementioned

region that also lies in an arid climate zone. On quantita-

tive validation, the work derived the AUC for all the three

applied models as frequency ratio (77.55%), analytical

hierarchy process (73.47%), and certainty factor (65.08%).Ta
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Table 4 Importance of groundwater influencing factors by GBDT

Influencing factor Variable importance

Profile curvature 13.3

Distance from rivers 12.3

NDVI 11.2

TWI 10.2

Plan curvature 9.8

Temperature 7.2

LULC 6.9

Precipitation 6.0

Elevation 5.9

Slope 5.1

Geology 4.3

Distance from roads 4.1

Aspect 3.3

Soil 0.4
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While the above mentioned studies showed accept-

able prediction accuracies, they also divulged a great scope

for improvement. The current study indicated that the

GBDT achieved a superior performance to RF by attaining

an AUC of 0.79 to RF’s AUC of 0.71. These results clearly

indicate the superiority of GBDT’s performance over

aforementioned approaches of analytical hierarchy process

(AUC: 0.7366 (Rahmati et al. 2015); AUC: 0.7347

(Razandi et al. 2015)), frequency ratio (AUC: 0.77), cer-

tainty factor (AUC: 0.65) etc. These evaluations reinforce

the competency of tree based ensembles over the tradi-

tionally employed conventional statistical techniques.

These results can be generalized well over to the compe-

tency of machine learning models over their statistical

counterparts.

Naghibi et al. (2017, 2018), Zabihi et al. (2016), Miraki

et al. (2019) stated the decision tree based ensembles such

as random forest and boosted trees are very useful in

complex decision making problems such as resource

potential mappings. Naghibi et al. 2017 proved that RF and

a genetically optimized RF (AUC: 85.6%) are better pre-

dictors than support vector machine models paired with 4

different kernels (linear, polynomial, sigmoid, and radial

based). On the other hand, Miraki et al. 2019 concluded the

superiority of RF models over Naı̈ve Bayes and Logistic

regression models. Zabihi et al. 2016 compared the models

of Multivariate adaptive regression splines and RF and

concluded them to be both equally efficient (AUC: 0.79) in

groundwater potential mapping undertaken in Iran. The

results of the current study are in alignment with the results

of (Naghibi et al.2016). They used the machine learning

models: boosted regression trees, decision trees and RF to

produce the potential maps for the Koohrang watershed,

Iran. The boosted regression tree model performed better

than the other two and achieved an AUC of 0.8103. The

findings from the current study, thus concur with those

mentioned above, over the fact that tree based ensembles in

general and GBDT and RF in particular are equally and

often times more competent than other machine learning

models such as logistic regression, support vector machine,

etc.

Few of the geospatial mappings around the world have

also compared the performances of GBDT and RF and

found varying verdicts about their predictions such as

mentioned forth. In contrast to current study’s finding, Lee

et al. 2017, on comparing GBDT and RF for a flood sus-

ceptibility mapping in Seoul, Korea, found RF’s (AUC:

0.79) performance, taking the lead over that of GBDT’s

(AUC: 0.77) although with a smaller margin. On the other

hand, for a landslide susceptibility mapping undertaken at

Pyeong-Chang, Korea by Kim et al. 2018, displayed GBDT

(AUC: 0.85) having an upper hand over RF (AUC: 0.79).

Since geospatial mappings are localized and the results

from each case study are region specific hence, it is diffi-

cult to make generalizations over the absolute supremacy

of a model’s performance over all its counterparts espe-

cially when the margin between their respective metrics is

not significant. Additionally, the scalability aspect of all

models as probable candidates should be explored further

in research studies over datasets larger than the one

employed in the current study. However, the assessments

from this study coupled with those of the literature, it can

be stated with significant confidence that GBDT is amongst

the most competent tree based ensemble models and should

henceforth be used as a benchmark for evaluating predic-

tive aptitude in the field of geospatial analytics.

6 Conclusion

Water in its one of its most pristine form is naturally

provided to us by earth’s own underground reservoirs as

confined and unconfined aquifers. It’s not coincidental that

the majority of human needs for drinking water and other

activities are met by this natural resource. Although,

groundwater is naturally replenishable, however, due to

increasing population, and with the increase in the unsus-

tainable activities of the said population, the nature is

Fig. 7 Groundwater potential zonation map constructed by GBDT
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unable to replenish the resources at the pace at which they

are being consumed. This has put our groundwater springs

and wells under tremendous strain. The desert state of

India, Rajasthan has become a continuing witness of such

circumstances. This study was undertaken in the district of

Dholpur with the aim to develop a reliable groundwater

potential map for the region. For this purpose, the data for

14 groundwater influencing factors specific to the region

were collected and then were merged with the groundwater

inventory in the region. The compiled dataset generated

was then randomly split in the ratio of 80:20 for training

and testing purposes. The training subset of the data set

was used to train the competing ensemble models of

GBDT and RF. The trained models were then used on the

testing subsets to evaluate and compare their respective

performances. It was found through the study that RF

performed better at the training phase, but GBDT fared

better at testing. Also, it was found that both RF and

GBDT reached their peak performance when the parameter

‘‘number of tree’’ was tuned to a value of 300. On a 5 fold

cross-validation, GBDT achieved an average accuracy of

74% and an AUROC of 0.79, while RF attained an accu-

racy of 59% and AUROC of 0.71. The validated GBDT

model was used to generate the region’s groundwater

potential map, which revealed that approximately 19.9% of

the study region has low groundwater potential, while 20.2

and 22.6% span of the area fell into the categories of very

high and high potential respectively. Such a study holds

promise for further such endeavors in this field and pre-

pares government agencies and other concerned parties for

necessary action that need to be taken to counteract the

damage that has already been done and prevent any more

in the future.

Appendix

The performances of RF and GBDT models at various

dataset splits of (50/50, 60/40, 70/30, 80/20, and 90/10) are

summarized in Table 6.

From Table 6, it can be observed that during testing, the

best performance for both the models is delivered when

80% of the dataset were being used for training, i.e.

developing the model, while the rest 20% of the dataset is

used for testing purpose. Since a classifier’s true perfor-

mance is gauged by how well the model performs on

unseen data, hence the accuracy attained by the model at

testing phase is taken as the true metric for determining the

ratio for splitting the dataset. Hence, the ratio of 80:20 was

employed for generating training and testing data sets.
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