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Abstract
Assessing the impact of a land-use change (LUC) or change in land-use management on nonpoint source-driven

groundwater quality in heterogeneous aquifers requires complex analysis. Stochastic methods have been used to account

for prediction uncertainty but at high computational cost, which significantly limits the application of these approaches. As

an efficient alternative, this study evaluates the application of a meta-analytical solution for evaluating the change in

contaminant breakthrough curves at extraction wells in response to LUC. The solution uses the concentration percentiles

from a reference stochastic simulation of water flow and solute transport in a groundwater system, assuming a reference

land-use distribution pattern. Reference land-use controls the spatially variable rates of both, recharge and contaminant

mass loading. The effect of a LUC is evaluated by scaling the ratio between the reference and the new (post-LUC) average

input concentrations. The validity of the proposed meta-analysis tool is tested by comparing the results of the meta-

analytical solution with those from a full stochastic simulation of the post-LUC scenario. Simulation results show that the

accuracy of the meta-analytical solution is best when the regional average recharge rates for both pre- and post-LUC

remain approximately unchanged, for any change in contaminant mass loading. Results also indicate that changes in spatial

variability and pattern of the recharge rate do not significantly impact the flow field, travel times, and resulting concen-

trations, if the magnitude of local recharge remains about the same. Lastly, the results show large variability among wells

of (and—for an individual well—uncertainty about) the time lag between the time of LUC and the time of consequential

effective change in concentrations across wells in the affected region, captured here using statistical metrics.
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1 Introduction

The degradation of groundwater quality by large scale

agricultural non-point source (NPS) contamination is

becoming an environmental and economic concern

worldwide (Nolan et al. 2002; Zektser and Everett 2019;

Chen et al. 2005; Sinha and Elango 2019). Implementing

classic remediation actions at the agricultural basin scale is

rather challenging and often impractical (King and Jensen

2012). Therefore, assessing the impact of proactive mea-

sures (e.g., source control) is crucial for regulators,

although very complex in practice. Potential measures for

reducing the environmental impact of food production on

water bodies include practices focused on reducing leach-

ing of agrochemicals to the aquifer, e.g., through land-use

changes (LUCs) from high to low agrochemicals-de-

manding crops or through more efficient practices (Molé-

nat and Gascuel-Odoux 2002; Gascuel-Odoux et al. 2009;

Yang et al. 2015). However, the effectiveness of such

LUCs (including changes in land-use management), relies

on the understanding and on the assessment of complex

processes which are associated with high predictive

uncertainty.
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One of the main challenges to assessing the effective-

ness of potential LUCs is the aquifer heterogeneity, the

main process controlling the transport/fate/movement of a

contaminant in groundwater (Dagan 1984; Cvetkovic et al.

1992; Weissmann et al. 2002) and the most important

source of uncertainty in this predictive effort (Rubin 2003).

During the last 4 decades, stochastic assessment approa-

ches have been developed to quantify this uncertainty

(Maxwell and Kastenberg 1999; Rubin 2003; Henri et al.

2015). These methods support contaminated aquifer man-

agement by enabling stakeholders to take informed deci-

sions based on the statistical characterization of different

management metrics such as travel times, contributing area

extension and contaminant breakthrough curves (BTCs) at

sensitive locations, e.g. wells (Henri and Harter 2019).

While much research has focused on the development of

stochastic assessment methods (Rubin 2003), those are

only used to a limited degree by decision makers/stake-

holders (Rajaram 2016). Available analytical solutions

provide general insights, but site-specific applications of

the stochastic approach require computationally expensive

Monte Carlo simulations (Henri et al. 2015). Despite the

potential of such approaches, testing a series of source

control strategies through LUC represent a burden that

significantly limits the practicability of stochastic methods

(Sanchez-Vila and Fernàndez-Garcia 2016). There is a

need for computationally more inexpensive decision-sup-

port tools, which account for complex stochastic processes

and evaluate the long term changes in groundwater quality

after a LUC.

The overall objective of this work is to evaluate the

effectiveness of a meta-analytical approach to evaluating

LUC impacts on concentration statistics at a series of

extraction wells of concern without re-simulating flow and

transport. We propose a new, simple and efficient method

in a stochastic framework. We first present the governing

equations for simulating the transport of nitrate from the

soil surface to wells of concern. We then develop a meta-

analytical solution and evaluate its performance by com-

paring results from the meta-analytical solution against an

explicit solution. Finally, we illustrate the new approach by

assessing the impact of LUC (crop type or practice chan-

ges) in a basin within the Central Valley, CA, USA.

2 Methodology

We first review the basic mathematical framework fre-

quently used to stochastically assess groundwater quality.

We then develop an efficient meta-analytical approach to

quantify the impact of LUC within the stochastic

framework.

2.1 Stochastic quantification of well
concentration

The groundwater flow condition is governed by:

o

ox
Kxx

oh

ox

� �
þ o

oy
Kyy

oh

oy

� �
þ o

oz
Kzz

oh

oz

� �
þ Q0

s ¼ 0;

ð1Þ

where K [m d�1] is the hydraulic conductivity tensor, Q0
s is

the volumetric flux per unit volume representing sources

and sinks of water [m3 d�1], and h [m] is the hydraulic

head. Groundwater fluxes are described by the Darcy’s

law:

qðxÞ ¼ �KðxÞrhðxÞ; ð2Þ

where q [m d�1] is is the specific discharge.

Given the often highly uncertain spatial distribution of

aquifer geological features, the hydraulic conductivity field

can be described by a space random function. Subse-

quently, the spatially variable flow field is described as a

random process. Finally, uncertainty propagates from the

discharge into the concentration signal at any location of

interest fulfilling the advection–dispersion equation:

/
oc

ot
¼ r � ð/DrcÞ þ r � ðqcÞ þ sðx; y; tÞ ð3Þ

where c is the solute concentration [g m�3], / is the

porosity [–], D is the dispersion tensor [m2 d�1], and

s(x, y, t) [g m�3 d�1] is the source term describing the rate

of contaminant mass released from the nonpoint source

(located in any x and y at the top of the domain). In this

work, we are interested in evaluating concentration signals

in extraction wells.

Consequently, describing the aquifer K-field as a ran-

dom function allows for the description of the temporal

evolution of well concentration by probabilistic metrics

such as mean, variance, exceedance probabilities, or other

statistical moments. In practice, these can be obtained by

Monte Carlo simulation of aquifer heterogeneity and cor-

responding solutions to the flow (2) and transport (3)

equations for each aquifer realization. Estimating the

implication of a LUC using such classical stochastic

framework would require a Monte Carlo simulation of flow

and transport (Eqs. 2, 3) for each scenario (Breuer et al.

2006).

2.2 A simple solution for LUC assessment

We assume here that well concentrations resulting from a

potential LUC (cLUCw ) can be related to pre-LUC (reference)

concentrations at the same well (cINIw ) by the simple

expression:
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cLUCw ðtÞ ¼
P

ic
kLUCic

� �cLUCicP
ic
kINIic

� �cINIic

� cINIw ðtÞ; ð4Þ

where kic is the proportion of the ic-th crop over the basin

(area of crop over area of basin), and �cic is the spatially

(i.e., over the basin) and temporally averaged concentration

of the NPS chemical of interest associated with the ic-th

crop. In simple terms, we assume that the proportional

change in source concentrations (in recharge at the water

table) resulting from a LUC scales proportionally with the

concentrations due to the initial land use, observed at any

well.

Through Eq. 4, a LUC can be defined as a change in the

proportion of individual crops over the basin (kic ) and/or a

change in agricultural practices leading to a change in the

averaged recharge concentration of the contaminant (�cic ).

Equation 4 is only valid for testing a LUC occurring at

t ¼ 0. To add a subsequent landuse change, i.e., to account

for any LUC at a later time t, the temporal evolution of

well concentrations can be obtained by superposition of

signals from the initial (pre-LUC) and new (post-LUC)

conditions:

cwðtÞ ¼
Z t

0

_cINIw ðt � sÞ � dINIðsÞ

þ
Z t

0

_cLUCw ðt � sÞ � dLUCðsÞ;
ð5Þ

after introducing binary step functions specifying which

source concentration signal is activated: dINIðtÞ equals 1

when input concentrations at the initial rate is occurring, 0

otherwise; dLUCðtÞ equals 1 when input concentrations after
the LUC is occurring, 0 otherwise. The notation _c indicates

that the concentration signals result from an instantaneous

injection of mass (pulse) at time equal 0. An illustration of

the process and a detailed explanation are shown in Fig. 2.

The solution (5) can be extended to any number of land-

use change incidences (nLUC) as:

cwðtÞ ¼
Z t

0

_cw;INIðt � sÞ � dINIðsÞ

þ
XnLUC
i¼1

Z t

0

_cLUCw;i ðt � sÞ � dLUCi ðsÞ;
ð6Þ

For the sake of simplicity, we develop and illustrate the

method for a single LUC. We further assume temporally

stepwise source functions, with each value representing the

average (source or well) concentration during a time-step

(e.g., 1 year), such that the convolution (5) can be

expressed in terms of a finite number of discrete time

intervals:

cwðtÞ ¼
Xj¼k

j¼1

Xi¼k

i¼j

_cINIw ðtj � tiÞ � dINIðtiÞ

þ
Xj¼k

j¼1

Xi¼k

i¼j

_cLUCw ðtj � tiÞ � dLUCðtiÞ
ð7Þ

where i and j are summation indexes.

Within the stochastic framework, well concentrations

can be statistically described by their exceedance proba-

bility function to provide an estimate of prediction uncer-

tainty. Since a simple linear scaling function operates on

concentration signals, a similar scaling operation can be

used for the ip-th percentiles of the concentration excee-

dance probability function (Pip), i.e., the signal superposi-

tion principle (Eq. 7) can also be used in a stochastic

framework by substituting concentration signals by per-

centiles of concentration exceedance probability functions

obtained using:

PLUC
ip

ðtÞ ¼
P

ic
kLUCic

� �cLUCic
ðtÞP

ic
kINIic

� �cINIic
ðtÞ � PINI

ip
ðtÞ: ð8Þ

In short, the new method requires (1) prior estimation of

well concentration exceedance probability functions due to

current (initial) landuse configuration, ( _cINIw ), using explicit

Monte Carlo simulations, and (2) prior knowledge of

source concentrations (�cic ) and crop area proportions within

the likely source area (kic ), both, before (initial) and after

LUC. Once this is achieved, the future effect of LUC on the

well BTCs can be computed stochastically using (8).

3 Method validation and limitations

The simple approach (8) relies on 2 main assumptions: (1)

the spatial variability of leaching concentrations associated

with a given crop over a basin does not significantly impact

the amount of mass recovered at extraction wells at time

t and (2) a LUC does not significantly impact the transport

pathways of the contaminant and the related travel times to

a well, which allows for scaling of concentrations (Eq. 4)

to be sufficient to quantify post-LUC contaminant signals

at extraction wells.

The first point is discussed in Henri et al. (2020). Their

study shows that the spatial variability of source terms

(effective recharge and contaminant leaching rate) has a

minor impact on management metrics for NPS contami-

nation such as travel times, capture zones or contaminant

BTCs. Yet, we implicitly test this assumption further in the

validation approach employed below. The second

assumption—that a LUC-induced change in effective

recharge does not significantly affect use of (8)—remains

to be tested.
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We test the validity of (8) by comparing full Monte

Carlo simulation results to the analytical solution (8). We

chose to test the scenario most likely to deteriorate the

solution of the proposed method: we consider a LUC where

all crops distributed over the entire probable capture zone

(i.e., the source area from where all the solute reaching any

extraction well is expected to originate) are changed into a

single land-use with an effective recharge rate that differs

significantly from the average recharge rate prior to LUC.

This quasi homogenization of the land-use and, therefore of

the effective recharge rate, has the most influence on the

flow field, travel paths and well concentrations (Henri et al.

2020).

The step-by-step validation approach consists of

(Fig. 3):

1. the stochastic simulation of flow and transport for a

reference case to evaluate probabilistic capture zones

and BTCs;

2. changing the land use over the stochastic capture zone

(the area where the probability for the contaminant to

reach a well is larger than zero);

3. run a new batch of stochastic simulation accounting for

the LUC and evaluate the concentration statistics;

4. evaluate the same concentration statistics using the

simple expression (Eq. 8) and

5. compare concentration statistics obtained from the

explicit stochastic simulations with those from the

meta-analytical solution.

3.1 Reference case

As a reference scenario, we used the simulation set-up of

Henri et al. (2020), key aspects of which are summarized

here. We model a synthetic but realistic NPS contamina-

tion of a heterogeneous aquifer from nitrate leaching due to

crop fertilization and irrigation return flow. We represent a

sub-regional domain of length Lx ¼ 19;200:0 m, width

Ly ¼ 6000:0 m and depth Lz ¼ 250:0 m, discretized in 120

(nx) � 60 (ny) � 625 (nz) cells (Table 1). Spatial variability

of aquifer hydraulic properties is treated stochastically,

using a series of equiprobable realizations to evaluate the

uncertainty of the capture zone extension and of contami-

nant BTCs in extraction wells.

3.1.1 Aquifer heterogeneity representation

Heterogeneity in the hydraulic conductivity (K) field is

described using a geostatistical approach in order to

account for the uncertainty in its representation. We gen-

erate a series of realization of the hydrofacies field using

the program T-PROGS, which uses the transition proba-

bility/Markov chain method (Carle 1999). Details of this

approach are described in Carle and Fogg (1996, (1998).

Following previous work on aquifer heterogeneity in the

Central Valley (CA, USA) (Weissmann and Fogg

1999a, b), we consider 4 different constitutive materials of

the aquifer (or hydrofacies, categories): gravel, sand,

muddy sand, and mud. All geostatistical parameters (hy-

drofacies proportions, mean lengths, K values, facies-to-

facies transition probability rates; see aforementioned ref-

erences for details) are set to be representative of a typical

California Central Valley alluvial aquifer system (Weiss-

mann and Fogg 1999a, b) (Tables SM1, SM2). 50 real-

izations of the K-field are generated (see a subset of

realizations in Fig. 1). 50 realizations were shown to be

sufficient to converge the lower statistical moments of

K and of the apparent velocities (Henri et al. 2020).

3.1.2 Source term simulation

Crop- and soil-dependent recharge and nitrate leaching

rates are estimated through a series of numerical simula-

tions. Water flow in the unsaturated zone is described by

1-D vertical Richards equation (Diamantopoulos and

Durner 2012) and contaminant transport by the advection–

dispersion equation. Hydrus 1D (Šimunek et al. 2016) is

used to numerically solve the two equations. Simulations

Table 1 Domain discretization

and physical parameters used in

all simulations

Parameter Value

Domain discretization

Number of cells, nx � ny � nz 120 � 60 � 625

Cell dimension, Dx � Dy � Dz [m � m � m] 160.0 � 100.0 � 0.4

Domain length, Lx � Ly � Lz [m � m � m] 19200.0 � 6000.0 � 250.0

Flow and transport problem

Porosity, / [–] 0.3

Average longitudinal hydraulic gradient, ix [–] 1� 10�3

Extraction rate, Qout [m
3 d�1] 3� 103
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are run for 6 crop types and 3 typical soil profiles, for a

total of 18 simulations. We simulated dominant Central

Valley crops: almond, citrus, corn, cotton, grain and

grapes. The soil profiles accounted for are: gravel/sand

(S1), muddy sand (S2) and mud. Resulting average

recharge rates and effective nitrate mass fluxes reaching the

water table are listed in Table 2. We refer to Henri et al.

(2020) for a full description of the methodology used to

quantify these crop/soil dependent leakage rates.

For each realization, the soil map is represented by the

top layer of the K-field generated by the TPROGS model.

The land-use map, i.e., the spatial distribution of crops over

the basin, is generated randomly assuming a uniform dis-

tribution. The initial land-use (reference case) is composed

of 24% almond (Prunus dulcis), 24% citrus, 18% corn (Zea

mays), 12% cotton (Gossypium sp.), 12% grain, 10%

grapes (Vitis sp., Fig. 4), which represents a typical Central

Valley land-use pattern (Harter et al. 2017). Each cell of

the top layer of the realization-dependent domain is char-

acterized by a crop type and a soil type. These two deter-

mine the effective recharge rate and contaminant leaching

rate (Table 2). The resulting spatial distribution of soils,

crops, and of corresponding recharge and contaminant

leaching rates characterizes the initial and boundary con-

ditions for a given realization of the groundwater flow

domain (pre-LUC).

3.1.3 Flow and transport

Flow Steady state 3-dimensional groundwater fluxes are

simulated by numerically solving the groundwater flow

equation. Water extraction is simulated by implementing 3

Fig. 1 Illustration of a

stochastic analysis of the impact

of a land use change. After

quantifying the land-use map

dependent effective amount of

water and contaminant leaching

into the aquifer, we solve flow

and transport in a series of

equiprobable realizations of the

hydraulic conductivity field.

Statistics of contaminant

breakthrough curves at a series

of extraction wells can then be

evaluated

Table 2 Recharge rate and

nitrate mass flux applied for

each crop—soil type

combination in three scenarios.

Scenarios S1, S2 and S3

represent a soil characterized as

‘‘sand’’, ‘‘muddy sand’’, and

‘‘mud’’, respectively

Almond Citrus Corn Cotton Grain Grapes

r ½m/m2=d�
S1 2:3� 10�3 1:7� 10�3 1:5� 10�3 1:7� 10�3 4:1� 10�4 1:8� 10�3

S2 1:7� 10�3 1:4� 10�3 1:3� 10�3 1:4� 10�3 5:0� 10�4 1:4� 10�3

S3 2:9� 10�5 2:3� 10�4 2:6� 10�4 2:0� 10�4 2:0� 10�5 1:5� 10�4

mf ½g/m2=d�
S1 2:8� 10�2 2:5� 10�2 2:0� 10�2 2:1� 10�2 1:4� 10�2 4:6� 10�3

S2 2:8� 10�2 2:1� 10�2 1:5� 10�2 1:4� 10�2 1:8� 10�2 4:3� 10�3

S3 0.0 1:9� 10�10 3:3� 10�9 0.0 0.0 0.0
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extraction wells located on a transverse transect at

xw ¼ 18;000m. The extraction (pumping) rate, Qout is fixed

to 3000:0m3 d�1. The depth of the top of the well screen is

set to 100.0 m. In order to sustain the extraction well, a

certain amount of conductive material (gravel, sand) needs

to be crossed by the well screen. The length of the well

screen is therefore realization dependent. In this study, we

consider that 10 cumulative foot (3.05 m) of gravel or sand

has to be crossed for every 100 gallon-per-minute

(545:1m3 d�1) of water extracted.

We impose a longitudinal regional gradient of

1:0� 10�3. The vertical flow is controlled by the recharge

and by a downward flux from the bottom of the domain

simulating water flux toward a deeper part of the aquifer

and the potential influence of non-simulated extraction

over the sub-basin.

Transport Nitrate transport is simulated accounting for

advection only in order to decrease the computational time.

As demonstrated by a series of previous studies (LaBolle

1999; LaBolle and Fogg 2001; Weissmann et al. 2002;

Henri and Harter 2019), the fine discretization of the

velocity field and the explicit simulation of aquifer

hydraulic conductivity heterogeneity captures most rele-

vant macro-dispersive characteristics of the transport.

The advective transport is numerically solved using the

particle tracking technique implemented in the code RW3D

Fig. 2 Illustration of the convolution process used in Eq. 5 for a

landuse change occurring at t ¼ 100 (grey vertical line). The frame a
(top left) shows a hypothetical concentration signal from a pulse

injection accounting for an initial landuse ( _cINIw ). The frame b (top

right) shows a hypothetical concentration signal from a pulse

injection accounting for the new landuse ( _cLUCw ). The convolution of

these signals would generate breakthrough curves corresponding to a

constant and continuous injection of mass. In case of a LUC, the

convolution is effectively computed only at times when mass injected

(dINI=1 for the initial landuse, dLUC=1 for the new landuse). The

frame c shows the resulting 2 signals (dashed lines, red for the initial

landuse, blue for the new landuse) and the final well concentration

breakthrough curve obtained from their addition (plain black line)

Fig. 3 Flow-chart of the validation approach
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(Fernàndez-Garcia et al. 2005; Henri and Fernàndez-Gar-

cia 2014, 2015) and expressed as:

Xpðt þ DtÞ ¼ XpðtÞ þ v!ðXpðtÞÞDt; ð9Þ

where xp is the particle position and v! is the velocity

vector.

For each simulation, 500,000 particles are injected over

the entire top of the domain. The local density of particles

(i.e., the number injected in each cell) follows the real-

ization dependent spatial variability of the nitrate leaching

rate described in Sect. 3.1.2. We simulate a pulse injection

of mass (i.e., all mass is injected at t ¼ 0). Given the steady

state flow conditions, the BTCs from a NPS with contin-

uous release of nitrate at the water table is mathematically

obtained by integrating the mass arrival at extraction wells

resulting from the pulse input. Well concentration observed

at any time in each of the 3 wells for each of the 50 real-

ization (i.e, 150 concentration values) are gathered in order

to compute statistics.

3.2 Land use change and models comparison

Simulation outputs from the 50 realizations are also used to

determine the stochastic capture zone. The latter is defined

as the surface area from where a contaminant particle has a

probability to reach a well that is larger than 0. For the

reference scenario, the stochastic capture zone covers an

area of about 8 km by 5 km (Fig. 4, middle frame). For the

alternative scenario, the land-use over this area is only a

single crop (Fig. 4, bottom frame). To test the approxi-

mation presented in Eq. 8, the simulation framework

described in Sect. 3.1 is repeated with the new land-use

map. To better understand the solution performance, we

compare the average recharge rate for pre-LUC (�rINI) and

post-LUC (�rLUC), using:

�rINI ¼
P

ic;is
ric;is � kINIic

� pis
ns � nc

; ð10Þ

�rLUC ¼
P

ic;is
ric;is � kLUCic

� pis
ns � nc

� Scz þ �rINI � ð1� SczÞ;

ð11Þ

where the index ic refers to a given crop, pis is the pro-

portion of the isth soil type (Table SM1), ns is the number

of soil types (3), nc is the number of crops (6), and Scz is the

proportion of the domain covered by the stochastic capture

zone (0.33, Fig. 4).

We test two different scenarios. First, the land over the

capture zone is converted to grapes only. This LUC sig-

nificantly lowers the nitrate losses but preserves the mean

recharge rate (�rLUC=�rINI ¼ 1:02; over the capture zone

only, the ratio is 1.07). In the second scenario, the area is

converted into grains, which leads to a significant reduction

of the average effective recharge (�rLUC=�rINI ¼ 0:75; over

the capture zone only, the ratio is 0.28).

Well concentration percentiles obtained from simula-

tions with the original land use (PINI
i ) are used to analyti-

cally estimate the well concentration percentiles post-LUC

(PLUC
i ), using the crop proportions of scenario 1 in Eq. 8:

kINIic
¼f0:24; 0:24; 0:28; 0:12; 0:12; 0:10g;

kLUCic
¼f0:0; 0:0; 0:0; 0:0; 0:0; 1:0g

and for scenario 2:

kINIic
¼f0:24; 0:24; 0:28; 0:12; 0:12; 0:10g;

kLUCic
¼f0:0; 0:0; 0:0; 0:0; 1:0; 0:0g;

where ic ¼ falmond; citrus; corn; cotton; grain; grapesg.
The average input concentration of a crop i [g m3] remains

unchanged by the LUC, and is obtained as

�cic ¼ hmfic ;is=ric;isi, where the brackets indicate the average

over all ic soil types, i.e., considering the Table 2:

�cINIi ¼ �cLUCi ¼ f13:8; 13:9; 11:5; 10:7; 36:4; 2:6g:

Fig. 4 Initial (top) and post- land-use change (bottom) land-use map.

For the latter, all crops located in the stochastic capture zone were

changed to grain. The middle frame displays the probability for a

particle to leave a given grid cell and to reach an extraction well. The

red crosses represent the location of the simulated extraction wells
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4 Results

The performance of the semi-analytical solution is assessed

by calculating �ip , defined as the mean difference over the

400 year period between Monte Carlo simulation concen-

tration and semi-analytical solution concentration repre-

senting the ip-th concentration exceedance probability. If

the land covering the stochastic capture zone is changed to

grapes, applying the semi-analytical solution produces a

mean error of 0.20, 0.087, and 0:067 g/m3 for the 90th

(�90), 50th (�50) and 10th (�10) exceedance probability

concentrations, respectively (Table 3). In other words,

medium and high concentrations associated with least (P10)

and median (P50) exceedance probabilities—those typi-

cally of most concern—are well reproduced by the semi-

analytical approach, with minimal errors (Fig. 5). Low

concentrations exceeded by 90% of wells (P90) are over-

estimated at all times. In a resource management setting,

this overestimation may not be significant since wells in the

low 10th percentile most likely are below the MCL. An

overestimation of the 90th percentile exceedance concen-

tration provides a conservative analysis for decision-

making.

Contrary to the first scenario, the ‘‘LUC to grain’’ sce-

nario significantly affects the quality of all semi-analytical

solutions, generating errors �90 ¼ 5:09, �50 ¼ 6:63, and

�10 ¼ 6:83 g/m3 (Table 3). Relative to simulated values,

semi-analytically predicted contaminant mass arrives ear-

lier, and contaminant concentration BTCs associated with

the high, median, and low exceedance probabilities are

overestimated (Fig. 6). The decay in the accuracy of the

semi-analytical approach is due to much lower recharge,

which leads to a decrease of the effective vertical velocity.

That in turn delays first arrivals of mass and allows for

heterogeneity to increase relative macrodispersion—all of

which is appropriately captured in the full MC simulation,

but not with the semi-analytical approach. If conservative

(overly protective) predictions are needed for management

purposes,the observed errors may be acceptable as con-

centrations tend to be over-predicted by the semi-analytical

tool, at least in scenarios similar to the one considered here.

The results indicate that the solution (8), as well as the

signal superposition method (7), is best applied when the

LUC does not significantly modify the average recharge

rate over the LUC area in the basin. Simulations of the

effective recharge rate obtained from realistic scenarios of

flow and transport in the unsaturated zone indeed indicate

that recharge may not vary significantly from one crop to

another, especially among permanent crops. Here only

r associated with grain significantly differs from the others.

In practice, this allows us to employ the analytical

approach under a wide range of scenarios of interest. We

note that changes in agricultural practices that only lead to

a reduction or increase of contaminant mass flux (e.g. a

change in the fertilizing practice) but not to a large change

in recharge also will allow an application of the semi-an-

alytical solution (8) without particular restriction.

5 Application

This section aims to illustrate the potential of the semi-

analytical approach using realistic, but hypothetical con-

ditions. The initial land-use, groundwater flow and trans-

port conditions are similar to the example developed above

(Sect. 3.1), representing typical conditions in a Central

Valley (CA, USA) agricultural basin. For simplicity, we

assume that nitrate leaching began in the middle of the

twentieth century, at constant rates representing practices

typical for the 1970s and 1980s. Beginning in 2020, we

assume a few extreme LUC conditions, changing land-use

Table 3 Mean error produced

on concentration statistics by

using the meta-analytical

solution for different LUC

scenarios

Percentile Mean error; LUC to grapes [g/m3] Mean error; LUC to grain [g/m3]

90th 0.20 5.09

50th 0.087 6.63

10th 0.067 6.83

Fig. 5 Concentrations representing the 90th (P90, red), 50th (P50,

yellow) and 10th (P10, blue) exceedance probability. Dotted line:

initial landuse scenario obtained using Monte Carlo simulation of

flow and transport. Dashed lines: ‘‘LUC to grapes’’ scenario (lower

nitrate mass loading, similar recharge), with LUC inside the

stochastic capture zone only, obtained using Monte Carlo simulation.

Solid lines: same scenario as dashed lines, but obtained analytically

using Eq. (8)
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uniformly to one of six crops. We apply the scaling of

concentration percentiles (8) and the superposition method

(7) to obtain results for these conditions.

To test if the semi-analytical solution is applicable, the

average recharge pre- and post-LUC are compared (10) and

shown on Fig. 7. Only a change of land-use to grain, which

has a significantly different average recharge rate

(�rLUC=�rINI ¼ 0:76), cannot be accurately assessed using the

proposed solution (Fig. 7). A change of land-use to any of

the other 5 crop leads to a minimal change in the average

recharge rate (\10%) and is therefore expected to be

appropriately assessed by the proposed solution.

Under LUC conditions, nitrate concentrations in

recharge from individual crops are similar to or lower than

those obtained from the same crop under current condi-

tions. Lower leaching rates are achieved by improvements

in nutrient management. Therefore, all scenarios lead to a

reduction in well concentrations (Fig. 7) but the reduction

is more pronounced for crops with lower input concentra-

tions (grapes, cotton). The reduction in concentration is

largest for the highest concentrations, corresponding to low

exceedance probabilities (blue lines in Fig. 7) .

We observe that the time at which a reduction of con-

centration associated with a given exceedance probability

is observed, i.e., the time to trend reversal, differs for

different exceedance probabilities. In our simulation set-

ting, trend reversal occurs very late for wells with the

lowest concentrations (exceeded by 90% of wells, P90),

after only about 100 years, in the early 2100s. In contrast,

wells with the highest concentration, exceeded by only

10% of wells (P10) will see a trend reversal already after

about 20 years, around 2040 (Fig. 7). Considering other

exceedance probability levels than 90%, 50%, and 10%

(red, yellow, and blue lines, respectively), we find that the

time to trend reversal is by far longest for the (low) con-

centrations with the highest exceedance probabilities, but

linearly declines from 70 years for concentrations with

exceedance probabilities of 85% to 20 years for (high)

concentrations with exceedance probabilities of 5%

(Fig. 8).

For a single production well, the results highlight the

large uncertainty about the time until future improvements

can be seen—improvements in concentrations may occur

after already 2 decades or after only 8 decades or more.

Alternatively, the stochastic results can be considered

representative of the concentration distributions across a

large number of wells in a basin with hydrogeologic and

land-use conditions similar to those considered here. In that

context, our results show that wells of largest concern—

those with high concentrations and least exceedance

probabilities—are most likely to see improvements at the

earliest, after about 2 decades.

This is explained by the fact that the highest well con-

centrations are observed where source concentrations are

not only high but also ‘‘connected’’ to extraction wells by

highly conductive channels forming quasi-preferential

paths. Under these conditions, a change in source con-

centration over the effective contributing area is transmit-

ted relatively quickly to a well. This outcome is of

significant and promising importance to NPS management:

It suggest that the worst nitrate pollution can be most

quickly addressed through the right LUC, i.e., the right

management practices in agriculture, whether that is a

change to crops with lower nitrate loading or a change to

improved nutrient management practices. On the other

hand, a large percentage of wells—while continuing to

increase in concentration—will remain at relatively lower

concentrations. The results also indicate that a wide range

of outcomes must be expected across a set of regional

wells, even under a relatively uniform change in land-use

practices.

6 Online tool

The proposed semi-analytical solution allows a computa-

tionally inexpensive estimation of basic statistics of

stochastic well concentration BTCs resulting from a LUC.

We take advantage of this high computational efficiency to

develop an online tool for users to test LUC scenarios of

their choice. The application, accessible at this link, is

coded using R (R Core Team 2019) and Shiny (Chang

et al. 2019). In the online tool, users have three tabs

‘‘Background’’, ‘‘Concentration Statistics’’, and ‘‘Land Use

Change’’. The ‘‘Concentration Statistics Tab’’ provides

infographics on concentration statistics as function of user-

defined effective porosity, depth to top of the well screen,

Fig. 6 Concentrations representing the 90th (P90, red), 50th (P50,

yellow) and 10th (P10, blue) exceedance probabilities. Dotted line:

initial landuse scenario obtained using Monte Carlo simulation of

flow and transport. Dashed lines: ‘‘LUC to grains’’ scenario (signif-

icant reduction in recharge), with LUC inside the stochastic capture

zone only, obtained from the pre-LUC Monte Carlo simulation. Solid

lines: same scenario as dashed lines, but obtained semi-analytically

using Eq. (8)
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and threshold (control) concentration level: Concentration

over time is shown for various exceedance probabilities.

Concentrations as a function of time for various

exceedance probabilities are also provided in a heat map.

And concentrations histograms can be graphed for user-

defined future time.

Under the ‘‘Land Use Change’’ tab, the user defines an

initial landuse distribution in their region of interest, a

recharge concentration associated with each landuse, and

the time at which this initial landuse distribution begins.

Similarly, the user defines a new landuse distribution in

their region of interest, a recharge concentration associated

with the new landuses, and the time at which the new

landuse occurs. The user also defines the depth to the top of

the well screen, the effective porosity, and the exceedance

probability of interest. The online application uses the

methodology developed in this paper to estimate the con-

centration evolution resulting from the user-defined LUC,

i.e., a change in input concentration of leaching nitrate

(�cINIi ) and/or proportions (kINIic
) associated to a series of

crops. The tool considers the initial well concentration

Fig. 7 Concentrations for the

90th P90, red), 50th (P50,

yellow) and 10th (P10, blue)

exceedance probabilities. Land-

use change (LUC) occurs in

year 2020 (vertical gray dashed

line). LUC occurs in the entire

stochastic capture zone and

involves a change to one crop

only, as indicated on each panel,

resulting in concentration

reductions (solid lines), each of

which also includes a change in

management practices leading

to some reduction in nitrate

losses when compared to the

pre-LUC scenario. A LUC to

grain would generate too large a

change in the average recharge

rate for the semi-analytical

solution to be valid (grayed

frame). A business as usual

scenario, continuing with

current landuse conditions is

shown in dotted lines

Fig. 8 Time to trend reversal, i.e., the period after a LUC required to

observe a reduction of concentration in wells characterized by a given

concentration exceedance probability, Pi. Note that higher excee-

dance probabilities are associated with lower (nitrate) concentrations
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statistics ( _cINIw ) as a first LUC by applying the proposed

analytical solution (Eq. 8), with the reference scenario

described in Sect. 3.1 as the starting point. The user-de-

fined LUC is a second LUC, also applied using our ana-

lytical scaling approach. The numerical analysis is

instantaneous to the user, with instant graphical results

displayed.

In order to provide an indication about the quality of the

concentration statistics estimation, the tool systematically

estimates the change in the average recharge rate produced

by the user-specified initial and new land use and provides

feedback on the solution accuracy. When recharge rates

change by over 7%, a warning is given to the user, based on

the results in this study, where a change in average

recharge rate of 7% has allowed for a good performance of

the semi-analytical solution (Fig. 5).

Outputs from this tool are, at the moment, only repre-

sentative of the basin represented in this paper (Central

Valley alluvial aquifer system). Codes required to compute

flow and transport and to update the online tool for other

groundwater basins are provided via an open access

repository.

7 Conclusion

Managing non-point source contamination of groundwater

requires the assessment of the outcomes from potential

remedial actions such as a change in land-use or in land-use

practices, while also considering prediction uncertainty due

to heterogeneous aquifer conditions. Ideally, this predictive

effort would consist of simulating flow and contaminant

transport using stable and accurate numerical Monte Carlo

solutions in a stochastic framework that an quantify

uncertainty. In practice, such an approach is often impos-

sible to apply due to the significant computational burden.

Here, we propose a simple and computationally instan-

taneous scaling method to estimate the evolution of con-

centration statistics after a land-use change for situations

with limited changes in regional recharge. The approach is

implemented into an online tool for illustration and appli-

cation (in a specific basin) purpose. The method is appli-

cable for many agricultural basins annual as recharge is

driven by irrigation and climate, both of which are variable,

but within a limited range. Using the semi-analytical tool,

we show that the concentrations of most concern (but least

exceedance probability) are reversible by LUC much

sooner than lower concentrations among an ensemble of

wells, suggesting a narrowing of the observed concentra-

tion range over time.
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