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Abstract
The biogeochemical complexity of environmental models is increasing continuously and model reliability must be

reanalysed when new implementations are brought about. This work aims to identify influential biogeochemical parameters

that control the Soil Organic Matter (SOM) dynamics and greenhouse gas emissions in different ecosystems and climates

predicted by a physically-based mechanistic model. This explicitly accounts for four pools of organic polymers, seven

pools of organic monomers, five microbial functional groups, and inorganic N and C species. We first benchmarked our

model against vertical SOM profiles measured in a temperate forest in North-Eastern Bavaria, Germany (Staudt and Foken

in Documentation of reference data for the experimental areas of the Bayreuth Centre for Ecology and Environmental

Research (BayCEER) at the Waldstein site. Univ, Bayreuth, Department of Micrometeorology, 2007). Next, we conducted

a sensitivity analysis to biogeochemical parameters using modified Morris indices for target SOM pools and gas emissions

from a tropical, a temperate, and a semi-arid grassland in Australia. We found that greenhouse gas emissions, the SOM

stock, and the fungi-to-bacteria ratio in the top soil were more sensitive to the mortality of aerobic bacteria than other

biogeochemical parameters. The larger CO2 emission rates in forests than in grasslands were explained by a greater

dissolved SOM content. Finally, we found that the soil N availability was largely controlled by vegetation inputs in forests

and by atmospheric fixation in grasslands.
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AER Aerobic bacteria

AmA Amino-acids

AmS Amino-sugar

AOB Ammonia oxidizing bacteria

BAMS2 Biotic and abiotic model of SOM version 2

C Carbon

Cls Celulose

DEN Denitrifying bacteria

F Fungi

GSA Global sensitivity analysis

HCls Hemi-celulose

Lig Lignin

Lip Lipids

LSA Local sensitivity analysis

Msa Monosaccarides

N Nitrogen

NOB Nitrite oxidizing bacteria

Nti Nucleotid

OAT One-factor at time method

OraA Organic acid

Pgl Peptidoglycan

Phe Phenols
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SAG Semi-arid grassland

SOM Soil organic matter

TEF Temperate forest

TEG Temperate grassland

TRG Tropical grassland

1 Introduction

The capability of environmental models to capture the

complexity of nutrient biogeochemistry within ecosystems

has deeply been improved over the past years; yet, their

reliability must be re-assessed when applied to specific

aspects of nutrients dynamics and ecosystem responses to

interventions, to aid in interpreting the ecosystem transi-

tions caused by shifts in climatic patterns and related

feedbacks, or when new capabilities are implemented.

Among the multiple dimensions that describe the biogeo-

chemistry of nutrients, Carbon (C) and Nitrogen (N) dy-

namics are of particular interest for their repercussions on

greenhouse gas exchanges with the atmosphere. Soil

Organic Matter (SOM) consists of 2157 to 2293 Pg-C and

133 to 140 Pg-N in the upper 100 cm of soil (Batjes 2014)

and it plays a crucial role in ecosystem stability. Despite a

wide research around SOM dynamics in the last decades,

the factors controlling the soil ability to act as a source or

as a sink of greenhouse gases is still uncertain due to the

interdependence of underpinning biotic and abiotic pro-

cesses (Armstrong et al. 2015); specifically, the soil C and

N dynamics emerge from a complex network of biogeo-

chemical processes including organic matter-mineral

interaction, plant inputs, and microbial activity. Thus,

reaching a deeper understanding and improving the pre-

dictions of soil nutrients dynamics by robust modeling is

essential to provide information to policy makers for

designing adaptation and mitigation strategies.

Many SOM models [e.g., Century, Parton et al. (1988),

or RothC, Jenkinson and Coleman (2008)] organize the

organic matter into a suite of pools that exchange C by

means of first-order kinetic processes. The latter use

effective parameters typically estimated through observa-

tions aiming to embed the effect of molecular recalcitrance,

microbial activity, and soil protection. The lack of explicit

mechanistic representation of physical processes limits the

scope of those models to explore ecosystem responses in

conditions that differ from those associated with parameter

estimation (Lehmann and Kleber 2015; Treseder et al.

2012). Alternatively, physically-based models embedding

diverse levels of complexity have been developed to

mechanistically describe SOM dynamics in a generalized

form (Riley et al. 2014; Ahrens et al. 2015; Riley 2013;

Allison et al. 2010; Fontaine and Barot 2005; Lawrence

et al. 2009; Gerber et al. 2010; Moorhead and Sinsabaugh

2006; Sierra et al. 2012; Achat et al. 2016) and are sup-

ported by increasing computational power. The compara-

tive assessment by Lawrence et al. (2009) has indeed

demonstrated the richer information provided by mecha-

nistic as compared to traditional, low-complexity or sim-

plistic models. Major shortcomings are the high

computational cost and a large number of parameters often

difficult to estimate (Lawrence et al. 2009; Sivakumar

2008). For these reasons, including a complex SOM

mechanistic model into an ecosystem model is generally

considered unfeasible (Riley 2013). It is therefore essential

to develop approaches that can capture the salient features

of SOM dynamics by finding the best compromise between

computational costs and the need to include a large number

of processes and parameters (Riley 2013; Sivakumar

2008).

Sensitivity analyses have proved useful to explore

influential parameters in complex SOM models (e.g., Wang

et al. 2013; Yu et al. 2013; Ahrens et al. 2015), provide

information for model reduction, and drive model simpli-

fication. Different methods are currently available and their

theoretical foundations and robustness in practical appli-

cations have been reviewed comprehensively in a number

of works (e.g., Menberg et al. 2016; Dell’Oca et al. 2017;

Pianosi et al. 2016; Rakovec et al. 2014; Razavi and Gupta

2015; Saltelli et al. 2008; Campolongo et al. 2011; Cari-

boni et al. 2007; Tian 2013). However, the majority of

sensitivity analyses applied to SOM models have used

deterministic frameworks (e.g., Larocque et al. 2008) or

Local Sensitivity Analysis (LSA) methods (e.g.,One-factor

At Time, OAT). These explore model outputs sensitivity

(gradients) only in the neighborhood of selected parameter

combinations. Global Sensitivity Analyses (GSA), instead,

investigate the sensitivity of model outputs across an

arbitrary range of the parameter space. GSA has already

found useful implementations in hydrology (e.g., Ciriello

et al. 2013; Song et al. 2015; Dell’Oca et al. 2017), geol-

ogy (e.g., Formaggia et al. 2013; Colombo et al.

2017, 2018) and geochemistry (e.g., Ceriotti et al. 2018;

Porta et al. 2018), and we contend that GSA can be

extended to SOM biogeochemistry too. The higher infor-

mative content of GSA typically implies a high computa-

tional cost to run the model to exhaustively explore the

parameter space. Hence, estimating GSA metrics is not

computationally affordable for complex models embedding

many parameters in this work. In these cases, screening

methods such as the one proposed in Morris (1991) rep-

resent an effective compromise between the information
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provided by GSA and the efficient LSA procedures that

avoid thousands of model runs (Menberg et al. 2016;

Campolongo et al. 2011; Cariboni et al. 2007; Campo-

longo et al. 2007). The reliability of the Morris method has

been tested and discussed in many works (Sumner et al.

2012; Campolongo et al. 2011, 2007; Cariboni et al. 2007;

Herman et al. 2013; Iooss and Lemaı̂tre 2015; Menberg

et al. 2016; Pianosi et al. 2016), and we consider this

approach appropriate to our purpose.

Here, we conduct a parameter screening of SOM mod-

eling to identify key biogeochemical parameters control-

ling soil C and N dynamics in different climates and

ecosystems. To this end, we have deployed the BAMS2

(Biotic and Abiotic Model of SOM version 2, Tang et al.

2019) mechanistic SOM model that explicitly accounts for

biological, chemical, and physical processes regulating C

and N mass exchanges between the soil, plant, and atmo-

sphere. BAMS2 describes the time evolution of four pools

of organic polymers, seven pools of organic monomers,

five microbial functional groups, inorganic C and N com-

pounds as well as SOM protection, and plant nitrogen and

water uptake. BAMS2, integrated in a general-purpose

solver (Maggi 2019, BRTSim 3.1a), was tested against

field data from a temperate forest located in Germany and

compared to a previously published mechanistic SOM

model (i.e., COMMISSION, Ahrens et al. 2015) that dif-

fers from what we propose here. We next used the

benchmarked modeling framework to analyse SOM

dynamics in a tropical, a temperate, and a semi-arid

grassland in Australia. We conducted a screening of the

biogeochemical parameters by means of a modified Morris

method (Morris 1991) targeting soil CO2, NH3, N2O and

NO gas exchanges with the atmosphere, and the total C and

N stocks in the root zone as outputs of interest. This

allowed us to identify influential biogeochemical parame-

ters for the selected model outputs and critically discuss:

(i) the parameters mostly contributing to model output

variance and hence requiring careful experimental esti-

mation; and (ii) SOM dynamics in different ecosystems

including how biological processes affect the system

dynamics as compared to others factor such as climate and

vegetation inputs.

2 Methods and materials

2.1 The coupled C–N model

We used the SOM mechanistic model BAMS2 in Tang

et al. (2019), which couples the C cycle model BAMS1 by

Riley et al. (2014) and the N cycle by Maggi et al. (2008).

The SOM reaction network in BAMS2 includes: four non-

soluble SOM polymeric pools, i.e., Lignin (Lig), Cellulose

(Cls), Hemi-Cellulose (HCls) and Peptidoglycan (Pgl);

seven soluble SOM monomeric pools, i.e., Monosaccha-

rides (Msa), Amino-Acids (AmA), Amino-Sugar (AmS),

Nucleotides (Nti), Phenols (Phe), Organic Acids (OrA) and

Lipids (Lip); and seven inorganic N species (NH3, NH
þ
4 ,

NO�
3 , NO

�
2 , NO2, NO, N2O). The size of these SOM and N

pools are regulated by chemical, physical, and biological

processes outlined in Fig. 1. All reactions in BAMS2 are

detailed in the Online Resource (Section S.1, Table 4),

while we illustrate the key model features below.

2.1.1 Gaseous-aqueous mass exchange

BAMS2 accounts for the dynamics of both gaseous and

liquid phases in soil; the exchange of O2, CO2, NH3, NO,

N2O, N2 species between these phases is modeled

according to a local thermodynamic equilibrium expressed

as a function of temperature as prescribed in Maier and

Kelley (1932) and Parkhurst and Appelo (2013).

2.1.2 Microbial activity

We accounted for heterotrophic aerobic fungi (F) and

bacteria (AER), ammonia-oxidizing bacteria (AOB),

nitrite-oxidizing bacteria (NOB) and denitrifying bacteria

(DEN). These microbial groups were stoichiometrically

defined as C5xH8xO2xN with x ¼ 1 for bacteria and x ¼ 1:6

for fungi according to the C:N ratios suggested by Moug-

inot et al. (2014).

Heterotrophic fungi (F) represent all decomposers with

high enzymatic activity and low metabolic nutrient demand

that depolymerize recalcitrant substrates (e.g., Fabian et al.

2017) such as Lignin (Lig), Hemi-Cellulose (HCls) and

Cellulose (Cls) and release inorganic N and C, Monosac-

carides (Msa) and Phenols (Phe). Heterotrophic bacteria

(AER) depolymerize Pgl and mineralize all monomeric

SOM compounds during growth and respiration. The N in

SOM monomers is partially assimilated by AER during

growth and partially released in the environment as free

NHþ
4 . AOB oxidize NHþ

4 to NO�
2 , which is used by NOB to

produce NO�
3 ; both AOB and NOB use HCO�

3 as the C

source in these reactions. Finally, DEN produce N2 in four

sequential reduction steps (NO�
3 ! NO�

2 ! NO ! N2O

! N2) in anoxic conditions.

Growth of all microbial functional groups is limited by

space, water and substrate availability. All functional

groups undergo mortality and the necromass decomposi-

tion returns polymeric (Pgl) and monomeric (Msa, AmA,

AmS, OrA, Lip and Nti) compounds to the soil, which feed

the C and N cycles anew. Microbial dynamics were mod-

eled using Michaelis-Menten-Monod kinetics as
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d½B�
dt

¼
X

j

Yj;BRj;B � dB½B� ð1Þ

where [B] represents the concentration of a generic

microbial group B among F, AER, AOB, NOB, and DEN,

dB is the mortality rate of B; Yj;B is the biomass yield of B

for the jth reaction contributing to B growth, while Rj;B is

the rate of the jth reaction involving B, which is calculated

as

Rj;B ¼ kj � fS �
½B�
Yj;B

�
Y

i

½Xi�
½Xi� þ KM;i

�
Y

m

KI;m

KI;m þ ½Xm�
ð2Þ

where kj is maximum rate, KM;i is the Michaelis-Menten

half-saturation constant of substrate i and ½Xi� the concen-

tration of the substrate i; ½Xm� is the concentration of the m

inhibitor with KI;m as inhibition constant, and fS quantifies

the inhibition of soil moisture stress on the microbial

activity (Online Resource, S2.1).

2.1.3 Chemo-denitrification

Abiotic denitrification can occur in acidic conditions and

can compete with biological denitrification. The chemo-

denitrification rate Rcd is modeled as

Rcd ¼ kcd
½NO�

2 �
½NO�

2 � þ KM;NO�
2
ðcdÞ

� ½Hþ�
½Hþ� þ KM;Hþ

ð3Þ

where kcd is the maximum rate constant, while KM;NO�
2
ðcdÞ

and KM;Hþ are the half-saturation constants of NO�
2 and

Hþ, respectively.

2.1.4 Nutrients input and plant uptake

We used Michaelis-Menten kinetics to account for plant

NO�
3 and NHþ

4 uptake, and first-order kinetics for SOM

inputs to soil through litter and roots exudate. Specifically,

wood and leaf litter, composed of Cls, HCls, Msa, Lip,

AmA, Nti (only for leaf litter) and Phe (only for wood

litter), were assumed to have C:N = 35 (Moretto et al.

2001; Thomas and Asakawa 1993) and introduce mono-

mers and polymers from aboveground to the top soil. Root

exudates, composed of Msa, Lip, OrA and AmA (Grayston

et al. 1997), were assumed to have C:N = 12 (Mench and

Martin 1991; Grayston et al. 1997) and were distributed

throughout the soil profile proportionally to a negative

exponential distribution function describing the roots den-

sity profile (Ahrens et al. 2015).

N2 fixation was described in BAMS2 by zero-order

kinetics and was inhibited by soil moisture stress similarly

to the microbial activity. N2 fixation feeds the topsoil with

dissolved NHþ
4 along the soil profile proportionally to the

roots distribution at the maximum rate constant kN�fix.

2.1.5 Protection

We identify protection as an ensemble of complex chemo-

physical processes (Luo et al. 2017) that cause organic

compounds to stabilize and age in soil (Riley et al. 2014;

Six et al. 2002; Luo et al. 2017). It is generally recognized

that SOM can be protected from enzymes and microbial

activity through micro-aggregation and adsorption on silt

and clay particles (Six et al. 2002). Evidence suggests that

the protected SOM pool size is finite and depends on

Fig. 1 Outline of substrate requirements by microbial functional

groups for the metabolic processes of nitrification, denitrification,

respiration, and depolymerization included in this work. Mass fluxes

of necromass, inputs (atmopheric N fixation, roots exudates, woody

and leafy litters), outputs (plants uptake and gaseous emissions) and

chemo-physical processes (protection, gaseous-aqueous equilibrium

and chemo-denitrification) are highlighted by directional arrows.

Here, C–N inorganic = inorganic dissolved chemicals containing C

and N; C–N protected = inorganic and organic compounds stabilized

in soil; SOM = Soil Organic Matter; Pgl = Polypetidoglican; DEN =

Denitrifying bacteria; AOB = Ammonia oxidazing bacteria; NOB =

Nitrite oxidizing bacteria; AER =Aerobic bacteria; F = fungi
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various soil physico-chemical characteristics. A broadly

accepted physically-based model of SOM protection is still

lacking (Luo et al. 2017), and we relied on Langmuir

kinetics similar to the one used in Ahrens et al. (2015) and

written as

d½XðpÞ�
dt

¼ kp;X � ðQmax � ½XðpÞ�Þ½XðaqÞ� � kunp;X � ½XðpÞ� ð4Þ

where Qmax is the maximum soil protection capacity, kp;X
and kunp;X describe the protection and unprotection rates of

the compound X, respectively, while [XðpÞ] and [XðaqÞ] are

the concentrations [mol/L] of the protected and aqueous

form of the generic chemical X, respectively.

2.2 BAMS2 implementation

The BAMS2 reaction network was implemented in the

BRTSim v3.1a general-purpose solver described in Maggi

(2019). BAMS2 included 56 reactions comprising 70 bio-

geochemical parameters. The values of those associated

with the C cycle (R1 to R11, R39, R40, R44 to R46, R54

and R56 in Table 4, Online Resource) were taken from

Riley et al. (2014), while those associated with the N cycle

(R12 to R18, R41 to R43 and R47 to R53 in Table 4,

Online Resource) were taken from Maggi et al. (2008).

The kinetic protection rate kp ¼ 3:30� 10�12 L mol s�1

used here implied that protection competed with bacteria

for substrate uptake, while the unprotection kinetic rates

kunp were estimated from the kp=kunp ratios proposed by

Riley et al. (2014) for the different monomers and resulted

in some compounds be preferentially protected as com-

pared to others (R19 to R38 in Table 4, Online Resource).

All parameters are listed in Online Resource (Tables 4 and

5) along with their reference values. Modeling details

specific to BAMS2 integration into BRTSim such as grid,

boundary conditions, and others are provided in Sect. 2.4.

2.3 Sensitivity analysis and target variables

The method proposed here for parameter screening makes

use of the Elementary Effect (EE) Morris method (Cam-

polongo et al. 2007), which is briefly recalled below. First,

we assumed that each biogeochemical parameter pk can

vary in a uniform interval Uk spanning between ±50% of

the benchmark reference parameter values (Table 5, Online

Resource). For the aqueous-gaseous equilibrium constant,

instead, we assumed that these parameters are described by

polynomials of the temperature and not by a single

parameter; the procedure implemented to account for their

uncertainty is detailed in Section S.3, Online Resource.

Each interval Uk was normalized to [0,1] and then divided

into l = 11 levels evenly spaced by Dk. The parameter space

corresponding to K parameters used in BAMS2 is a K-

dimensional hypercube HK ; any points within HK is

identified by a vector of K elements, each representing one

parameter of our model. The parameter space HK was then

explored by trajectories of points generated as follow:

1. The trajectory origin was selected by sampling one of

the l levels of each parameter pk randomly;

2. The trajectory was obtained by moving one parameter

at a time by Dk. The resulting trajectory was, therefore,

a sequence of K ?1 points in HK ;

3. The BAMS2 model was run to calculate the target

output y for as many points as within the trajectory;

4. The Elementary Effect EEk;y for parameter pk associ-

ated with y was calculated as

EEk;y ¼
yðp1; . . .; pk þ D; :::pKÞ � yðp1; . . .; pk; :::pKÞ

Dk
� 1

ry

ð5Þ

where ry is the standard deviation of y.

New trajectories are generated by replicating the steps

above n times and are used to calculate the corresponding

EEi
k;y for each i ¼ 1; . . .; n trajectory. The sensitivity indi-

ces lk;y are then calculated for each parameter k and the set

of n values of EEi
k;y as

lk;y ¼ MedianjEEk;yj ð6Þ

Note that Eqs. (5) and (6) differ from the original metrics

proposed in Morris (1991), that is, EEk;y in Eq. (5) is

normalized to ry after recommendations in Sumner et al.

(2012) to allow for a comparison of l in Eq. (6) across

different target outputs y. In addition, l was calculated

using the median of EEk;y as suggested by Menberg et al.

(2016) instead of the mean to reduce the impact of outliers

and enhance Eq. (6) robustness for small n (Eq. (6) can be

considered stable for n� 10). Because a single model

realization can take 2 to 50 h on a Intel(R) Core(TM) i7-

6700 CPU @ 3.40 GHz, we used n ¼ 10, which required

710 model runs for the analysis of each case study inves-

tigated in this work. Finally, Eq. (6) uses the absolute value

jEEk;yj to avoid changes in sign as prescribed in Campo-

longo et al. (2011).

The selected output variables for the parameter screen-

ing are: (i) the average soil daily emission rate of CO2ðgÞ

[kg-C/day/m2], NH3ðgÞ, N2OðgÞ and NOðgÞ [kg-N/day/m2];

and (ii) the total organic carbon (C-stock) [kg-C/m2],

organic nitrogen (N-stock) [kg-N/m2], and inorganic

nitrogen (Ninorg-stock) [kg-N/m2] in the top 30 cm of soil

for comparison with Ahrens et al. (2015). The screening

was conducted on four case studies described below with

different vegetation inputs and climates.

Stochastic Environmental Research and Risk Assessment (2020) 34:2229–2244 2233
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2.4 Case studies and modeling settings

We used SOM observations from a temperate conifer forest

(50�08’32’’ N and 11� 52’01’’ E) at the Coulissenhieb (I)

site in Bavaria, Germany, described in Staudt and Foken

(2007) to benchmark BAMS2. Specifically, observed SOM

vertical profiles to 80 cm depth included: (i) total and

protected organic C in [kg-C m�3
soil] (CðtotÞ and CðpÞ,

respectively) reported in Ahrens et al. (2015); (ii) micro-

bial biomass in [kg-C m�3
soil] reported in Ahrens et al.

(2015); and (iii) total organic N in [kg-N m�3
soil] reported in

Staudt and Foken (2007). In this case study, BRTSim was

run for a soil column of 3 meters discretized into 20 nodes

with free drainage bottom boundary condition. The

stratigraphy and soil composition are reported in Table 1

(Staudt and Foken 2007). The soil textural fractions were

used to estimate the Brooks-Corey hydraulic parameters

(Brooks and Corey 1964) using the empirical scaling laws

in Clapp and Hornberger (1978). The root vertical distri-

bution was assumed to be negative exponential with 7.5 cm

mean depth (Ahrens et al. 2015). Historical daily precipi-

tation and minimum and maximum temperature from 2007

to 2017 were obtained from the DWD Climate Data Cen-

ter, CDC (Source: Deutscher Wetterdienst, Kaspar et al.

2013). These data were used to generate synthetic daily

precipitations and temperatures using a Richardson-type

weather generator (Chen et al. 2010). The potential evap-

otranspiration ET0 was calculated using the Food and

Agriculture Organization (FAO) tool (Allen et al. 1998),

while the actual evapotranspiration was calculated as

ETc ¼ kc � ET0, where kc ¼ 1 is the proportionality coeffi-

cient for a conifer forest suggested by the FAO (Allen et al.

1998). We verified that the generated precipitations were

statistically equivalent to the historical ones and the sea-

sonality in ETc was compatible to that in forests in the

northern hemisphere as reported in Fisher et al. (2011).

The maximum C protection capacity at different soil depths

at the Coulissenhieb (I) site are available in Guggenberger

and Kaiser (2003) and were used to estimate Qmax;C in

Eq. (4). However, no equivalent data were available for N;

hence, a texture-specific protection capacity was estimated

using the empirical relationships by Alshameri et al. (2018)

for Qmax;NHþ
4
, and Black and Waring (1979) for Qmax;NO�

3

and Qmax;NO�
2
. All protection capacities are expressed in [g-

N(p)/kg-soil].

In addition to the Coulissenhieb (I) site, other three case

studies were used for our analysis selected among grass-

lands in tropical, temperate, and semi-arid climates in

Australia (Table 2). These case studies are chosen from

previously published sites (Ahrens et al. 2015; Tang et al.

2019) and allow for comparison of ecosystems with (i)

different vegetation inputs for similar climates (temperate

forest vs temperate grasslands) and (ii) similar vegetation

inputs in different climates (temperate grassland vs tropical

and semi-arid grasslands). The biogeochemical parameters

values do not differ in the four case studies. The differ-

ences in vegetation and climate are embedded in the model

through the imposed boundary conditions. Forests are

characterized by tall-tree vegetation and deeper roots

compared to grasslands described with an exponential

profile in BAMS2. As such, roots in forests are able to

uptake a larger amount of nutrients which is traced by

means of a fictitious compound labeled Nplant (see Online

Resources in Table 4). Similarly, the nutrients released by

vegetation litter in forests will be more abundant and

proportional to the root distribution and amount of nutrient

uptaken. In different climates, we instead account for dif-

ferent precipitation regimes: in our case studies, 0.80 mm

day�1 for semi-arid, 1.05 mm day�1 in temperate and 3.29

mm day�1 in tropical grasslands on average. A higher soil

moisture increases the availability and concentration of

dissolved compounds in soil, which can be readily uptaken

by vegetation or by bacteria. As such, the climate will be

reflected on the nutrients uptaken and released by vegeta-

tion (traced by Nplant). In grasslands, the soil profile was

extended to 2 meters depth with free drainage bottom

boundary condition. The textural fractions and stratigraphy

at each site were taken from the SoilGrid database (Hengl

et al. 2017) and were used to estimate the hydraulic

properties as before. Likewise for the Coulissenhieb (I)

site, we generated synthetic precipitations and potential

Table 1 Stratigraphy and soil composition at Coulissenhieb (I) site

(Staudt and Foken 2007)

Layer Location Sand [%] Silt [%] Clay [%]

Ea 0–10 cm 52 38 10

Bh 10–12 cm 34 50 16

Bs 12–30 cm 45 45 10

Bw 30–55 cm 46 43 11

C1 55–70 cm 56 34 10

C2 [ 70 cm 51 38 11

Table 2 Coordinates and climates for the three temperate (TEG),

semi-arid (SAG), and tropical (TRG) grasslands in this study. The

climate classification is from the modified Köppen climate chart of

the Bureau of Meteorology, Australia (Stern and Dahni 2013)

Site ID Latitude [�] Longitude [�] Climate

TEG - 33.8202 135.2551 Temperate

SAG - 29.3240 120.2663 Semi-arid

TRG - 14.3539 126.7190 Tropical
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evapotranspiration time sequences using historical precip-

itations from 1979 to 2017 obtained from the CPC US

Unified Precipitation data by NOAA/OAR/ESRL PSD,

Boulder Colorado, USA (Xie et al. 2010) and temperature

from the Global Historical Climatology Network-daily

dataset (Menne et al. 2012). ETc for grasslands was

obtained using kc ¼ 0:8 after Allen et al. (2005). No data

of maximum C and N protection capacities were available

for those soils; hence, the maximum C protection capacity

was estimated with the empirical relationship in Six et al.

(2002) while the maximum protection capacities for inor-

ganic N were estimated as described before for the

Coulissenhieb (I) site.

The time horizon considered in our simulations was 380

years. All analyses were carried out using modeling results

of the last 100 years, the time during which the SOM

profiles approached a near-stationary state.

For simplicity, the Coulissenhieb (I) site will be referred

to as TEF while the temperate, semi-arid and tropical

grasslands will be referred to as TEG, SAG and TRG,

respectively.

3 Results and discussion

3.1 Model benchmarking

Figure 2a shows that BAMS2 captured the observed CðtotÞ
and CðpÞ profiles relatively well (solid black and red lines,

respectively) even if the majority of the biogeochemical

parameter were taken from the existing literature rather

than being estimated against those data. We compared our

model predictions against those by the COMMISSION

model (dashed lines in Fig. 2; Ahrens et al. 2015), which

was specifically calibrated against those data, and we found

that the two SOM models were in close agreement relative

to the profiles. We note that COMMISSION was run with

100 nodes over 80 cm soil depth and the maximum C

protection capacity profile was estimated from data; in

contrast, the lower spatial resolution in BRTSim led to

greater profile segmentation as compared to COMMISION

but Qmax;C in BRTSim was assumed to vary over the soil

depth as a function of soil composition and it was assigned

a priori rather than estimated by inverse problem solving

(see Sect. 2.4).

The AER biomass profile predicted by BAMS2 was in

good agreement with the few observation points available

at Coulissenhieb (I) site (solid black line in Fig. 2b) as

compared to the overestimation by COMMISSION.

The organic N was generally predicted well except for a

slight overestimation in the Bh and Bs horizons as com-

pared to observations (Fig. 2c). Possibly, the N profile can

be improved by more rigorous estimation of SOM pro-

tection parameters and Pgl depolymerization rate, which is

characterized by high N content (i.e., low C:N ratio).

Relative to organic N, no comparison with COMMISION

predictions was possible because it does not account for the

N cycle.

Overall, the BAMS2 SOM biogeochemical model inte-

grated into the BRTSim solver was able to reproduce

observed SOM and biomass profiles with equivalent

accuracy as compared to the COMMISSION SOM model

Fig. 2 Model benchmarking of

a organic C, b microbial

biomass, and c organic N

profiles against corresponding

profiles observed at the

Coulissenhieb (I) site and

profiles predicted by the

COMMISSION model (Ahrens

et al. 2015) for C and biomass

profiles. Shaded areas indicate

the horizons stratification (see

Table 1). Experimental data are

from Staudt and Foken (2007)

and Ahrens et al. (2015)
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calibrated against the same experimental data. However,

the BAMS2 SOM model provides additional capabilities to

describe the N biogeochemical cycle and assess nutrient

dynamics in vegetated ecosystems.

3.2 Results of sensitivity analysis

The parameter screening was conducted on the TEF site

and on the independent TEG, SAG and TRG grassland

sites described in Sect. 2.4. Because we retained the same

BAMS2 biogeochemical parameters employed for TEF, we

first verified that BRTSim met the total organic C reported

in the SoilGrid database (Hengl et al. 2017).

Computed l indices (Eqs.(5)–(6)) for the selected model

outputs (Sect. 2.3) are reported in Fig. 3 for TEF (panels a

and e), TEG (panels b and f), SAG (panels c and g), and

TRG (panels d and h). Results associated with organic C

stock (C-stock), organic N stock (N-stock), and inorganic

N stock (Ninorg-stock) are displayed in Fig. 3a–d while CO2

and NH3 gas emissions are grouped in Fig. 3e–h. The

results associated with N2OðgÞ and NOðgÞ are omitted

because the l indices were not reliable for these target

outputs. The latter were less than 10�10 kg-N day�1 m�2

when AOB, NOB and DEN were not active for some

parametric combinations. This condition was verified for

more than 50% of the sampled trajectories. Hence, the

proposed formulation of l indices (see Eq. 6), which relies

on the median statistics, resulted not to be appropriate to

investigate N2OðgÞ and NOðgÞ sensitivity.

Figure 3 highlights that the l index associated with the

AER mortality rate dAER showed an high value against all

target outputs in the four test sites. This result is consistent

with the Monod kinetics in Eq. (1), i.e., slower AER

mortality increases the net AER growth rate d[AER]/dt and

favours AER abundance. Since AER constitutes the most

relevant soil microbial population, increases in AER lead

to greater CO2 respiration. dAER affects also the Ninorg-

stock and the NH3ðgÞ emissions because NHþ
4 is a substrate

for AER growth and it is the major N pool in Ninorg-stock in

all ecosystems (ranging between 50 to 95 w-N% of aque-

ous Ninorg-stock). Since NHþ
4 is in equilibrium with

NH3(g), changes in NHþ
4 are then reflected by NH3(g)

emissions highlighting the close link between CO2 and

NH3 emissions and AER activity (see later analysis in Sect.

3.5). The variability of CO2 and NH3 emissions can be

therefore considered as a proxy of AER growth as con-

firmed by earlier results in, e.g., Postma et al. (2007).

We have identified instances where the contribution of

AER mortality to the outputs sensitivity was not associated

with the largest l index among all: (i) l of root exudates

rate kroot overcame l associated with dAER for the N-stock

in TEF (Fig. 3a); and (ii) the nitrogen fixation rate kN�fix in

grasslands was associated with the largest l for the C and

N stocks (Fig. 3b,c and d). These instances are discussed in

greater details in the following sections, where we high-

light the differences that emerge when comparing sensi-

tivity analysis results for different vegetation inputs and

climates.

3.3 Sensitivity differences across vegetation
inputs

Figure 3 shows that the target outputs in the forest (panels a

and e) were highly sensitive to the rates kroot, kleaf and kwood
of plant litter and root exudate inputs to soil, but these were

not sensitive to the N fixation rate kN�fix. The opposite

result was found for the three grasslands (panels b-d and f-

h). This diverse parameter sensitivity reflects a key dif-

ference in factors controlling N availability in soils of

different vegetation cover. Our results show that the bac-

terial and fungal growth in grasslands is very sensitivity to

N fixation rather than vegetation inputs, consistently with

Fornara and Tilman (2008) and Hefting et al. (2005)

according to whom the supply of N in herbaceous

ecosystems (such as grasslands) is typically limited by N

atmospheric fixation as the vegetation litter is scarcer and

poorer in N content than that in forests, while vegetation

inputs are the major source of nitrogen in forest soils. As

such, parameters associated with vegetation inputs (i.e.

kroot, kleaf and kwood) result to be largely influential on SOM

dynamics. In addition, note that the pivotal role of N-fix-

ation in providing N to soil is similar in all three grass-

lands, regardless of the climate. This result is consistent

with the work of Hefting et al. (2005), who concluded that

climate shifts do not influence the N sources in soil.

The results of our analysis allow a preliminary assess-

ment of the relative importance of different monomers in

driving gaseous emissions. On the one hand, AmA and Msa

maximum consumption rates by AER (kResp�AmA and

kResp�Msa, respectively) are influential parameters for CO2

and NH3ðgÞ emissions across all test sites, which included

different vegetation cover and climates (see Fig. 3). On the

other hand, kResp�Phe, kResp�Lip, and kResp�OrA are influential

parameters in the forest (Fig. 3a) but not in the three

grasslands (Fig. 3b,c and d). We can support this finding by

inspecting the relative abundance of the SOM pools

grouped by polymers, and protected/aqueous monomers in

the four sites computed by averaging their integral mass in

the first 30 cm of soil (pie charts in Fig. 4). The total

organic C in the aqueous phase (Tot CðaqÞ) was reported as

the average C mass fraction [g-C kg�1
soil] along with its

distribution within the monomer pools. Here, dissolved

SOM contributed to 25% of the total SOM in the forest

while it was always smaller than 5% in the grasslands. The
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small dissolved SOM pool in grassland was almost entirely

made by Msa and AmA, which are the most important

substrates for microbial growth. Consequently, a change in

AER uptake of AmA and Msa has a large impact on the

variability of CO2 and NH3ðgÞ emission rates. The partition

of dissolved SOM in forest (Fig. 4a) highlights that Msa

was the most abundant monomer (2.06 g-C kg�1
soil) followed

by Lip (0.554 g-C kg�1
soil), AmA (0.533 g-C kg�1

soil) and Phe

(0.161 g-C kg�1
soil). The OrAðaqÞ in forest (10�2 g-C kg�1

soil)

was at least two orders of magnitude greater than in the

three grasslands. Increased availability in a monomeric

SOM pool corresponded to higher consumption rates and

greater CO2(g) respiration as per Eq. (2). Note that a larger

amount of Lip, Phe and OrA is the result of the role played

by plant litter inputs in forests (as discussed above in this

Section)—we recall that these SOM pools constitutes root

exudates (OrA and Lip), wood (Phe and Lip) and leaf (Lip)

litter, or they are products of lignin depolymerization (Phe)

(see reactions R54, R55 and R56 in Online Resource).

Fig. 3 Values of the sensitivity (Morris) indices l calculated as in

Eqs. (5)–(6) for all biogeochemical parameters under scrutiny

organized in 22 groups detailed in Table 6, Online Resource,

Section S.1 associated with C-stock, Ninorg-stock, and N-stock for:

a temperate forest (TEF); b temperate grassland TEG; c semi-arid

grassland (SAG); and d temperate grassland (TRG)
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3.4 Sensitivity differences across climates

The relative and absolute abundance of dissolved SOM in

grasslands increasing from the semi-arid (SAG, 1% and

Tot CðaqÞ ¼ 3:7� 10�2 g-C kg�1
soil, respectively) towards

the wetter tropical grassland (TRG, 5% and Tot CðaqÞ =

0.397 g-C kg�1
soil, respectively) suggest that climate may act

as a driver for SOM accumulation (Fig. 4). The available

assimilable dissolved SOM impacts on the average CO2

emission rate, which is the lowest in SAG (7:06� 10�5 kg-

C m�2 day�1 across all simulations) and the highest in TEF

(0.0012 kg-C m�2 day�1).

A non-negligible sensitivity of NH3(g) emission rate to

AOB nitrification was identified in TEG and SAG but not

in TRG (Fig. 3f, g and h, respectively). This suggests that

nitrification contributed to model output variability in a

different way depending on the climate under equivalent

vegetation inputs. We have further investigated this aspect:

Fig. 5a displays the mean water saturation profile (Sl, [-]) in

the three grasslands, while Fig. 5b shows the corresponding

average AOB and AER profiles in [kg-C m�3
soil] yielded by

the SOM model using benchmark parameter values (see

Table 5, Online Resource). We found that the AER profiles

were nearly equivalent regardless of the climate, with the

greatest AER concentration near the soil surface. Note that

AER in the TRG dropped faster as a function of soil depth

than in TEG and SAG probably because a high soil water

saturation inhibits AER growth as described by the

microbial water stress function accounted for in BAMS2

(see further details in Online Resource, Section S2). On the

other hand, the AOB mass was not negligible only in SAG

and TEG root zone (i.e., greater than 10�10 kg-C m�3
soil).

Possibly, AOB growth was prevented by the rainfall

regime associated with the tropical climates, which main-

tains a high soil water saturation (Fig. 5a). Indeed, intense

precipitation in tropical grassland throughout the year

caused the rapid flushing of NHþ
4 to below the root zone,

thus decreasing NHþ
4 availability to AOB for nitrification.

In contrast, the succession of dry periods in SAG and TEG

slowed down NHþ
4 leaching and allowed for AOB growth.

This explains the sensitivity of NH3(g) emissions to

kNitro�AOB (maximum degradation rate of NHþ
4 by AOB)

and KM;NHþ
4
ðAOBÞ (half-saturation constant in the Michaelis-

Menten equation). That is, a greater AOB presence leads to

faster NHþ
4 consumption and lower NH3(g) emissions. The

absence of AOB in TRG was further explained by the

inorganic N pools (Fig. 5c, d and e for the SAG, TEG, and

TRG sites). Here, NHþ
4 was the major component of dis-

solved Ninorg-stock in SAG and TEG, followed by NO�
2

and NO�
3 . N partitioning in TRG (Fig. 5e) was coherent

with the absence of AOB (Fig. 5b); that is, nearly all Ninorg-

stock consisted of NHþ
4 and the NOB activity was inhibited

by a lack of NO�
2 production by AOB.

The NH3(g) emissions were also sensitive to AOB

mortality, which controls the net AOB growth rate together

with kNitro�AOB as in Eqs. (1)-(2). We also note that a small

AOB concentration in the top soil was partially explained

by the half-saturation constant of NHþ
4 for AOB being

greater than the one for AER, thus meaning that AOB were

outcompeted by AER when NHþ
4 was limiting such as in

the top soil at both TEG and SAG sites.

NH3(g) emissions as well as other target outputs were

not sensitive to denitrification parameters (Fig. 3), but we

do not have evidence of how these may be influential on

other target variables not investigated in this work.

3.5 Sensitivity similarities across climates
and vegetation inputs

The l indices have identified a non-negligible sensitivity of

NH3(g) but not of CO2 emissions (Fig. 3). This is a

Fig. 4 Relative abundance of

protected and aqueous SOM

monomers, and SOM polymers

of the C-stock expressed in

percent kg-C for: a temperate

forest (TEF); b temperate

grassland (TEG); c semi-arid

grassland (SAG); and d
temperate grassland (TRG). For

each site the The partitioning of

aqueous SOM into the different

pools (Msa, AmA, AmS, Phe,

OrA, Lip, Nti) reports the

average g-C/kgsoil in each pool

in the root zone
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consequence of the CO2 and NH3 solubilities in water

(Blanc et al. 2012, see, e.g., Thermoddem database)

NH3 þ Hþ
� NHþ

4 with Log KNH3
¼ 9:241 ð7Þ

CO2 þ H2O � HCO�
3 þ Hþ with Log KCO2

¼ �7:819

ð8Þ

where KCO2
and KNH3

are the corresponding equilibrium

constants. Log KCO2
\0 and Log KNH3

[ 0 suggest that

CO2(g) gas ex-solution is favoured while NH3(g) dissolu-

tion in water is favoured. Hence, CO2 emissions are limited

by biogenic HCO�
3 production while NH3(g) emissions are

controlled by Log KNH3
.

The SOM C-stock was the only target output found

sensitive to F mortality (dF), the maximum degradation

rate of polymers (with the exception of Pgl) and their half-

saturation constants (Fig. 3). Specifically, the contribution

of dF to C-stock variability was comparable to the one of

dAER because the corresponding l were similar (Fig. 3). In

contrast, CO2 emissions were not influenced by dF (Fig. 3).

The result returned by l is counterintuitive because we

would expect that dF should affect the CO2 emissions

through aerobic depolymerization reactions. Hence, we

investigated the relative CO2(g) emission increments as a

function of dAER and dF . For this purpose, we ran BAMS2

for the TEG site using the benchmark dAER and dF values

and we calculated the corresponding CO2 emissions, C-

stock, the mass of polymers (Pgl, Lig, HCls and Cls), and

the protected and aqueous monomers. Next, we varied dAER
value up to ± 40% and we computed the same target

outputs. This procedure was replicated also for dF . Results

in Fig. 6a and b show that an increasing dAER and dF cor-

responded to smaller CO2 emissions. However, this

decrease was steeper for dAER, suggesting that a small

change in dAER results in a larger change in CO2(g) emis-

sion rate than from dF .
Hence, the l indices identified the relative non-influ-

ential contribution of dF given the much higher contribu-

tion of dAER to CO2(g) emissions variability.

In all sites, the Lig depolymerization maximum rate

(kDepo�Lig) and Lig half-saturation constant (KM;Lig) had a

more significant impact on F net growth as compared to the

corresponding parameters associated with HCls and Cls

depolymerization (see Fig. 3 as a consequence of a Lig

pool size greater than other polymers (Table 3). By com-

paring panels c and d in Fig. 6, we found that dAER and dF
produced a variation in C-stock of similar order of mag-

nitude but with opposite sign, i.e. increasing dF increases

the C-stock while increments of dAER lead to decreasing of

C-stock. We explain this as an indirect feedback on SOM

depolymerization resulting by a change in the F:AER ratio

driven by AER mortality. In specific, Fig. 7c shows that F

are more abundant than AER in the topsoil, while the

opposite is observed for lower dAER values (see Fig. 7a and

b) where AER are prevalent throughout the entire soil

profile. Increasing the dAER likely leads to a reduced

competition for substrates and O2 between the two

microbial functional groups, thus favoring F growth and

Lig depolymerization, and leading to the increase of

F:AER ratio. The Lignin concentration was higher when

bacteria prevailed in the topsoil (Fig. 6d). The dynamics

Fig. 5 Profile of a liquid saturation Sl, and b AOB and AER microbial

biomass observed in the semi-arid grassland (SAG), temperate

grassland (TEG) and tropical grassland (TRG) calculated by averag-

ing the profiles predicted by BAMS2 over the last 100 years of the

simulation period relative to the benchmarked parameter values (see

Table 5, Online Resource). Panels c to e represent the aqueous Ninorg-

stock in inorganic N species for SAG, TEG, and TRG, respectively.

Here, B is the density of bacteria in soil expressed in terms of carbon

content; AOB = Ammonia oxidizing bacteria; SAG = Semiarid

grassland; AER = Aerobic bacteria; TEG = Temperate grassland;

TRG = Tropical grassland
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regulating F:AER prevalence in soil are still a largely

debated topic in literature (Fabian et al. 2017; Strickland

and Rousk 2010; Thiet et al. 2006; Bailey et al. 2002; De

Vries et al. 2006), but our work shows that a switch from

bacterial to fungal prevalence in the topsoil is essentially

controlled by AER mortality. On the one hand, our model

predicts that F prevalence leads to small decrements of the

C-stock. On the other hand, even if a clear experimental

evidence of this effect is needed, different authors (e.g.,

Strickland and Rousk 2010, and references therein) have

suggested that F prevalence should eventually lead to a

C-stock increase because fungal necromass is more recal-

citrant than the bacterial one and because F tends to

increase the soil protection capacity.

3.6 Overall comments

Our findings and the existing literature highlight the need

to further explore the following aspects.

Bacterial mortality is commonly modeled in simplistic

ways such as by first-order kinetics and, therefore, it is a

function of only one parameter (German et al. 2012; Wang

et al. 2014). Our results showing the high contribution of

bacterial mortality in controlling C cycle suggest that such

approach may oversimplify other contributing factors

including the microbial biodiversity, aging, competition,

symbiosis, environmental conditions, and quality and

quantity of available substrates or adaptation to external

environmental stressors (see, e.g., Howell et al. 1996;

Bressan et al. 2008; Schimel et al. 2007; Van Elsas and

Van Overbeek 1993, and references therein) that determine

bacterial mortality. Recent studies have proposed more

sophisticated approaches in modeling microbial mortality,

such as, by linking thermodynamics and biochemical

kinetics theories to describe mortality rate as an explicit

function of temperature (Maggi et al. 2018), by including

density-dependent microbial turnover (Georgiou et al.

2017), and by accounting for drought tolerance traits (Al-

lison and Goulden 2017). Still, bacterial mortality remains

under-represented in modeling and a matter of large

debate. We then recommend that mathematical models

entailing dynamical response of microbial populations to

environmental stimuli must always be supported by an

appropriate and robust uncertainty quantification. Indeed, a

deterministic SOM model may not be able to capture the

complexity and to account for the unavoidable lack of

knowledge associated with dynamics of soil natural phe-

nomena, similarly to all biogeochemical and reactive pro-

cesses occurring in the subsurface environment (Crawford

1999; Bethke 2007,see e.g.). Overall, the actual importance

of bacterial mortality in driving the shift from fungal to

bacterial prevalence (and vice versa) is highlighted in our

analyses but still needs to be verified through laboratory

Fig. 6 Evolution of the relative

increment of CO2 emission rate

and C-stock with as a function

of the mortality rate of a aerobic
heterotrophs (AER) dAER and b
fungi (F) dF for the temperate

grassland (TEG). Evolution of

the total amount of carbon

present in the soil column

partitioned in polymers (CðPolyÞ),

aqueous (CðaqÞ) and protected

monomers (CðpÞ) as a function

of dAER c and dF d for the

temperate grassland (TEG)

Table 3 SOM polymer partitioning into Lignin, Hemi-Cellulose and

Cellulose in the root zone of the temperate (TEG), semi-arid (SAG),

and tropical (TRG) grasslands, and in the temperate forest (TEF)

considered in this study calculated using the benchmark parameter

values reported in Table 5 (Online Resources) and averaged on the

last 100 years of the simulation period

Site Lig w-C[%] HCls w-C[%] Cls w-C[%]

SAG 60 9 31

TEG 68 9 23

TRG 76 8 16

TEF 71 13 16
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and/or field experiments. However, our analyses appear a

promising tool for speculation on possible parameters

controlling SOM dynamics to drive the design of experi-

ments and test potential hypotheses on the feedback

between AER mortality, F:AER ratio, and C-stock

variability.

Model reduction is typically considered after screening

analyses. Our sensitivity analysis has shown important

differences across different case studies. These differences

pinpoint that a robust sensitivity analysis is a mandatory

step to support future model reduction procedures. Indeed,

our investigations show that model sensitivity may be

remarkably dependent on boundary conditions and the

choice of target output variables. Hence, model reduction

driven by the sensitivity analysis performed on a specific

case study may not be straightforwardly exported to dif-

ferent case studies; rather, our results support the need of a

tailor-made model reduction accounting for the specific

output of interest, model formulation and system boundary

conditions. Hence, sensitivity analysis can play a key role

to aid in designing model reduction around the scope of the

reduced model.

4 Conclusions

We have investigated the sensitivity of the soil organic

matter (SOM) dynamics to C–N biogeochemical parame-

ters across different climates and for various vegetation

inputs using the mechanistic C–N coupled reaction net-

work model BAMS2. The ability of BAMS2 to reproduce

realistic SOM profiles was benchmarked against data

sampled in a temperate forest located in Bavaria, Germany.

Then, a parametric screening was conducted using BAMS2

on the temperate forest used for benchmarking and three

Australian grasslands located in semi-arid, temperate, and

tropical climatic regions. From the analyses completed in

this work, we concluded that CO2(g) emissions, the SOM

stock, and the fungi to bacteria ratio in the top soil are

mostly sensitive to the mortality of aerobic bacteria than

other biogeochemical parameters accounted for in BAMS2.

In particular, the mortality of aerobic bacteria is a crucial

driver for the C and N cycle in soil, and it controls the

variability of both C and N accumulation and emissions

regardless of vegetation inputs and climates. Our work also

suggests that bacterial mortality is an important driver of

the fungal/bacterial ratio and this needs to be verified and

tested through experimental evidences. Major differences

depending on the climates and vegetation inputs have also

been highlighted by our analyses: (i) root exudates and

vegetation inputs control the soil nitrogen availability in

forests, while this is controlled by atmospheric fixation in

grasslands; (ii) the higher dissolved SOM content in forest,

caused by the abundant vegetation inputs, leads to CO2(g)

emissions greater than in grasslands; and (iii) the climate

and corresponding precipitation intensity might inhibit the

activity of specific bacterial functional group such as the

nitrifying bacteria (AOB) in tropical climates.
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