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Abstract
The flooding in Bangladesh during monsoon season is very common and frequently happens. Consequently, people have

been experiencing tremendous damage to properties, infrastructures, and human casualties. Usually, floods are one of the

devastating disasters from nature, but for developing nations like Bangladesh, flooding becomes worse. Due to the dynamic

and complex nature of the flooding, the prediction of flooding sites was usually very difficult for flood management. But

the artificial intelligence and advanced remote sensing techniques together could predict and identify the possible sites,

which are vulnerable to flooding. The present work aimed to predict and identify the flooding sites or flood susceptible

zones in the Teesta River basin by employing state-of-the-art novel ensemble machine learning algorithms. We developed

ensembles of bagging with REPtree, random forest (RF), M5P, and random tree (RT) algorithms for obtaining reliable and

highly accurate results. Twelve factors, which are considered as the conditioning factors, and 413 current and former

flooding points were identified for flooding susceptibility modelling. The Information Gain ratio statistical technique was

utilized to determine the influence of the factors for flooding. We applied receiver operating characteristic curve (ROC) for

validation of the flood susceptible models. The Freidman test, Wilcoxon signed-rank test, Kruskal–Wallis test and Kol-

mogorov–Smirnov test were applied together for the first time in flood susceptibility modelling to compare the models with

each other. Results showed that more than 800 km2 area was predicted as the very high flood susceptibility zones by all

algorithms. The ROC curve showed that all models achieved more than 0.85 area under the curve indicating highly

accurate flood models. For flood susceptibility modelling, the bagging with M5P performed superior, followed by bagging

with RF, bagging with REPtree and bagging with RT. The methodology and solution-oriented results presented in this

paper will assist the regional as well as local authorities and the policy-makers for mitigating the risks related to floods and

also help in developing appropriate measures to avoid potential damages.
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1 Introduction

During the past few decades, the frequencies of extreme

weather events and related disasters have increased due to

incessant changing climate and global warming (Het-

tiarachchi et al. 2018; Nam et al. 2015). Evidence suggests

that the extreme weather events have occurred more fre-

quently after the mid 20th century and have occurred in

that region which does not have such in the history

(Hoeppe 2016). Among all, the occurrences of flooding are

maximum across the globe and causes higher damage than

other natural disasters (Yang et al. 2018; Hirabayashi et al.

2013). It has been estimated that from 1995 to 2015, flood

hazard affected more than 100 million people and the

damages estimated at 75 billion USD in every year (Mo-

hanty et al. 2020; Alfieri et al. 2017). In the countries like

Bangladesh, the casualty due to flood is higher than any

other natural calamities during recent past (Dewan 2015;

Azad et al. 2013) as a large section of populations lives in

the floodplains under the varying degree of vulnerability to

flooding, river erosion etc. (Tingsanchali and Karim 2005).

Many parts of Bangladesh have experienced a number of

devastating flood events during past decades which has

caused huge loss of both property and lives (Ferdous et al.

2019). In northern Bangladesh, flash floods are periodic

events that often happen in the downstream riparian areas,

especially in the lower Teesta River basin. For instance, a

very recent flash flood observed in the lower Teesta River

basin, especially in Nilphamari, Lalmonirhat, and Kuri-

gram districts in August-2017, which caused the submer-

gence of considerable landmass, and five people were

swept away. According to the network for information,

response and preparedness activities on disaster (NIR-

APAD), about 6.8 million people and over 560,000 hec-

tares of croplands were badly damaged by the flash flood.

FAO (2017) estimated that the destruction of the flash flood

of August 2017 caused the damages of up to US$ 10

million (FAO 2017). Although natural along with anthro-

pogenic activities are resulting in the flooding, the climate

change has been identified as the principal cause behind the
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manifestation of flooding in the world, which affects the

pattern, intensity and magnitude of floods (Hettiarachchi

et al. 2018; Zhao et al. 2018; Gill and Malamud 2017; de

Kraker 2015; Taubenböck et al. 2011). Some natural fac-

tors such as elevation, soil texture, drainage density, dis-

tance, vegetation etc. act as the prompting factors of flood

in different parts of the world (Azareh et al. 2019; Hosseini

et al. 2020). The occurrences of flooding are natural, which

cannot be stopped, however the damages done by floods

can be mitigated by appropriate planning and management

(Abebe et al. 2019). Hence, the prediction and delineation

of flood prone areas is an important aspect of alleviation of

flood hazards, which reduces the fatalities due to the

flooding (Pyatkova et al. 2019; Sarhadi et al. 2012). Fur-

ther, a study by Ward et al. (2013) pointed that the South

and South-east Asia, especially India and Bangladesh has

the highest share of population and GDP exposed to flood

risk. Therefore, to cope with such looming conditions, the

knowledge of vulnerability through the quantification and

identification of spatiotemporal characteristics of flood

prone areas are indispensable for the effective management

and mitigation of flood hazards (Mohanty et al. 2020).

Therefore, a flood susceptible model (FSM) is a useful tool

which is required to identify regions at risk and to safe-

guard these high-risk regions and natural resources as well

(Maaks et al. 2020).

The development of flood susceptibility maps is very

challenging and difficult as several factors are involved.

These factors are heterogeneous and very complex in nat-

ure (Ardıçlıoğlu and Kuriqi 2019; Kuriqi et al.

2020; Costache and Bui 2019). However, of late, regional

data with very detailed information can be obtained from

satellite images or remote sensing databases (Pourghasemi

et al. 2020a; Nikolaos et al. 2019; Li et al. 2019; Talukdar

and Pal 2017). Nowadays very high resolution data like

synthetic aperture radar (SAR) and optical sensor images

are available in some places, which can highly improve the

flood susceptible maps (Bui et al. 2020a; Talha et al. 2019;

Arora et al. 2019). However, these state-of-art techniques

can handle spatial datasets and produce high resolution and

prediction performances (Uthayakumar et al. 2020; Abba

et al. 2020; Ma et al. 2020). Therefore, the integration of

remote sensing databases and GIS technology have been

widely applied to study the relationships between these

factors and the occurrences of flood hazards (Choubin et al.

2019; Jahangir et al. 2019) and made the flood susceptible

models less challenging and highly accurate. Conse-

quently, researchers have used these technologies for pre-

dicting the natural hazards including flood susceptible

models (Bui et al. 2020a, b; Wang et al. 2020; Pourghasemi

et al. 2020a, b; Chen et al. 2020; Dodangeh et al. 2020).

Many scholars have developed and utilized several types

of models and algorithms for preparing flood susceptible

models (Sahana et al. 2020). Therefore, based on the pre-

vious literature, the models, have been used for preparing

flood susceptibility maps, can be several types (Siahkamari

et al. 2018; Chen et al. 2019a; Termeh et al. 2018; Hong et al.

2018a; Bui et al. 2019a; Mahmood et al. 2019), such as (1)

expert knowledge based FSMs like analytical hierarchy

process (AHP) (Costache et al. 2020a; Dano et al. 2020;

Nachappa et al. 2020; Souissi et al. 2019), (2) bivariate and

statistical based models, such as weights-of-evidence (Chen

et al. 2019b; Paul et al. 2019), fuzzy logic (Wang et al. 2019;

Sahana and Patel 2019), information value (Xu et al. 2013;

Chen et al. 2014), frequency ratio (Chen et al. 2020a;

Moghaddam et al. 2019; Khosravi et al. 2019a, Sahana et al.

2020), logistic regression (Tien Bui et al. 2019a; Shafapour

Tehrany et al. 2019a, b; Pham et al. 2020a; Ali et al. 2020),

analytical network process (Ali et al. 2020; Akay and

Koçyiğit 2020), certainty factor (Costache et al. 2020a),

neuro fuzzy logic (Termeh et al. 2018; Hong et al. 2018b) (3)

machine learning algorithms (Shahabi et al. 2020; Dodangeh

et al. 2020; Wang et al. 2020; Costache et al. 2020b; Cost-

ache and Bui 2020; Tang et al. 2020), and (4) hydrological

models such as soil water assessment tool (SWAT) (Oeurng

et al. 2011; Busico et al. 2020; Uniyal et al. 2020; Bhat-

tacharya et al. 2020) and Hydraulic Engineering Centre-

River Analysis System among others (Getahun and Gebre

2015; Joshi and Shahapure 2020; Huţanu et al. 2020).

Recently,machine learning techniques have drawnmore and

more attention,which have been employed in FSMs bymany

researchers (Bui et al. 2020a; Chen et al. 2019a; Hong et al.

2018a; Wang et al. 2020). The most popular machine

learning techniques are artificial neural networks (Falah

et al. 2019; Moghaddam et al. 2019; Pham et al. 2020b; Bui

et al. 2020b), random forest (Avand et al. 2019; Paul et al.

2019; Achour and Pourghasemi 2020; Chen et al. 2020b;

Nhu et al. 2020; Vafakhah et al. 2020), support vector

machines (Termeh et al. 2018; Khosravi et al. 2019a), and

decision trees (Choubin et al. 2019; Moghaddam et al.

2019; Yariyan et al. 2020; Nhu et al. 2020; Chen et al. 2020c;

Costache et al. 2020c), radial basis function (Choubin et al.

2019), which predict the areas at risk of flooding very

accurately. However, FSM experiences many challenges,

such as selecting the proper methods for modelling among

vast numbers of methods, and each method produces dif-

ferent results (Costache et al. 2020a, b; Shafizadeh-

Moghadam et al. 2018). Even, each of these models have

some drawbacks for predicting the FSMs. Therefore, very

recently, to overcome these limitations of several algo-

rithms, researchers have been applied hybrid ensemble

machine learning algorithms, which have shown better

performance than the conventional and single models (Pham

et al. 2016, 2017a; Wang et al. 2020; Shahabi et al. 2020;

Nachappa et al. 2020; Costache et al. 2020a; Costache and

Bui 2020). The widely applied and popular ensemble
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machine learning algorithms, which showed very high

accuracy to prepare flood susceptibility models, are random

subspace (Pham et al. 2020b; Chen et al. 2019a), Reptree

(Chen et al. 2019a; Ghasemain et al. 2020), bagging (Sha-

habi et al. 2020; Chen et al. 2019b; Yariyan et al. 2020),

naive Bayes (Ali et al. 2020; Pham et al. 2020c; Tang et al.

2020), logistic tree (Chapi et al. 2019), ensemble of boot-

strapping (Dodangeh et al. 2020), ensemble of boosted

generalized linear model (Hosseini et al. 2020). The out-

standing findings of the hybrid machine learning algorithms

for several natural hazard’s models inspire researchers to

apply and develop the hybrid machine learning algorithms.

However, no general agreement has been found on the

selection of the best method for different types of natural

hazards modelling such as landslide or flood susceptibility

(Chen et al. 2019b). Researchers recommend developing and

testing new models for flood susceptibility mapping and

other kinds of natural hazards modelling (Chen et al. 2019a).

The flood hazards and susceptibility mapping is not a

new area of research in Bangladesh and researches have

been already carried out (Hoque et al. 2019; Islam and

Sado 2000). Further, the studies have been carried out in

the upper Teesta River basin (Indian part of Teesta river)

for flood susceptibility analysis (Roy et al. 2019; Mandal

and Chakarbarty 2016), but no such comprehensive study

for flood susceptibility analysis has been carried out in the

Lower Teesta River basin of Bangladesh. To fill these gaps

in research, this study designed to develop the new

ensemble of bagging algorithms by integrating four other

machine learning algorithms, which have not applied till

date, for deriving the highly accurate prediction of the

susceptibility to flood hazards in the Lower Teesta River

basin of Bangladesh. The predicted models comparisons

are highly recommendable work for exploring the perfor-

mances of each model. For this, we used Kruskal–Wallis

test and Kolmogorov–Smirnov test to compare the models

with each other. Although we used two commonly used

non-parametric tests, such as the Friedman test and Wil-

coxon Signed-Rank test for model comparison. Based on

this line of thinking, we set main objectives of this research

were (1) to develop new ensembles of bagging algorithms

for flood susceptibility analysis, (2) to delineate and pre-

pare the flood susceptible zones in Lower Teesta River

basin, and (3) to validate and compare the flood suscepti-

bility models of the Lower Teesta River basin.

2 Study area

Lower Teesta River basin, which situated in the northern

part of Bangladesh has been selected as the study area for

this research which is located between 25° 30′ 02′′ N and

26° 18′ 37′′ N latitudes and 88° 52′ 58′′ E and 89° 45′ 34′′ E

longitude (Fig. 1). The basin covers about 2284 km2 area

and includes five districts of Bangladesh namely Lal-

manirhat, Nilphamary, Rangpur, Kurigram and Gaibandha.

As per the 2011 Census, the total population of the area

was about 10.42 million. The average elevation of the

region varies between 05 and 100 meters and the slope is

from north-west to south-east. The climate of the basin is

subtropical monsoon type (Koppen: CWA) with highest

temperature goes beyond 40° C during May, while lowest

climate hardly goes below 15 °C during December. The

mean annual rainfall of the region is more than 250 cm in

which more than 80 per cent of the total rainfall occurs

during monsoon season (June to September).

The flood-plain of the region is made up of the Teesta

and several other small and medium sized rivers. This river

deposits sediments each year during flooding period and

makes its plain fertile and favorable for agriculture (Man-

dal and Chakarbarty 2016). The morphology of the lower

Teesta basin is demarcated by the low depressions as well

as the moribund river channel valley formed by long

morphological alters in the basin pathways. Hence the

basin is susceptible to flooding and flash flood is a common

phenomenon and occurs each year during monsoon season.

The sediments deposited are mostly recent making the

surface a fertile alluvial plain which are composed of clay,

silt and fine to medium sized alluvium (Saha et al. 2019).

3 Materials and methods

3.1 Materials and databases

As the study area has experienced frequent flooding each

year; therefore, based on the field survey and local people

perception, the historical flooding inventories were pre-

pared. In the present study, we obtained several data types

for flood susceptibility modelling. We obtained Landsat 8

operational land imager (OLI) for preparing land use land

cover (LULC) maps (path/row: 138/42, spatial resolution:

30 m, date: 19/03/2019), which was downloaded from the

United States Geological Survey (USGS) website. For

deriving topographical factors and hydrological factors, we

used ASTER GDEM (Version 2) (spatial resolution: 30 m).

The rainfall data were collected from the Bangladesh

Meteorological Department (BMC), Dhaka, Bangladesh.

We used a soil taxonomy map, which was collected from

the Natural Resources Conservation Service (NRCS)-Uni-

ted States Department of Agriculture (USDA). The drai-

nage map was prepared by utilizing the topographic maps

with a scale of 1:250,00 obtained from the Bangladesh

water development board. A detailed procedure of

methodology of this study is presented by Fig. 2.
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3.2 Flood inventory

The primary step for preparing the flood susceptibility map

is the creating of flood inventory maps of the study basin

because the probable flood susceptible zones are predicted

based on the mathematical relationship between the past

flood events and its influencing factors (Bui et al. 2020a;

Sarkar and Mondal 2020). However, for collecting the past

common flood points in the present study area, we used the

historical inundation maps, topographical map and survey

on the perception of local people. We collected 207 flood

points from the study area (Figs. 1, 3). Subsequently, the

collected 207 flooded points were randomly partitioned

into 80% (165 points) and 20% (42 points) groups to build

and validate the flood susceptible models. However, flood

susceptibility mapping is considered as the binary classi-

fication in which flood inventory has been classified into

two classes, such as flood points and non-flood points.

Therefore, in order to construct the training flood inven-

tory, which is considered as the dependent factor for

building the model, the binary values like 1 as flood points

and 0 as non-flood points are required. Here, flood points

have been considered as the exact points where frequent

floods have been observed, while the non-flood points

considered the points where floods were not recorded in the

last few years. Similar to flood points, we had to obtain

negative samples or non-flood points. To avoid bias, sev-

eral researchers recommended choosing the similar number

of non-flood points as the positive or flood samples (Tang

et al. 2020). Therefore, we randomly collected 206 non-

flood points based on the topographical map, historical

flood data, field survey and NDWI maps. Subsequently, we

randomly classified the non-flood points into 80% (165

points) and 20% (41 points) groups. Thus, we prepared a

dependent factor as training datasets which comprised 165

flood points as 1 and 165 non-flood points as 0.

Similarly, we also prepared testing datasets for evalu-

ating the final models, which comprised 42 flood points as

1 and 41 non-flood points as 0. Both the training and val-

idation datasets were shown in Fig. 1. We extracted data

from twelve flood conditioning parameters (spatial data-

sets) based on the training datasets by using the ‘extract

values to point’ tools in ArcGIS 10.5 software. Subse-

quently, we imported these datasets into WEKA (version

3.9.3) software, and the whole modelling was done over

there.

3.3 Methods for generating the flood
conditioning parameters

The flood susceptible model is usually very complex and

comprehensive, as it requires several topographical and

hydrological factors in geospatial format. We selected and

prepared twelve flood conditioning parameters for the

present work based on the previous literature on flood

susceptibility modelling (Chen et al. 2019b; Sturzenegger

et al. 2019; Bui et al. 2019b; Arabameri et al. 2019;

Moghaddam et al. 2019; Paul et al. 2019; Janizadeh et al.

2019). The parameters were elevation, curvature, aspect,

slope, topographic roughness index (TRI), topographic

wetness index (TWI), stream power index (SPI), sediment

transport index (STI), LULC, distance to the river, soil

Fig. 1 The location of the study area having the training and validation flood points
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type, and rainfall. As the collected parameters had different

spatial resolution, we applied resampling technique to

make them uniform (30 m spatial resolution). The details

procedure for preparing the flood conditioning parameters

were discussed as follows:

3.3.1 Elevation

The elevation has been identified as a major dominant

factor for the modeling of flood (Choubin et al. 2019; Bui

et al. 2016). The flood frequency and elevation are inver-

sely related to each other, as one of them (flood) decreases

with increase in another (elevation) and vice versa. The

areas with low elevation are supposed to be more

susceptible to floods while the areas with higher elevation

are supposed to be less susceptible to the floods (Khosravi

et al. 2016a, b). The Teesta River basin is prone to the

frequent flooding as it is located in a low elevation area

with a flat topography.

3.3.2 Aspect

Maximum slope of the surface in a definite direction is

known as aspect. Several studies considered aspect as

significant parameters in the modeling of flood suscepti-

bility (Bui et al. 2020; Bui et al. 2016; Chen et al. 2019). It

determines the direction of flow of flood water and hence is

an important parameter for flood study (Costache 2019a;

Fig. 2 Methodology flowchart of this study
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Lei et al. 2020). The aspect has been prepared using the

ASTER GDEM data.

3.3.3 Slope

Slope gradient is an important physiographic characteristic,

which is directly related to the flooding as it contributes to

the runoff velocity and vertical percolation of the water

(Choubin et al. 2019; Rahmati et al. 2016). The chances of

flooding increases with decline in the slope angle and

decreases with an increase in slope angle(Costache 2019b).

Therefore, the Teesta River basin is supposed to be more

prone to flooding as it has flat topography with low

elevation.

3.3.4 Curvature

The curvature is another determinant in flood susceptibility

modeling which is prepared using ASTER GDEM in

ArcGIS 10.2 domain. The convergent and divergent runoff

regions were separated by the curvature. The activity of

runoff is associated with the regions with negative value

(Costache and Bui 2020) and these regions are highly

susceptible to flooding.

3.3.5 Topographic roughness index (TRI)

Flooding also occurred by TRI which depends on the local

topography of a basin. The occurrence of flooding highly

depends on the TRI and the higher floods are always

associated with lower TRI and the high TRI leads to either

no or low floods (Tehrany et al. 2019a, b). In this research,

stretch format was used for preparing TRI map with values

ranging between 0 and 27 (Fig. 6a).

3.3.6 Topographic wetness index (TWI)

TWI is the indication of watersheds’ wetness by spatial

variation first proposed by Beven and Kirkby (1979). It is

used to spatially represent the variation of wetness of a

river basin (Meleset al. 2020). The TWI shows the quantity

of water accumulated in a pixel size of a watershed area or

basin and can be expressed as Eq. 1.

TWI ¼ lnðAsÞ
tan b

ð1Þ

where, As represents the explicit catchment area (m2 m−1)

and β represents the slope gradient (in degrees). The higher

TWI values and the flood events have strong correlation

with each other (Shit et al. 2020). In this research, the TWI

value ranges between 0 and 7.72 (Fig. 6b).

Fig. 3 Field photographs of the flooding situation in the Teesta river

basin representing a, c, d flooded road, b damaged houses due to

flooding, e flooded village, f, h destroyed road due to devastating

flooding, g overflow on the culvert, and i camping on the national

road by the people affected by flooding
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3.3.7 Stream power index (SPI)

The SPI refers to the power of erosion (erosive power) of

the flowing water and it has considerable impact on the

fluvial systems (Tehrany et al. 2015). The sediment trans-

portation capacity and erodibility of a river from its own

bed is known as the SPI (Chen et al. 2020). The SPI was

calculated using Eq. 2.

SPI ¼ As tan b ð2Þ
where, As represents the specific catchment area and β
represents the slope gradient.

3.3.8 Sediment transport index (STI)

Erosion as well as deposition processes in a specific basin

are described by STI. It is used to reflect the erosive

capacity of a surface/terrain and can be calculated using

Eq. (3).

STI ¼ As

22:13

� �0:6
sin b
0:0896

� �1:3

ð3Þ

where, β refers to the slope pixels while the As refers to the

upstream area. The STI was calculated based on the geo-

morphologic as well as hydro-climatic attributes. The

change in the channel’s bed due to sediment deposition

affects the water storing capability of the basin which leads

to the increase in flood risk (Antoniazza et al. 2019). In the

present research, the STI value ranges between 0 and

140.64 (Fig. 6d).

3.3.9 Land use land cover

The LULC affects the surface runoff and sediment trans-

portation both directly and indirectly (Zhang et al. 2010).

The flood events are more frequent in settlement areas than

the forest and open areas because the built-up lands do not

allow water to infiltrate and block surface runoff (Costache

2019c), while the forested and open surfaces does not put

obstacles in the movement of water (Yin et al. 2017). In

this research, the LULC mapping has been done using the

Landsat 8 (OLI) dataset using ANN algorithm on ENVI

software version 5.3. Six LULC classes have been identi-

fied in this study, i.e. built-up area, vegetation cover, bare

land, agricultural land, sand bar and water body (Fig. 7a).

3.3.10 Distance to river

The areas next to the rivers are most exposed to the

flooding and hence, the distance from the river is identified

as an important flood conditioning factor. Chances of

flooding increases with the decrease in distance from the

river and decreases with increase in distance from the river

(Talukdar and Pal. 2019; Costache et al. 2020d; Binh et al.

2020). Topographic maps (scale 1:50,000) and Google

Earth were used to prepare the distance to the river map.

3.3.11 Soil types

Flooding is also affected by soil as the properties soil

determines the infiltration of water and surface runoff

(Costache et al. 2019; Phillips et al. 2019). The infiltration

rate and surface runoff are inversely related to the flooding.

The soil map has been classified into 12 classes based on

the USDA soil taxonomy classification using the USDA

map as the base map.

3.3.12 Rainfall

Rainfall has been also identified as a major influencing

factor of flooding as the intense rainfall for even a short

time-period can cause flooding (Pham et al. 2019a, b; Ali

et al. 2020; Costache et al. 2020e; Pourghasemi et al.

2020a, b). Data of rainfall was sourced from Bangladesh

Meteorological Department and the spatial distribution of

rainfall done by the well known interpolation technique

kriging in ArcGIS version 10.3. The kriging method was

employed because the rainfall data obtained was from only

four meteorological stations and this technique has been

suggested to plot less number of observations (Kourgialas

and Karatzas 2011).

3.4 Methods for analyzing importance of flood
conditioning parameters

Several spatial techniques as well as models have been

proposed and applied for the mapping of flood suscepti-

bility modeling and hazard zonation in order to delineate

the flood prone areas. The preparation of flood hazard

models involves the building of a set of parameters related

to floods (Chen et al. 2019). The flood conditioning factors

are used to enhance and increase the quality of the results.

Total 12 factors have been used in this study as the flood

conditioning factors; i.e. aspect, slope, curvature, stream

power index (SPI), elevation, sediment transport index

(STI), topographic roughness index (TRI), topographic

wetness index (TWI), LULC, type of soil, distance to the

river, and rainfall. Further, to identify the parameters

influencing the prediction of flood susceptibility modeling,

the information gain ratio (IGR) has been used because of

its ability to identify the significance of each factor influ-

encing flood susceptibility modeling (Bui et al. 2020a, b;

Al-Abadi 2018). The IGR values have been assigned based

on the significance of the factor. The IGR was employed in

the present study because of its efficacy and was calculated

using Eq. (4).
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Gain ratio x;Zð Þ ¼
Entropy Zð Þ �Pn

1

Pn
i¼1

Zij j
Zj j Entropy ðZiÞ

�Pn
i¼1

Zij j
Zj j log

Zij j
Zj j

ð4Þ
Further, identification of the importance of the factors

responsible for flooding has been done by utilization of the

Karl Pearson’s correlation coefficient used by Xu and Li

(2020) and the variance inflation factors (VIF) used by

Javidan et al. (2020) techniques in this study. A VIF value

more than 9 and the very low correlation coefficient shows

the problem of multicollinearity in the factors employed.

Therefore, it is recommended to exclude those conditioning

factors with VIF more than 9 or very low coefficient of

correlation in the modeling.

3.5 Methods for flood susceptibility mapping

3.5.1 Bagging

The bagging is a popular technique used for the construc-

tion of ensembles (Prasad et al. 2006). Bagging refers to an

ensemble algorithm, which can constitute multiple models

of different subsets of a training dataset. It combines the

prophecy from all models. It is the application of boot-

strapping and aggregating procedure to a high variance

machine learning technique and was called Bagging by an

American Statistician Breiman (1996).

For this study, a learning set C has been considered,

which consists of n independent observations (Chen et al.

2018). Here, the independent observations are the flood

conditioning factors, where C={(Xi, Yi), i=1, 2, 3 … n}.

For this, firstly, the set Cb (b=1, 2, 3 …. n) represents the

bth bootstrap sample of training set C, acquired by illus-

tration with substitution n components of the C. Later, to

calculate the bootstrap estimator g * (·) by the plug in the

code: g * (·)=hn ((X1, Y1), …. (Xn, Yn)) (·). Finally at last,

replicate the above mentioned steps m times, in which the

m could be either 50 or 100, based on the need, yielding

g*k(·) (k=1, 2, 3 …. m). Hence, the Bagging calculator will

be as Eq. 5

gBag �ð Þ ¼
Pm

k¼1 g
�kðÞ

m
ð5Þ

Further, the Bagging estimator can be illustrated as

Eq. (6).

gBag �ð Þ ¼ � g � �ð Þ½ � ð6Þ
where the speculative quantity matches to m=∞ and this

infinite number m directs the precision of Monte Carlo

estimation.

3.5.2 Ensembles of bagging

REPTree

The REPTree algorithm follows the idea of computing the

information gain with entropy and minimizing the error

occurring due to the variance (Witten and Frank 2005).

Suggested by Quinlan (1987), this algorithm produces the

regression tree by means of node statistics like information

gain or the variance diminution calculated from the up-down

phase, and trims it by using reduced-error cutting.

M5P

M5P is a tree based regression algorithm proposed by Quinlan

(1992) which produced values at the trees’ leaves for future

prediction. The trees produced by this algorithm have some

multivariate linear techniques. This algorithm can solve

problems with high dimensionality equal to 100 characters. It

is efficient and gives more accurate results by building com-

paratively smaller trees. This model works with continuous

variables rather than discrete variables (Sihag et al. 2019).

Random forest

Random forest is a well admired ensemble learning algo-

rithm proposed by Breiman (2001), which is a permutation

of the decision trees for the classification as well as

regression for making predictions. It is a combination of

two subsets, i.e. bagging idea of Breimanand the random

selection features of Ho. In a bagging ensemble, poor

classifiers can give high accuracy by producing a number

of strong classifiers with Random forest. A wide variety of

samples were created along with generating various similar

regression trees in the training phase by this ensemble.

Then, based on the results of multiple classifiers, it clas-

sified the data. Lastly, it selects the classification, which

has a majority vote over all trees in a forest.

Random tree

The random tree is also known as RTree, a regression

model based on a decision tree algorithm. The trees are

created by RTree considering randomly chosen attributes

(K) at every node without pruning. Further, it gives an

alternative to allocate the evaluation of the class proba-

bilities on the basis of a hold-out set, i.e. Back-fitting.

3.6 Validation and comparisons of flood
susceptibility models

3.6.1 Receiver operating curve

Receiver operating characteristics (ROC) curve is the

graph of sensitivity along with 1-specificity, which pro-

duces an area under itself called AUC (Hajian-Tilaki
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2013). AUC is very useful which helps to evaluate the

performances of prediction accuracy and also for inter-

preting the results. ROC is also utilized for assessing the

risk of any vulnerable situation or object. ROC curve is

expressed by the following formula:

ROC ¼ Sensitivity

Specificity
ð7Þ

3.6.2 Confusion matrix

In the present study, for evaluating the accuracy assessment

of the four flood susceptibility maps, we calculated con-

fusion matrix apart from the ROC curve. We calculated

sensitivity, specificity, Youden index J, predicted positive

value, predicted negative value, and optimal criterion for

validating the flood susceptible models (for details: Hong

et al. 2020).

3.6.3 Friedman test

Friedman test is an ideal nonparametric test used for

comparing several matching groups among them devel-

oped by Milton Friedman (Lindman 1974). It is a two way

analysis. This test presumes that the sources of all the

variables having equivalent continuous distribution and all

variables are communally self-determining (Cieslak and

Chawla 2009). The Friedman test is described by the fol-

lowing equation:

X2 ¼ 12

kn k þ 1ð Þ
Xk
j¼1

r2j � 3n k þ 1ð Þ ð8Þ

where, X2 is the probable p value, k is number of variables,

n denotes number of examples under each variable and r

denotes the rank.

3.6.4 Wilcoxon signed-rank test

Wilcoxon Signed-Rank test is the nonparametric technique

for testing the variations of paired data based on ordinal

scale (Suchmacher and Geller 2012). It is well known as

the backup test of t test in which self-determining variables

are binary based. This test is employed for detecting

whether any variable is shifted by the influence of other

variables. Four main steps should have been done for doing

this test. First, calculate the variation of every pair of

datasets. Secondly, rank the derived variation. Thirdly,

assigning the respective sign (?or – sign) of the ranked

values. Finally, both sums (sums of positive sign and sums

of negative sign) are computed.

3.6.5 Kruskal–Wallis test

Kruskal–Wallis test is the one way nonparametric test for

evaluating the performance of several similar groups

among them (Gibbons 1985). This test is recognized as a

very useful test for performance evaluation. The statistical

form of Kruskal–Wallis test is following below:

K ¼ N � 1ð Þ
Pg

i¼1 ni ri � r
� �2

Pg
i¼1

Pn¼i
j¼1 rij � r

� �2 ð9Þ

where, N means total samples, ng denotes number of total

samples in g group, rjg denotes overall rank of j samples in

group and rg means rank of samples in g group and r

denotes mean rank of samples among all samples.

3.6.6 Kolmogorov–Smirnov test

Kolmogorov–Smirnov test also known as KS test is a

common nonparametric test which compares two obser-

vations on the basis of performances (Kolmogorov 1933;

Smirnov 1939). It is a less sensitive model compared to

other models, because it produces no assumptions on data

distribution. Statistical equation of this test is noted below:

X2 ¼ 4D2n1n2
n1 þ n2

ð10Þ

where, X gives the values of p, n1 and n2 is the number of

examples in two different observations.

4 Results and analysis

4.1 Importance of flood conditioning
parameters

The determination of the influence of flood conditioning

factors were evaluated by using the values of IGR for each

parameter. It was calculated by using a tenfold cross val-

idation technique. Figure 4 showed that the LULC (0.52),

slope (0.495), DR (0.12) and elevation (0.11) were the

most important flood conditioning factors with higher IGR

values than TRI (0.03), SPI (0.03), STI (0.02), TWI (0.01),

and curvature (0.01). Further, the IGR value of aspect

factor was zero (0), hence it could be considered as the less

influential parameter for flooding.

4.2 Characteristics of flood conditioning
parameters

To explore the spatial relationship between natural hazard

occurrences and influencing factors is significantly needed

in modeling study (Pham et al. 2016). Flooding
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occurrences are influenced by several factors (Fernández

and Lutz 2010; Pradhan 2010). In the present study, 12

influencing factors, such LULC, distance to road, eleva-

tion, slope, topographic wetness index, stream power

index, sediment transport index, curvature, topographic

roughness index, curvature and aspect were selected. The

likelihood of flooding decreases with the increases of ele-

vation. Elevations for the study area were ranged from 18

to 69 m, which remained in line with the flood occurrence

(Fig. 5a). The ground surface, which is possessed by the

curvature. The range of curvature value between 1.0 and

2.0 was considered as sensitive to flooding (Hudson and

Kesel 2000). Curvature map, which was produced by using

the DEM ranged from 0.32–0.82 (Fig. 5b). An aspect map

was generated and classified into 9 categories: (0–22.5),

(22.5–67.5), (67.5–112.5), (112.5–157.5), (157.5–202.5),

(202.5–247.5), (247.5–292.5), (292.5–337.5), (337.5–360)

(Fig. 5c). Due to the regional flood risk assessment, ground

slope is a momentous element, which can increase runoff

(Tehrany et al. 2015b). In this study, slope was ranged from

0 to 5.75 (Fig. 5d). TRI ascertained the confrontment pose

on the water flow by the underlying surface (Straatsma and

Baptist 2008). Teesta river located around the lowest TRI,

which caused speedy water flow due to the hilly slopes

around the river.

Consequently, the flooding has been happening in those

regions, where the lowest TRI is observed. The highest

value of TRI was 27 in this study (Fig. 6a). Flood plain is

strongly correlated with the high TWI values. In Fig. 6b,

the range of TWI value was −1.54 to 7.72 (Fig. 6c). Flood

occurrence is affected by the STI. The highest value of STI

in this study was 140.64 (Fig. 6d).

In flood occurrences, LULC played a vital role, vege-

tated land turning into bare land resulting in the increase of

runoff (Garcı́a-Ruiz et al. 2008). In this study, LULC was

classified into 6 categories, such as vegetation, bare land,

built up, sand bar, agricultural land, and water body

(Fig. 7a). For the flood discharge, river flow played a key

role as a main track and caused flooding in those areas,

which are near to the river (Opperman et al. 2009). Fig-

ure 7b showed that the highest distance from the river of

this region was 1503 m. For accounting surplus precipita-

tion and infiltration, soil data played a significant role

(Johnson 2000). In this study, 12 soil types were found,

such as water, usterts, aquults, humults, udults, ustults,

aqualfs, ustalfs, ochrepts, aquepts, aquents, and psamments

(Fig. 7c). For flood assessment, the amount of rainfall

played a key role (Kay et al. 2006). The highest rainfall in

this region was 550.411 mm (Fig. 7d).

4.3 Flood susceptibility mapping

Four novel ensemble machine learning algorithms, such as

Bagging with Reptree, Bagging with M5P, Bagging with

Random forest, and Bagging with Random tree methods

Fig. 4 Determination of

influence of flood conditioning

parameters by using information

gain ratio
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were developed and employed to predict the flood sus-

ceptibility areas in the Teesta flood region area.

We classified flood susceptibility zones into five classes,

such as very low, low, moderate, high and very high

(Fig. 8). 1071.71 km2 area, largest area to the total area of

the basin, was predicted as a very high susceptible zone

and the moderate susceptibility zone was covered by the

smallest area (395.49 km2). These were predicted by

Bagging with Random forest (Fig. 9c). Bagging with

REPtree predicted 1045.72 km2 and 521.65 km2 area as

very high and high flood susceptible zones (Fig. 9a).

1060.811 and 831.89 km2 area as very high flood suscep-

tible zone were predicted by Bagging with M5P and

Bagging with random tree algorithms, while the very low

flood susceptibility zone was covered by 951.82 km2

1038.31 km2 respectively (Fig. 9b, d).

4.4 Evaluation and comparisons of flood
susceptibility models

Four individual models (BgReptree, BgM5P, BgRf

andBgRt) were used to implement and develop flood sus-

ceptibility maps in this study. The AUC and significant

level of the ROC curve (Fig. 10) were used to assess the

evaluation of these models. The values of 4 individual

models were statistically significant (significant level, 0.00)

in this study. Figure 10 showed that BgM5P model (AUC=

0.945) was the best performed model followed by BgRf

Fig. 5 Influencing factors of

flood occurrence a elevation,

b curvature, c aspect and

d slope
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(AUC=0.912), BgReptree (AUC=0.876) and BgRt (AUC

=0.844). Several measures of confusion matrix were cal-

culated for validating the flood susceptible models

(Table 1). Higher sensitivity (86.25), specificity (8.75),

Youden index J (0.75), predicted positive (88.46%) and

negative values (86.59%), and optimal criterion ([0.214)

were calculated for the BgM5P based FSM model

(Table 1). Based on the all values of different measures of

confusion matrix, it could be stated that BgM5P algorithm

selected as the representative for flood susceptible mod-

elling in the present study area, followed by the BgRf,

BgReptree, and BgRt.

Wilcoxon signed rank tests were employed to evaluate

the performance of the four models. The p value for the

BgM5P-BgReptree, BgRf- BgReptree, BgRt- BgM5P,

BgRt- BgRf placed at a 95% significant level (\0.05),

whereas the values of Z exceeded the critical level (−1.96

and ?1.96). The performance of the four models for flood

susceptibility mapping was significantly different from

each other. The Freidman test did not compare the differ-

ences between individual models and the Chi square value

was 30.015 found by Friedman test (Table 2). The average

ranking values of the Freidman tests for the four hybrid

models (BgReptree, BgM5P, BgRf and BgRt) were 2.63,

2.12 2.38, 2.87, respectively. Therefore, the Wilcoxon

Signed-Rank test was used for exploring the differences

between individual models. The z value and p value of

Wilcoxon signed rank test of Bg-Rt vs Bg-Reptree, Bg-Rf

vs Bg-M5P were not exceed the critical level (−1.96 and ?

1.96) and statistically significant (\0.05) (Table 3). This

indicated that the performance of these two models were

not significantly different.

Kruskal–Wallis test revealed that all the four ensemble

models were significant at 0.01% level (Table 4) for flood

Fig. 6 Influencing factors of

flood occurrence a TRI, b TWI,

c SPI and d STI
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susceptibility modeling. Among four models, BgM5P

performed best, because it achieved the lowest mean rank

(44.90) in lower part and highest mean rank (116.10) in

upper part and produced highest Chi Square value (94.462)

compared to other three models. The order of the other

models based on their mean rank and Chi Square values

were Bg-Rf[Bg-Reptree[Bg-Rt. Following the men-

tioned three statistical tests, Kolmogorov–Smirnov test also

explored that four Bagging with ensemble models provided

significant (p\0.01) results of flood susceptibility model-

ing (Table 5). Most extreme differences of four models

ranged from 0.500 to 0.750. z values produced by this test

ranged from 3.162 to 4.743. BgM5P again outperformed in

this test. Ranks of other models were Bg-Rf[Bg-Reptree[
Bg-Rt.

5 Discussion

Extreme flood has been becoming a common miserable

scene in the northern part of Bangladesh every year due to

its geological structure and inappropriate law enforcement.

It is a paramount need to take a prediction and mitigation

approach in order to reduce property damage and loss of

life. Flood modeling and flood susceptibility mapping are

the essential approach to assess risk. Four Bagging

ensemble models were used to make flood susceptibility

maps in this study. In general, the flooding susceptible

models cut off the exposed areas considering several flood

conditioning parameters (Hong et al. 2018). Tehrany et al.

(2015a) suggested that floods usually are affected by the

particular area’s morphological, geological, topographical

and hydrological conditions. Therefore, choosing the

appropriate flood-conditioning parameters is the most

Fig. 7 Influencing factors of

flood occurrence a land use land

cover, b distance to river, c soil

types and d rainfall
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important and essential part in modeling of flood suscep-

tibility. The IGR method, utilized in the present work,

evaluated the influence of the selected parameters for

flooding. Arora et al. (2019) pointed out that the impor-

tance of the flood conditioning factors varies from one,

location to another. This is because the nature and cause of

the flooding are not always similar at different locations

(Rubinato et al. 2019). The result of IGR showed that the

most effective factors were LULC, while, TRI, SPI, STI,

TWI and curvature were evaluated as least effective con-

ditioning factors and aspect had no effect in the flood

susceptibility mapping in this study. This is because the

study area lies in the lower part of Teesta River basin

having a flat topography with low elevation, low slope

angle and moderate drainage density (Mondal and Islam

2017). These findings are quite similar with the findings of

Khosravi et al. (2018), Khosravi et al. (2016a, b), Khosravi

et al. (2019). They reported that the most important flood

conditioning factor was altitude and less important factors

were rainfall, SPI and curvature. Similar findings were

found by Tehrany et al. (2015), Moghadam et al. (2018),

Termeh et al. (2018), Chapi et al. (2017).

Li et al. (2012) reported that in the low elevated areas

(areas having elevation lower than 300 m) the likelihood of

flood occurrence was high which demonstrate that the

study area of this study is very vulnerable to the suscep-

tibility of flood occurrence as the elevation of this study

area is low enough (69 m). Hong et al. (2017) also reported

the similar kind of results in their study.. The curvature

range found in this study was 0.82–0.32. Hudson and Kesel

(2000) stated that the range of curvature value between 1.0

and 2.0 had the probability of flooding. Almost similar

Fig. 8 Flood susceptibility

mapping using a bagging with

Reptree, b bagging with M5P,

c bagging with random forest,

d bagging with random tree
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results were obtained by Cao et al. (2016), Chapi et al.

(2017) and Khosravi et al. (2016a, b) in their studies. The

aspect was ranged between 337.5 and 360 and the IGR

value was 0.00. Therefore, present study excluded aspect

for flood susceptibility modelling following Rahman et al.

2019. Khosravi et al. (2016a, b) also reported the similar

results in their study. The slope angle found in this study

ranges from 0 to 5.75° which determines the water velocity

and Fernandez and Lutz (2010) described it as a vital

parameter of causing flood. Rahmati and Pourghasemi

(2017), Tehrany et al. (2014) reported that the probability

of flood occurrence would be higher, if slope angle was

lower. The findings of this study demonstrated that the

study region had high likelihood of flood occurrence due to

the lower slope angle.

The morphological factor of TRI is highly related with

flooding (Werner et al. 2005). Findings showed that the

study area had the highest value of TRI (27) which could

cause flooding and this finding is similar to the findings of

Tehrany and Kumar (2018). STI which is considering

another flood occurrence factor defines the movement of

the sediments in water bodies (Mojaddadi et al. 2017). The

highest STI value explored in this study was 14.64. Almost

similar result of STI found in the work of Tehrany and

Kumar (2018). SPI and TWI are two important hydrolog-

ical factors responsible for the spatial variation of flooding.

The TWI values ranged from 1.54 to 7.72 in this study.

Topographical effects are quantified by the TWI (Lee et al.

2017). The LULC, distance to river, soil type and rainfall

were the remarkable flood conditioning factors in this

study. The findings of these parameters matched with the

findings of Tehrany and Kumar (2018), Brath et al. (2006).

Azareh et al. (2019) revealed that soil texture, land use,

elevation and frequently occurring heavy rain storms were

the most influential factors of flood in Iran which is anal-

ogous to this study. Hosseini et al. (2020) found that ele-

vation (similar to this study); drainage density; vegetation

and distance were the influential factors of flash flood in

Iran. Five flood susceptible zones were predicted by

BgReptree, BgM5P, BgRf and BgRt. High and very high

flood susceptibility zones were covered by 20–29% areas

of the total area of Teesta basin. Janizadeh et al. (2019)

reported that 26.1% and 12.9% of area predicted as very

high susceptibility according to QDA and ADT model

Fig. 9 Area coverage of

predicted flood susceptible

models by a bagging with

Reptree, b bagging with M5P,

c bagging with random forest,

d bagging with random tree
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respectively. According to fuzzy WofE-LR; WofE-RF and

fuzzy WofE-SVM model, very high susceptibility area was

10.41%, 15.89%, and 17.65% in China, respectively (Hong

et al. 2017). In their study, Choubin et al. (2018) reported

that 80.6 km2 and 10.1 km2 area were, respectively, pre-

dicted as low and very high flood susceptibility classes

revealed by using the MDA model. Pham et al. (2019)

explored that very low, low, moderate, high, and very high

susceptibility classes were covered by approximately 26%,

34%, 20%, 12%, and 8% area of the total land area,

respectively, predicted by RSSFT model. Bui et al. (2019),

Fig. 10 Validation of flood

susceptible models by using

RoC curve

Table 1 Confusion matrix estimated for all flood susceptible models

Algorithms Sensitivity Specificity ROC Youden Index

J
Positive predictive

value

Negative predictive

value

Optimal

criterion
Std.

error

p value

BgReptree 86.25 78.75 0.03 \0.0001 0.65 80.23 85.14 [0.112

BgM5P 86.25 88.75 0.016 \0.0001 0.75 88.46 86.59 [0.214

BgRf 90 80 0.024 \0.0001 0.7 81.82 88.89 [0.074

BgRt 82.5 67.5 0.029 \0.0001 0.5 71.74 79.41 [0.279

Table 2 Friedman test for all flood susceptible models

Models Mean rank Chi square Significance

BgReptree 2.63 30.015 0.000

BgM5P 2.12

BgRf 2.38

BgRt 2.87
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Shahabi et al. (2020), Chen et al. (2019) reported that 15–

24% area was predicted as high flood susceptible zone.

Similar findings as this study were found by Tsakiri et al.

(2018), Tehrany et al. (2019a, b), Ma et al. (2019), Cost-

ache et al. (2019). Therefore, it can be stated that the

findings of the present study are highly correlated with the

findings of previous literatures. These findings can be used

as the basic foundation for flood management in the present

study area.

To evaluate the model performance, several previous

studies used the AUC values of the ROC curve (Bui et al.

2018; Choubin et al. 2018; Khosravi et al. 2019). The AUC

values of the BgM5P and BgRf used in this study were

0.945 and 0.912, respectively. Bui et al. 2018 reported that

the ANFIS-ICA (AUC=0.947) model performed better by

comparing with the Bagging-LMT (AUC=0.940), BLR

(AUC=0.936), LMT (AUC=0.934), ANFIS-FA (AUC=

0.917), LR (AUC=0.885) and RF (AUC=0.806) models.

Choubin et al. (2018) used AUC for validation of the

flooding susceptible models and considered the flood sus-

ceptible models as valid because of achieving the higher

AUC values, such as ensemble model (AUC=0.91), fol-

lowed by CART (AUC=0.83), SVM (AUC=0.88), MDA

(AUC=0.89) models. Hosseini et al. (2020) used

GLMBoost based Random forest and BayesGLM algo-

rithms for flood modeling and revealed high performance

accuracy of both the algorithms for modeling flood.

Khosravi et al. (2019) found that the NBT had the highest

predictive accuracy than the VIKOR (AUC=0.965),

TOPSIS (AUC=0.968), SAW (AUC=0.97), NB (AUC=

0.979) models. Hong et al. (2020) developed and applied

the ensemble of bagging-LogitBoost alternating decision

tree (LADT) and forest by penalizing attributes (FPA) for

modelling the landslide susceptibility maps and reported

Table 3 Result of Wilcoxon

signed-rank test for comparing

the flood susceptible models

Pairwise comparison Positive Negative z value p value Significance

BgM5P vsBgReptree 52 108 −5.050 0.000 Yes

BgRfvsBgReptree 78 82 −4.114 0.000 Yes

BgRtvsBgReptree 89 71 − .308 0.758 Yes

BgRfvs BgM5P 88 72 .000 1.000 No

BgRtvs BgM5P 105 55 −4.056 0.000 Yes

BgRtvsBgRf 105 55 −4.448 0.000 Yes

Table 4 Results of Kruskal–

Wallis test for comparing the

flood predictive models

Models OBJECTID N Mean rank Chi square value df Sig.

BgReptree 0 80 50.44 67.361 1 0.000 (p\0.01)

1 80 110.56

Total 160

BgM5P 0 80 44.9 94.462 1 0.000 (p\0.01)

1 80 116.1

Total 160

BgRf 0 80 47.53 81.045 1 0.000 (p\0.01)

1 80 113.48

Total 160

BgRt 0 80 52.98 56.469 1 0.000 (p\0.01)

1 80 108.03

Total 160

Kruskal–Wallis test

Grouping variable: OBJECTID

Table 5 Results of

Kolmogorov–Smirnov test for

all flood susceptible models

Models Most extreme differences (absolute) Kolmogorov–Smirnov z value Sig. (two tailed)

BgReptree 0.650 4.111 0.000

BgM5P 0.750 4.743 0.000

BgRf 0.700 4.427 0.000

BgRt 0.500 3.162 0.000
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that bagging-LADT model achieved the very high accuracy

for both training and testing datasets. Therefore, it could be

stated that the ensemble of bagging could be improved

significantly for any kinds of natural hazard prediction.

Dodangeh et al. (2020) used BT-GAM, BT-MARS and

BT-BRT ensemble algorithms for flood susceptibility pre-

diction and BT-GAM (AUC=0.98) found as the outper-

formed model followed by BT-MARS (AUC=0.97) and

BT-BRT (AUC=0.95). Therefore, we can state that the

algorithms which were used in the present study had higher

accuracy. For assessing the performance of the models,

Wilcoxon signed-rank test, Friedman test, Kruskal–Wallis

test and Kolmogorov–Smirnov test were also conducted in

this study. The findings of these tests are identical with the

work of Bui et al. (2018), Khosravi et al. (2018), Hong

et al. (2017). Kruskal–Wallis test and Kolmogorov–Smir-

nov test found that all the four ensemble models performed

significantly (p\0.01) for flood susceptibility mapping of

Teesta River basin, Bangladesh.

6 Conclusion

In the present study, we developed and utilized four

ensembles of bagging algorithms, such as bagging with

REPtree, bagging with RF, bagging with M5P, and bagging

with RT for the first time for modelling the flood suscep-

tibility mapping in the Teesta River basin, Bangladesh

(Northern). A total of 413 flooding points with twelve

parameters, such as elevation, slope, curvature, aspect, SPI,

TWI, STI, LULC, rainfall, distance to the river, TWI, and

soil types, which affect the flooding, were selected for

modelling. The importance of flood condition parameters

were determined by employing the IGR technique. Based

on the feature selection outcomes, aspect was not consid-

ered for flood susceptible modelling. The ROC curve was

used to validate the flood susceptible models. The Fried-

man test, Wilcoxon signed-rank test, Kruskal–Wallis test

and Kolmogorov–Smirnov test were employed to explore

the differences of performance of the flood susceptible

models with each other. The highest flexibility and pre-

dictive ability were obtained in case of the bagging with

M5P algorithm, followed by bagging with RF, bagging

with REPtree and bagging with RT. The application of the

ROC Curve in the outcome validation phase depicted that

bagging with the M5P algorithm had the highest efficiency

in comparison with other models (AUC=0.945). However,

the performance of all models for the mapping of flood

susceptibility were excellent. The findings of the study

stated that bagging with M5P and bagging with RF are one

most capable tool for flood susceptible modelling. As an

optimal model, a total area of 30% was identified as highly

vulnerable to flooding. However, the major drawback is

that the application of these models did not consider the

changes over time for some factors, including SPI and

LULC, because these are dynamic. Based on the avail-

ability of temporal datasets of these factors, future research

on the temporal scale will be performed. Furthermore,

these models can be upgraded by performing the sensitivity

analysis concerning various influential factors. Bagging

with the M5P algorithm, in comparison with the other

models, had advantages, including fewer candidate

parameters, high optimization capability, and fast conver-

gence for preparing flash flood susceptibility maps.

In recent times, the strategies for the management of

flood are considered as the top priority, particularly in

Bangladesh, where flash floods occur every year. However,

other basins and regions have not yet been appraised for

flood mitigation plans. Hence, the present study was taken

place in the Teesta River basin using some advanced

machine learning algorithms, which will provide valuable

information concerning methods to be adopted for sup-

porting the local authorities and other parties in developing

efficient alleviation strategies of flash flood and land-use

policy planning not only Bangladesh but also other basins

of the world.
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Kuriqi A, Koçileri G, Ardiçlioğlu M (2020) Potential of Meyer-Peter

and Müller approach for estimation of bed-load sediment

transport underdifferent hydraulic regimes. Model Earth Syst

Environ 6(1):129–137

Lee S, Kim JC, Jung HS, Lee MJ, Lee S (2017) Spatial prediction of

flood susceptibility using random-forest and boosted-tree models

in Seoul metropolitan city, Korea. Geomat Nat Hazards Risk 8

(2):1185–1203

Lei X, Chen W, Avand M, Janizadeh S, Kariminejad N, Shahabi H,

Costache R, Shahabi H, Shirzadi A, Mosavi A (2020) GIS-based

machine learning algorithms for gully erosion susceptibility

mapping in a semi-arid region of Iran. Remote Sens 12(15):2478

Li LT, Xu ZX, Pang B, Liu L (2012) Flood risk zoning in China.

ShuiliXuebao (J Hydraul Eng) 43(1):22–30

Li X, Cummings AR, Alruzuq A, Matyas CJ, Amanambu AC (2019)

Combining water fraction and dem-based methods to create a

coastal flood map: a case study of hurricane harvey. ISPRS Int J

Geo-Information 8(5):231

Lindman HR (1974) Analysis of variance in complex experimental

designs. WH Freeman & Co, New York

Maaks DLG, Starr NB, Brady MA, Cpnp-PC PR, Blosser CG,

Gaylord NM et al. (2020). Burns’ Pediatric Primary CareE-

Book. Elsevier

Ma M, Liu C, Zhao G, Xie H, Jia P, Wang D, Wang H, Hong Y

(2019) Flash flood risk analysis based on machine learning

techniques in the Yunnan Province, China. Remote Sens 11

(2):170

Ma J, Ding Y, Cheng JC, Jiang F, Tan Y, Gan VJ, Wan Z (2020)

Identification of high impact factors of air quality on a national

scale using big data and machine learning techniques. J Cleaner

Prod 244:118955

Mandal SP, Chakarbarty A (2016) Flash flood risk assessment for

upper Teesta River basin: using the hydrological modeling

system (HEC-HMS) software. Model Earth Syst Environ 2:9

Mohanty MP, Vittal H, Yadav V, Ghosh S, Rao GS, Karmakar S

(2020) A new bivariate risk classifier for flood management

considering hazard and socio-economic dimensions. J Environ

Manag 255:109733

Mojaddadi H, Pradhan B, Nampak H, Ahmad N, Ghazali AHB (2017)

Ensemble machine-learning-based geospatial approach for flood

risk assessment using multi-sensor remote-sensing data and GIS.

Geomat Nat Hazards Risk 8(2):1080–1102

Mondal MSH, Islam MS (2017) Chronological trends in maximum

and minimum water flows of the Teesta River, Bangladesh, and
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Assessing the knock-on effects of flooding on road transporta-

tion. J Environ Manag 244:48–60

Quinlan J (1992) Learning with continuous classes. In: Adams A,

Sterling L (eds) ‘AI’92: proceedings of the 5th Australian joint

conference on artificial intelligence, pp 343–348

Quinlan JR (1987) Generating production rules from decision trees.

In: ijcai, vol 87, pp 304–307

Rahman M, Ningsheng C, Islam MM, Dewan A, Iqbal J, Washakh

RMA, Shufeng T (2019) Flood susceptibility assessment in

Bangladesh using machine learning and multi-criteria decision

analysis. Earth Syst Environ 3:585–601

Rahmati O, Pourghasemi HR (2017) Identification of critical flood

prone areas in data-scarce and ungauged regions: a comparison

of three data mining models. Water Resour Manag 31(5):1473–

1487

Rahmati O, Pourghasemi HR, Zeinivand H (2016) Flood susceptibil-

ity mapping using frequency ratio and weights-of-evidence

models in the Golastan Province, Iran. Geocarto Int 31(1):42–70

Roy J, Saha S, Arabameri A, Blaschke T, Bui DT (2019) A novel

ensemble approach for landslide susceptibility mapping (LSM)

in Darjeeling and Kalimpong Districts, West Bengal, India.

Remote Sens 11:2866

Rubinato M, Nicholas A, Peng Y, Zhang JM, Lashford C, Cai YP, Lin

PZ, Tait S (2019) Urban and river flooding: comparison of flood

risk management approaches in the UK and China and an

assessment of future knowledge needs. Water Sci Eng 12

(4):274–283

2298 Stochastic Environmental Research and Risk Assessment (2020) 34:2277–2300

123

https://doi.org/10.1016/j.jhydrol.2019.124536
https://doi.org/10.1016/j.jhydrol.2019.124536


Saha S, Reza AHMS, Roy MK (2019) Hydrochemical evaluation of

groundwater quality of the Tista floodplain, Rangpur, Bangla-

desh. Appl Water Sci 9:198

Sahana M, Rehman S, Sajjad H, Hong H (2020) Exploring

effectiveness of frequency ratio and support vector machine

models in storm surge flood susceptibility assessment: A study of

Sundarban Biosphere Reserve, India. Catena, 189:104450

Sarhadi A, Soltani S, Modarres R (2012) Probabilistic flood

inundation mapping of ungauged rivers: linking GIS techniques

and frequency analysis. J Hydrol 458–459:68–86

Shafizadeh-Moghadam H, Valavi R, Shahabi H, Chapi K, Shirzadi A

(2018) Novel forecasting approaches using combination of

machine learning and statistical models for flood susceptibility

mapping. J Environ Manag 217:1–11

Shahabi H, Shirzadi A, Ghaderi K, Omidvar E, Al-Ansari N, Clague

JJ, Geertsema M, Khosravi K, Amini A, Bahrami S, Rahmati O

(2020) Flood detection and susceptibility mapping using sen-

tinel-1 remote sensing data and a machine learning approach:

hybrid intelligence of bagging ensemble based on K-nearest

neighbor classifier. Remote Sens 12(2):266

Shit PK, Pourghasemi HR, Bhunia GS (2020) Gully erosion

susceptibility mapping based on bayesian weight of evidence.

In: Shit P, Pourghasemi H, Bhunia G (eds) Gully erosion studies

from India and surrounding regions. Advances in science,

technology & innovation (IEREK interdisciplinary series for

sustainable development). Springer, Cham

Siahkamari S, Haghizadeh A, Zeinivand H, Tahmasebipour N,

Rahmati O (2018) Spatial prediction of flood-susceptible areas

using frequency ratio and maximum entropy models. Geocarto

Int 33(9):927–941

Sihag P, Karimi SM, Angelaki A (2019) Random forest, M5P and

regression analysis to estimate the field unsaturated hydraulic

conductivity. Appl Water Sci 9(5):129

Smirnov N (1939) On the estimation of the discrepancy between

empirical curves of distribution for two independent samples

(Russian). Bull Moscow Univ 2:3–16

Straatsma MW, Baptist MJ (2008) Floodplain roughness parameter-

ization using airborne laser scanning and spectral remote

sensing. Remote Sens Environ 112(3):1062–1080

Suchmacher M, Geller M (2012) Practical biostatistics: a friendly

step-by-step approach for evidence-based medicine. Academic

Press, Cambridge

Tang X, Li J, Liu M, Liu W, Hong H (2020) Flood susceptibility

assessment based on a novel random Naı̈ve Bayes method: a

comparison between different factor discretization methods.

CATENA 190:104536

Talha S, Maanan M, Atika H, Rhinane H (2019) Prediction of flash

flood susceptibility using fuzzy analytical hierarchy process

(Fahp)algorithms and Gis: a study case of guelmim region In

Southwestern of Morocco. Int Arch Photogrammetry, Remote

SensSpat Inf Sci 42(4/W19)

Talukdar S, Pal S (2017) Impact of dam on inundation regime of flood

plain wetland of punarbhaba river basin of barind tract of Indo-

Bangladesh. Int Soil Water Conserv Res 5(2):109–121

Talukdar S, Pal S (2019) Effects of damming on the hydrological

regime of Punarbhaba river basin wetlands. Ecol Eng 135:61–74
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