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Abstract
Axially symmetric processes on spheres, for which the second-order dependency structure may substantially vary with

shifts in latitude, are a prominent alternative to model the spatial uncertainty of natural variables located over large portions

of the Earth. In this paper, we focus on Karhunen–Loève expansions of axially symmetric Gaussian processes. First, we

investigate a parametric family of Karhunen–Loève coefficients that allows for versatile spatial covariance functions. The

isotropy as well as the longitudinal independence can be obtained as limit cases of our proposal. Second, we introduce a

strategy to render any longitudinally reversible process irreversible, which means that its covariance function could admit

certain types of asymmetries along longitudes. Then, finitely truncated Karhunen–Loève expansions are used to approx-

imate axially symmetric processes. For such approximations, bounds for the L2-error are provided. Numerical experiments

are conducted to illustrate our findings.

Keywords Associated Legendre polynomials � Covariance functions � Isotropy � Great-circle distance � Longitudinally

independent � Longitudinally reversible � Spherical harmonics

1 Introduction

Stochastic processes on spheres provide a valuable math-

ematical framework to capture the spatial uncertainty of

geophysical processes located over large portions of the

Earth (Marinucci and Peccati 2011). Global data are typi-

cally characterized by dissimilar behaviors in different

parts of the world, which can be attributed to diverse fac-

tors, including wind directions and teleconnections. As a

result, the search for sophisticated models for globally

dependent data has attracted growing interest from statis-

ticians in recent decades. We refer the reader to Jeong et al.

(2017) and Porcu et al. (2018) for thorough reviews about

this topic.

The assumption of isotropy, commonly used in spatial

data analysis, implies that the statistical properties of the

process do not vary for different points on the surface of a

sphere. The literature on isotropic processes is substantial.

For instance, the design of parametric families of covari-

ance functions has been addressed by Gneiting (2013),

Guinness and Fuentes (2016), Peron et al. (2018) and

Alegria et al. (2018). Lang and Schwab (2015), Hansen

et al. (2015) and Clarke et al. (2018) discussed the regu-

larity properties of Gaussian processes on spheres and

hyperspheres. Computationally efficient simulation algo-

rithms have been proposed by Creasey and Lang (2018),

Cuevas et al. (2020), Lantuéjoul et al. (2019), Emery et al.

(2019a), Emery and Porcu (2019) and Alegrı́a et al. (2020).

Although isotropy considerably simplifies the modeling of

processes on spheres, it is generally a questionable

assumption, as it does not allow for spatially varying

dependencies (Stein 2007).

In recent years, there has been renewed interest in a

more flexible class of processes, referred to as axially

symmetric processes (Jones 1963), for which the spatial

dependency is stationary with respect to longitude but may

substantially change with shifts in latitude. While Hitc-

zenko and Stein (2012), Huang et al. (2012) and Bissiri

et al. (2020) studied several theoretical aspects of axially
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symmetric processes, Vanlengenberg et al. (2019) and

Emery et al. (2019b) paid particular attention to the for-

mulation of fast and efficient simulation algorithms. Other

authors, including Stein (2007), Jun and Stein (2008),

Castruccio and Genton (2014), Castruccio (2016), and

Porcu et al. (2019), have illustrated the relevance of axially

symmetric processes in environmental and climatological

applications.

The Karhunen–Loève expansion in terms of spherical

harmonic functions is a convenient mathematical frame-

work to analyze Gaussian processes on spheres (Jones

1963; Marinucci and Peccati 2011). In the axially sym-

metric scenario, Karhunen–Loève expansions have

received little attention, with the works of Stein (2007),

where axially symmetric models are fitted to total column

ozone data, and Hitczenko and Stein (2012), who con-

centrated on models based on differential operators, being

notable exceptions. This paper is devoted to the study of

axially symmetric Gaussian processes through their Kar-

hunen–Loève expansions. The main contributions of this

work are listed below:

1. We investigate a parametric family of Karhunen–

Loève coefficients that allows for flexible second-order

dependency structures. Our proposal permits us to

gradually go from processes that are constant along the

parallels of latitude (longitudinal independence) to

processes whose finite-dimensional distributions are

invariant under spatial rotations (isotropy).

2. We propose a general and simple strategy to render any

longitudinally reversible model irreversible, i.e.; our

approach allows covariance functions to be built with

certain types of asymmetries along longitudes.

3. We focus on the approximation of axially symmetric

processes through finitely truncated Karhunen–Loève

expansions. We provide a theoretical bound for the L2-

error associated with this approximation. Such an

approximation suggests a natural simulation method,

which is examined through numerical experiments.

The article is organized as follows. Section 2 provides

background material on axially symmetric processes and

their Karhunen–Loève expansions. Section 3 contains the

main results of this work. Specifically, we propose a

parametric family of Karhunen–Loève coefficients that

connects the isotropic case and the case of longitudinal

independence. We present a strategy for building longitu-

dinally irreversible processes. The bounds for the L2-error

of truncated Karhunen–Loève expansions are derived as

well. In Sect. 4, our findings are illustrated through

numerical experiments. Section 5 concludes the paper with

a discussion.

2 Preliminaries

2.1 Spherical harmonic functions

The aim of this section is to introduce preliminary material

about spherical harmonic functions. We denote the latitude

and longitude coordinates of a spatial point on S2 ¼ fx 2
R3 : kxk ¼ 1g by L 2 ½0; p� and ‘ 2 ½0; 2pÞ, respectively.

For two locations on S2, with coordinates ðL1; ‘1Þ and

ðL2; ‘2Þ, the great circle distance between them is given by

dGC L1; L2;D‘ð Þ

¼ 2 arcsin sin2 L1 � L2

2

� �
þ sin L1 sin L2 sin2 D‘

2

� �� �1=2
( )

;

where D‘ ¼ ‘1 � ‘2. This metric represents the length of

the shortest arc joining two spherical locations, so it is

always true that dGC L1; L2;D‘ð Þ 2 ½0; p�.
Spherical harmonic functions, denoted by YnmðL; ‘Þ, for

n 2 N0 and m 2 f� n; . . .; ng, form an orthogonal basis of

the Hilbert space of complex-valued square integrable

functions on S2. When n 2 N0 and m 2 f0; . . .; ng, we

have

YnmðL; ‘Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p
ðn� mÞ!
ðnþ mÞ!

s
Pnmðcos LÞ expðım‘Þ;

for ðL; ‘Þ 2 ½0; p� � ½0; 2pÞ, where Pnm is the associated

Legendre polynomial (Abramowitz and Stegun 1964) and

ı 2 C is the complex unit. For n 2 N and

m 2 f� n; . . .;�1g, spherical harmonic functions are

instead given by

YnmðL; ‘Þ ¼ ð� 1ÞmYn�mðL; ‘Þ;

where c denotes the complex conjugate of c. The addition

theorem is a mathematical identity of great importance

when dealing with spherical harmonic functions (see, e.g.,

Marinucci and Peccati 2011), which states that

Pn cos dGC L1; L2;D‘ð Þð Þ

¼ 4p
2nþ 1

Xn
m¼�n

YnmðL1; ‘1ÞYnmðL2; ‘2Þ;

or equivalently,

Pn cos dGC L1; L2;D‘ð Þð Þ ¼ Pnðcos L1ÞPnðcos L2Þ

þ 2
Xn
m¼1

ðn� mÞ!
ðnþ mÞ! cosðmD‘ÞPnmðcos L1ÞPnmðcos L2Þ;

ð2:1Þ

with Pn ¼ Pn0 standing for the Legendre polynomial of

degree n (Abramowitz and Stegun 1964). A more com-

prehensive discussion on spherical harmonic functions and
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Fourier analysis on S2 can be found in Marinucci and

Peccati (2011).

2.2 Axially symmetric processes

A zero-mean real-valued Gaussian process, ZðL; ‘Þ, which

is indexed by latitude L 2 ½0; p� and longitude ‘ 2 ½0; 2pÞ,
with finite second-order moments, defined on a probability

space ðX;F ;PÞ, is referred to as an axially symmetric

process (Jones 1963; Stein 2007) if its covariance function

can be written as

covfZðL1; ‘1Þ; ZðL2; ‘2Þg ¼ CðL1; L2;D‘Þ; ð2:2Þ

for some function C : ½0; p�2 � ½� 2p; 2p� ! R. The

covariance function of an axially symmetric process is

stationary with respect to longitude and may have hetero-

geneous behaviours along latitudes. Two important par-

ticular cases are discussed.

Isotropy When the covariance function of the

process is a function of locations

ðL1; ‘1Þ and ðL2; ‘2Þ only through their

great-circle distance, dGC L1; L2;D‘ð Þ,
the process is called isotropic. It is

clear that (2.2) includes an isotropic

structure as a special case. The finite-

dimensional distributions of isotropic

Gaussian processes are invariant under

the group of rotations on S2

(Marinucci and Peccati 2011).

Longitudinal

independence

Another limit scenario of axial

symmetry is the longitudinal

independence presented by Emery

et al. (2019b), which means that

CðL1; L2;D‘Þ in (2.2) does not depend

on D‘. Emery et al. (2019b) showed

that longitudinally independent

processes are constant along the

parallels of latitude and argued that

they can be useful in structural

geology and geotechnics.

The presence or absence of longitudinal symmetry in the

covariance function (2.2) provides a classification for axi-

ally symmetric processes. Following Stein (2007), an axi-

ally symmetric process is called longitudinally reversible if

CðL1; L2;D‘Þ ¼ CðL1; L2;�D‘Þ;

for every ðL1; L2;D‘Þ 2 ½0; p�2 � ½� 2p; 2p�. However, in

general, C need not be symmetric in D‘, in which case the

process is said to be longitudinally irreversible.

2.3 Karhunen–Loève expansions of axially
symmetric processes

An approach developed by Jones (1963) states that axially

symmetric Gaussian processes on S2 admit Karhunen–

Loève expansions in terms of spherical harmonic functions.

Consider the expansion

ZðL; ‘Þ ¼
X1
n¼0

Xn
m¼�n

cnmYnmðL; ‘Þ; ð2:3Þ

where cnm are zero-mean Gaussian random variables. The

convergence in (2.3) holds in the L2 sense (the same

comment applies for similar series throughout the manu-

script). To obtain a real-valued process, the condition

cnm ¼ ð� 1Þmcn�m must be imposed, where in particular we

have that cn0 is a real-valued random variable. Under this

symmetry condition and the explicit expressions for

spherical harmonic functions, it is evident (2.3) reduces to

ZðL; ‘Þ ¼
X1
n¼0

an0
ePn0ðcos LÞ

þ 2
X1
n¼1

Xn
m¼1

anm cosðm‘Þ þ bnm sinðm‘Þf g ePnmðcos LÞ;

ð2:4Þ

where anm and bnm are zero-mean Gaussian random vari-

ables, representing real and imaginary parts of cnm,

respectively, and

ePnm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p
ðn� mÞ!
ðnþ mÞ!

s
Pnm:

To ensure that ZðL; ‘Þ is axially symmetric, the (bi)

sequences of coefficients, fanmg and fbnmg, must be

uncorrelated in the index m. Specifically, Jones (1963)

considered the following conditions:

(C1) covfan0; an00g ¼ covfbn0; bn00g ¼ f0ðn; n0Þ, for all

n; n0 � 0.

(C2) covfanm; an0m0 g ¼ covfbnm; bn0m0 g ¼ dm
0

m fmðn; n0Þ=2,

for all n; n0 �m, with m[ 0.

(C3) covfanm; bn0m0 g ¼ � covfbnm; an0m0 g ¼ dm
0

m gmðn; n0Þ
=2, for all n; n0 �m, with m[ 0.

Here, dm
0

m denotes the Kronecker delta, fmðn; n0Þ captures

the covariance function of each individual sequence, and

gmðn; n0Þ characterizes the cross-covariance function

between these sequences. Following Jones (1963), the

cross-covariance function satisfies the identity

gmðn; n0Þ ¼ � gmðn0; nÞ, and so gmðn; nÞ ¼ 0. Defining

Stochastic Environmental Research and Risk Assessment (2020) 34:1953–1965 1955
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tm ¼ ðan1m; an2m; . . .; bn1m; bn2m; . . .Þ
>;

for integers n1; n2; . . . being greater than or equal to m, we

observe that the covariance matrix of tm can be written as

Cm ¼
Fm Gm

G>
m Fm;

� �
; ð2:5Þ

where Fm and Gm are matrices with entries fmðni; njÞ and

gmðni; njÞ, respectively. Hence, Fm is a positive semidefi-

nite matrix, whereas Gm is an antisymmetric matrix, in

such a way that the block matrix (2.5) is always positive

semidefinite. The covariance function of ZðL; ‘Þ, taking

into account conditions (C1)–(C3), is given by

CðL1; L2;D‘Þ ¼
X1
n;n0¼0

f0ðn; n0Þ ePn0ðcos L1Þ ePn00ðcos L2Þ

þ 2
X1
m¼1

X1
n;n0¼m

ffmðn; n0Þ cosðmD‘Þ

þ gmðn; n0Þ sinðmD‘Þg ePnmðcosL1Þ ePn0mðcos L2Þ;
ð2:6Þ

where the summability condition

(C4)
P1

n;n0¼0 f0ðn; n0Þ ePn0ðcos LÞ ePn00ðcos LÞþ
2
P1

m¼1

P1
n;n0¼m fmðn; n0Þ ePnmðcos LÞ ePn0mðcos LÞ

\1;

for all L 2 ½0; p�, ensures that ZðL; ‘Þ is a well-defined

second-order process. Note that a zero-mean axially sym-

metric Gaussian process is completely characterized by

fmðn; n0Þ and gmðn; n0Þ.
Before concluding this section, the following comments

are provided.

• When fmðn; n0Þ ¼ dn
0

n nn, for some sequence fnn : n 2
N0g of nonnegative real numbers, and gmðn; n0Þ is

identically equal to zero, we obtain an isotropic process.

In this special case, the addition theorem for spherical

harmonic functions implies that

CðL1; L2;D‘Þ ¼
X1
n¼0

nnð2nþ 1Þ
4p

Pn cos dGC L1; L2;D‘ð Þð Þ;

ð2:7Þ

where the condition for finite variance is

X1
n¼0

nnð2nþ 1Þ\1: ð2:8Þ

Condition (2.8) together with the inequality jPnðtÞj � 1,

for jtj � 1, imply the uniform convergence of (2.7) and

ensure its continuity (this is a consequence of Weier-

strass M-test). Equation (2.7) is the characterization of

any continuous covariance function associated with an

isotropic process on S2 (Schoenberg 1942).

• Suppose now that the coefficients in (2.6) vanish for

m[ 0; then, the covariance function has a longitudi-

nally independent structure because under this choice,

we eliminate the terms depending on D‘.
• When gmðn; n0Þ is different from zero, we obtain a

longitudinally irreversible process. Thus, the function

gmðn; n0Þ is responsible for the asymmetry of the

covariance function along longitudes.

3 Main results

3.1 A bridge between isotropy and longitudinal
independence

In this section, inspired by the work of Emery et al.

(2019b), we describe how to obtain a unified representation

of the limit cases, isotropy and longitudinal independence,

by means of a parametric family of coefficients fmðn; n0Þ.
The antisymmetric part gmðn; n0Þ will be analyzed in the

next subsection, so for the moment we assume that it is

identically equal to zero.

Consider the covariance function (2.6) with coefficients

of the form

fmðn; n0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
nnnn0

p
qðn� n0Þkm; ð3:1Þ

where fnn : n 2 N0g is a nonnegative sequence, q is a

stationary correlation function, and fkm : m 2 N0g is a

nonnegative and bounded sequence. For every fixed

m 2 N0, (3.1) is clearly a positive semidefinite function.

We restrict attention to the following limit cases:

• Suppose first that km ¼ 1, for all m 2 N0. Thus, as the

range of q decreases to zero, fmðn; n0Þ goes to dn
0

n nn,
converging to the isotropic case.

• Longitudinal independence arises when k0 [ 0 and

km ¼ 0 for every m� 1, regardless of the choice of q.

There exist various ways to construct a sequence fkm :

m 2 N0g that unifies both cases. For instance, the sequence

could be taken as km ¼ 1½0;a�ðmÞ, where a 2 N0 is a

parameter and 1A denotes the indicator function of

A. While a ¼ 0 represents longitudinal independence, a !
1 corresponds to isotropy (provided that q is a Kronecker

delta). Another interesting alternative is km ¼ ð1 þ cm2Þ�1
,

where c� 0 is a continuous parameter. Here, c ¼ 0 and

c ! 1 correspond to isotropy and longitudinal indepen-

dence, respectively. Any isotropic model introduced in the

literature can be obtained as a special case of (3.1). In this

work, we prefer the sparse structure km ¼ 1½0;a�ðmÞ because

it provides computational advantages. Series expansions

with a large proportion of zeros have also been applied by

Stein (2007) in the study of total column ozone.

1956 Stochastic Environmental Research and Risk Assessment (2020) 34:1953–1965
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To ensure that (3.1) yields a well-defined second-order

Gaussian process, condition (C4) must be verified. The

following proposition shows that under adequate assump-

tions of the asymptotic decay of fnn : n 2 N0g, condition

(C4) holds.

Proposition 3.1 Consider fmðn; n0Þ as in (3.1), and suppose

that, for n[ n0,

nn � rn�b;

for some constants r[ 0 and n0 2 N. Then, condition (C4)

holds if either

(i) b[ 4; or

(ii) b[ 2 and qðhÞ ¼ dh0.

Proof Using the inequality (Siegel 1955)

max
x2½� 1;1�

j ePnmðxÞj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
;

we observe that a sufficient condition to obtain a process

with finite variance is

X1
n;n0¼0

f0ðn; n0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þð2n0 þ 1Þ

p

þ 2
X1
m¼1

X1
n;n0¼m

fmðn; n0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þð2n0 þ 1Þ

p
\1:

We only analyze the terms with m[ n0 (the other terms,

for fixed m� n0, can be studied in a similar manner). Since

qðhÞ� 1, for all h, and fkm : m 2 N0g is a nonnegative and

bounded sequence, we have

X1
m[ n0

X1
n;n0¼m

fmðn; n0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þð2n0 þ 1Þ

p

�
X1
m[ n0

km
X1
n;n0¼m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nnnn0 ð2nþ 1Þð2n0 þ 1Þ

p

� sup
m

km

� � X1
m[ n0

X1
n¼m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nnð2nþ 1Þ

p !2

� sup
m

km

� �
3r
X1
m[ n0

X1
n¼m

n�ðb�1Þ=2

 !2

:

ð3:2Þ

Employing an integral bound, one has

X1
n¼m

n�ðb�1Þ=2 �m�ðb�1Þ=2

þ
Z 1

m

x�ðb�1Þ=2dx ¼ m�ðb�1Þ=2 þ 2m�ðb�3Þ=2

b� 3
;

for all b[ 3. Thus, we have that

m 7!
X1
n¼m

n�ðb�1Þ=2

 !2

decays algebraically with order b� 3. We conclude that

(3.2) is finite provided that b[ 4. The first part of the proof

is completed.

Suppose now that qðhÞ ¼ dh0. To ensure (C4), we must

verify that

X1
n¼0

nnk0
ePn0ðcos LÞ ePn0ðcos LÞ

þ 2
X1
m¼1

km
X1
n¼m

nn ePnmðcos LÞ ePnmðcos LÞ\1:

Again, using that fkm : m 2 N0g is bounded, it is sufficient

to show that

X1
n¼0

nn ePn0ðcos LÞ ePn0ðcos LÞ

þ 2
X1
m¼1

X1
n¼m

nn ePnmðcos LÞ ePnmðcos LÞ\1;

which is equivalent to

X1
n¼0

nn ePn0ðcos LÞ ePn0ðcos LÞ þ 2
Xn
m¼1

ePnmðcos LÞ ePnmðcos LÞ
( )

\1:

From the addition theorem for spherical harmonic func-

tions, we obtain the simplified condition (2.8), which is true

provided that b[ 2. h

The second part of Proposition 3.1, i.e., when qðhÞ ¼ dh0,

matches previous literature related to the isotropic case

(Schoenberg 1942; Lang and Schwab 2015). However, it is

slightly more general because we are not necessarily

assuming that fkm : m 2 N0g is a sequence of ones.

3.2 Modeling the antisymmetric part

We illustrate a simple approach to construct the antisym-

metric coefficients gmðn; n0Þ from the coefficients fmðn; n0Þ.

Proposition 3.2 For each m 2 N, consider a covariance

function fmðn; n0Þ of type (3.1). Thus, for all j 2 R, the

cross-covariance function

gmðn; n0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
nnnn0

p
km

4
qðn� n0 � jÞ � qðn� n0 þ jÞf g;

is an admissible model, in the sense that (2.5) is a positive

semidefinite matrix.

Proof Consider two independent sequences of zero-mean

random variables, feanmg and febnmg, with a covariance

Stochastic Environmental Research and Risk Assessment (2020) 34:1953–1965 1957

123



structure of type (3.1). For a nonnegative integer q, new

sequences of coefficients are defined

anm ¼ 1ffiffiffi
2

p eanm þ
ffiffiffiffiffiffiffiffiffiffiffiffi
nn

nðnþqÞ

s
ebðnþqÞm

 !
;

bnm ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
nn

nðnþqÞ

s
eaðnþqÞm � ebnm

 !
:

8>>>>><
>>>>>:

ð3:3Þ

Hence, covfanm; an0m0 g and covfbnm; bn0m0 g are given by

(3.1), that is, the marginal covariance functions are pre-

served by transformation (3.3). In addition, the cross-co-

variance function between the sequences fanmg and fbnmg
is given by

covfanm; bn0m0 g ¼ � covfbnm; an0m0 g

¼ dm
0

m

ffiffiffiffiffiffiffiffiffiffi
nnnn0

p
km

4
qðn� n0 � qÞ � qðn� n0 þ qÞf g:

ð3:4Þ

Following a similar scheme with continuous indices, we

conclude that the cross-covariance function (3.4) is also

valid if we replace the integer q with a parameter j that

varies continuously on R. More precisely, we consider

random variables eanm and ebnm with indices n and m on the

real line. The sequences anm and bnm are constructed as in

(3.3) (with j instead of q) by restricting these indices to be

nonnegative integers. The obtained sequences will have the

desired cross-covariance function with j 2 R. h

The antisymmetric part is identically equal to zero when

j ¼ 0, recovering a longitudinally reversible process. In

Sect. 4.2, we will illustrate the impact of gmðn; n0Þ on the

covariance function as well as on the realizations of the

process.

3.3 Finite Karhunen–Loève expansion and its L2-
error

This section focuses on the approximation of axially

symmetric Gaussian processes through a finite linear

combination of spherical harmonic functions. This

approximation can be performed by means of a truncated

version of (2.4), where truncation is taken with respect to

index n. Specifically, given a large N 2 N, we consider

bZNðL; ‘Þ ¼
XN
n¼0

an0
ePn0ðcos LÞ

þ 2
XN
m¼1

XN
n¼m

anm cosðm‘Þ þ bnm sinðm‘Þf g ePnmðcos LÞ:

ð3:5Þ

Note that (3.5) is a truncation of (2.4), where we have

simply modified the order of summation for convenience.

This approximation technique was developed for isotropic

spatial processes by Lang and Schwab (2015) and for

spatially isotropic space-time processes by Clarke et al.

(2018).

The purpose now is to derive a bound for the L2-error in

terms of N. The following proposition characterizes the

accuracy of the approximation.

Proposition 3.3 Let N 2 N and consider the stochastic

processes ZðL; ‘Þ and bZNðL; ‘Þ in (2.4) and (3.5), respec-

tively, under conditions (C1)–(C4). Then,

kZ � bZNk2
L2ðX�S2Þ ¼

X1
n¼Nþ1

f0ðn; nÞ þ 2
X1

n¼Nþ1

Xn
m¼1

fmðn; nÞ:

ð3:6Þ

Proof First, observe that Z � bZN can be split into three

parts, namely, Z � bZN ¼ T1 þ 2T2 þ 2T3, where

Tj ¼
X

ðn;mÞ2Dj

anm cosðm‘Þ þ bnm sinðm‘Þf g ePnmðcos LÞ;

with D1 ¼ fðn;mÞ : n[N and m ¼ 0g, D2 ¼ fðn;mÞ :
n[ N and 1�m�Ng, and D3 ¼ fðn;mÞ : n�m

and m[Ng. According to conditions (C1)–(C4), Ti and

Tj are uncorrelated processes for all i 6¼ j since the sets Di

and Dj are disjoint sets in the index m. Thus,

kZ � bZNk2
L2ðX�S2Þ ¼ kT1k2

L2ðX�S2Þ þ 4kT2k2
L2ðX�S2Þ

þ 4kT3k2
L2ðX�S2Þ:

The decomposition of Z � bZN into three mutually uncor-

related processes is a key part of this proof. Using inte-

gration in terms of spherical coordinates, one has

kT1k2
L2ðX�S2Þ ¼

X1
n;n0¼Nþ1

Efan0an00g

�
Z 2p

0

Z p

0

ePn0ðcos LÞ ePn00ðcos LÞ sin L dL d‘:

Recall that Efan0an00g ¼ f0ðn; n0Þ. Additionally, using the

orthogonality properties of the associated Legendre poly-

nomials (see Abramowitz and Stegun 1964),

Z p

0

ePnmðcos LÞ ePn0mðcos LÞ sin L dL ¼ dn
0

n

2p
; ð3:7Þ

we conclude that kT1k2
L2ðX�S2Þ ¼

P1
n¼Nþ1 f0ðn; nÞ: In

addition, we have
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kT2k2
L2ðX�S2Þ ¼

Z 2p

0

XN
m;m0¼1

X1
n;n0¼Nþ1

E anm cosðm‘Þ þ bnm sinðm‘Þf gð

� an0m0 cosðm0‘Þ þ bn0m0 sinðm0‘Þf gÞ

�
Z p

0

ePnmðcos LÞ ePn0m0 ðcos LÞ sin L dL d‘:

Using conditions (C1)–(C4) and the orthogonality proper-

ties of the trigonometric Fourier basis on ½0; 2p�, we have

kT2k2
L2ðX�S2Þ ¼

XN
m¼1

X1
n;n0¼Nþ1

pfmðn; n0Þ

�
Z p

0

ePnmðcos LÞ ePn0mðcos LÞ sinL dL:

Thus, (3.7) implies that

kT2k2
L2ðX�S2Þ ¼

XN
m¼1

X1
n¼Nþ1

fmðn; nÞ
2

:

Using similar arguments, we obtain

kT3k2
L2ðX�S2Þ ¼

X1
m¼Nþ1

X1
n¼m

fmðn; nÞ
2

:

We conclude the proof by noting that

kT2k2
L2ðX�S2Þ þ kT3k2

L2ðX�S2Þ ¼
X1

n¼Nþ1

Xn
m¼1

fmðn; nÞ
2

:

h

A remarkable feature of Proposition 3.3 is that the L2-

error is completely characterized by the decay of the

diagonal elements of the matrices Cm in (2.5). Therefore,

the antisymmetric part does not influence this quantity. In

the isotropic case, we obtain a corollary result previously

reported by Lang and Schwab (2015).

Corollary 3.1 Let N 2 N and consider ZðL; ‘Þ and

bZNðL; ‘Þ in (2.4) and (3.5), respectively, under conditions

(C1)–(C4). In addition, suppose that fmðn; n0Þ ¼ dn
0

n nn.
Then,

kZ � bZNk2
L2ðX�S2Þ ¼

X1
n¼Nþ1

ð2nþ 1Þnn: ð3:8Þ

Since Proposition 3.3 gives the L2-error for every axially

symmetric process, we derive an explicit bound when the

coefficients fmðn; n0Þ are of the form (3.1). Such a result is

reported in the following corollary.

Corollary 3.2 Let N 2 N and consider ZðL; ‘Þ and

bZNðL; ‘Þ in (2.4) and (3.5), respectively, under conditions

(C1)–(C4) with fmðn; n0Þ of the form (3.1). Suppose that

there exist constants b[ 2, r[ 0 and n0 2 N such that

nn � rn�b, for all n[ n0. Thus,

kZ � bZNk2
L2ðX�S2Þ � cN�ðb�2Þ; ð3:9Þ

for some constant c[ 0 that depends on r; b; n0 and that is

independent of N.

Corollary 3.2 above extends Proposition 5.2 in Lang and

Schwab (2015), from the isotropic to the axially symmetric

case. When fmðn; n0Þ is of the form (3.1), we have

X1
n¼Nþ1

f0ðn; nÞ þ 2
X1

n¼Nþ1

Xn
m¼1

fmðn; nÞ� sup
m

km

� � X1
n¼Nþ1

ð2nþ 1Þnn:

Thus, the proof of Corollary 3.2 follows the same argu-

ments given by Lang and Schwab (2015). Additionally, it

is worth noting that the same rate of convergence obtained

in Corollary 3.2 can be derived in terms of Lp norms for

every p[ 0. The proof of this assertion is completely

analogous to the proofs reported in Lang and Schwab

(2015) and Cleanthous et al. (2020), so it is omitted.

4 Numerical experiments

4.1 Simulating axially symmetric Gaussian
processes

The approximation methodology developed in the previous

section suggests a natural simulation algorithm based on a

weighted sum of finitely many spherical harmonic functions.

We simulate longitudinally reversible Gaussian processes

(antisymmetric coefficients are explored in the next sub-

section). Consider the following particular cases of (3.1).

Example 1 Let qðhÞ ¼ dh0 and consider a sequence fnn :
n 2 N0g of Legendre–Matérn type (Guinness and Fuentes

2016), that is,

nn ¼ ðs2 þ n2Þ�m�1=2;

where s and m are positive parameters. The sequence fkm :

m 2 N0g is taken as km ¼ 1½0;a�ðmÞ. When a ! 1, the

covariance function of the process converges to the

Legendre–Matérn model of Guinness and Fuentes (2016),

which is associated with an isotropic process for which s
and m regulate the range and mean square differentiability

of the sample paths, respectively (see Guinness and

Fuentes 2016 for details). Recall that a longitudinally

independent structure is obtained with a ¼ 0. Using

Proposition 3.1, it is straightforward to verify that the

summability condition (C4) holds when m[ 1=2. In Fig. 1,

we report simulated realizations with m ¼ 1:5, s2 ¼ 100

and different values for a. We set N ¼ 200 and a grid of
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longitudes and latitudes of size 500 � 500. As a increases,

the features of the realizations gradually change from

longitudinal independence to isotropy.

Example 2 The multiquadric model (see, e.g., Gneiting

2013) is characterized by the sequence

nn ¼ ð1 � dÞdn; n 2 N0; ð4:1Þ

where 0\d\1 is a parameter. The correlation function q
and the sequence fkm : m 2 N0g are taken as in Exam-

ple 1. Here, the summability condition (C4) is visibly

satisfied for any 0\d\1. Figure 2 displays simulated

realizations with d ¼ 0:7 and different values for a. We

again consider N ¼ 200 and a grid of longitudes and lati-

tudes of size 500 � 500. The effect of a on the realizations

is similar to that reported in Example 1.

Example 3 Unlike the previous examples, where q has

been taken as a Kronecker delta, we now explore the effect

of a different correlation on the realizations of the process.

We consider the multiquadric coefficients (4.1), km ¼
1½0;a�ðmÞ and an exponential correlation qðhÞ ¼
expð�/jhjÞ, where / is a positive parameter. Figure 3

reports realizations with d ¼ 0:7, a ¼ 2, and different

values for /. Again, we set N ¼ 200 and a spatial grid of

size 500 � 500. As / increases, the range of the correlation

decreases, and we obtain a behavior that is similar to that

reported in Example 2, as expected. However, as /
decreases, we observe realizations that are characterized by

strong correlations along latitudes.

Fig. 1 Simulated processes on a grid of longitudes and latitudes of

size 500 � 500, with N ¼ 200, and the covariance function described

in Example 1, with m ¼ 1:5, s2 ¼ 100, and different values for a. The

same random seed has been used for each realization

Fig. 2 Simulated processes on a grid of longitudes and latitudes of

size 500 � 500, with N ¼ 200, and the covariance function described

in Example 2, with d ¼ 0:7, and different values for a. The same

random seed has been used for each realization

Fig. 3 Simulated processes on a grid of longitudes and latitudes of

size 500 � 500, with N ¼ 200, and the covariance function described

in Example 3, with d ¼ 0:7, a ¼ 2, and different values for /. The

same random seed has been used for each realization
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For additional examples of sequences fnn : n 2 N0g, we

refer the reader to Ma (2012), Terdik (2015) and Leonenko

et al. (2018).

4.2 Illustrating the effect of the antisymmetric
part

The aim of this section is to show the impact of gmðn; n0Þ on

the covariance function of an axially symmetric process.

Figure 4 shows the contour plots of the covariance function

given in Example 1 after adding the antisymmetric part

(3.4) in terms of L2 and D‘ for different fixed values of

L1 ¼ p=3; p=2; 2p=3. We set s2 ¼ 100, m ¼ 1:5 and a ¼ 8.

Each panel considers D‘ varying in the range ½� 0:2; 0:2�,
whereas L2 varies in the range ½L1 � 0:2;L1 þ 0:2�. The

first row corresponds to a longitudinally reversible process

(j ¼ 0), whereas the second and third rows depict the

distortion produced by gmðn; n0Þ with j ¼ 1 and j ¼ � 1,
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Fig. 4 Contour plots of the covariance function given in Example 11

after adding the antisymmetric part (3.4) in terms of L2 and D‘ for

fixed values of L1 ¼ p=3; p=2; 2p=3 (from left to right). Here,

s2 ¼ 100, m ¼ 1:5 and a ¼ 8. The first row corresponds to a

longitudinally reversible process (j ¼ 0), whereas the second and

third rows correspond to longitudinally irreversible processes with

j ¼ 1 and j ¼ � 1, respectively. Light blue colors indicate lower

values
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respectively. We detect a rotation of the contour plots when

the parameter j is different from zero. The orientation of

this rotation depends on the sign of j.

Figure 5 shows the contour plots of this covariance

function in terms of L1 and L2 for different fixed values of

D‘ ¼ � 0:2; 0; 0:2, with s2 ¼ 100, m ¼ 1:5, a ¼ 8, and

j ¼ 1. Each panel considers ðL1; L2Þ 2 ½1:2; 1:9�2. It is

clear that the antisymmetric part produces a shift in the

contour plots. The covariance function differs for D‘ ¼
� 0:2 and D‘ ¼ 0:2, illustrating the longitudinal irre-

versibility generated by our proposal. This asymmetry

could also be observed in the second and third rows of

Fig. 4 because the graphs do not reflect across the hori-

zontal line given by D‘ ¼ 0.

In Fig. 6, we report the realizations from the covariance

function given in Example 1 after adding gmðn; n0Þ as in

(3.4). Specifically, we consider ða; jÞ 2 f2; 4g � f0; 1g.

The inclusion of the antisymmetric part generates pro-

cesses with a stronger anisotropy in the northwest direction

than in other directions. This behavior is consistent with

the contour plots previously reported.

4.3 Assessing the accuracy of the simulation
algorithm

We turn to a validation study of the quality of the simu-

lation algorithm. We first study how the algorithm repro-

duces the theoretical variogram structure. We simulate

1000 independent realizations over 1000 spatial locations,

considering the covariance function given in Example 1,

with m ¼ 1:5, s2 ¼ 100 and a ¼ 10. Then, the empirical

local variograms are obtained for fixed latitudes and

compared to the theoretical variograms. Figure 7 displays

the results for four distinct latitudes. Note that on average,

the empirical variograms match the theoretical models. The

variability of the empirical variograms increases as the

longitudinal lag increases, which is commonly observed in

practice (see, e.g., Cuevas et al. 2020). Additionally, for

latitudes close to the south pole, the variabilities of the

empirical variograms are more severe than those far from

the south pole.

We also verify the theoretical bound for the L2-error via

simulations. We consider the same setting as in the pre-

vious examples, i.e.; in particular we have that m ¼ 1:5,

which corresponds to a quadratic algebraic decay of the

error. The true process is taken as the Karhunen–Loève

expansion with N ¼ 1000, since for larger N, we do not

observe substantial variations. Then, we progressively
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Fig. 5 Contour plots of the covariance function given in Example 1 after adding the antisymmetric part (3.4) in terms of L1 and L2, for

D‘ ¼ � 0:2 (left), D‘ ¼ 0 (middle) and D‘ ¼ 0:2 (right). Here, s2 ¼ 100, m ¼ 1:5, a ¼ 8, and j ¼ 1. Light blue colors indicate lower values

Fig. 6 Simulated processes on a grid of longitudes and latitudes of

size 500 � 500, with N ¼ 200, and the covariance function in

Example 1 after adding the antisymmetric part (3.4). We set

m ¼ 1:5, s2 ¼ 100, and different values for a and j. The same

random seed has been used for each realization
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truncate the expansion at different values of N and look at

the decay of the error on a logarithmic scale. Following

Lang and Schwab (2015), instead of the L2-error in space,

we quantify a stronger error given by the maximum error

over all grid points. Figure 8 shows that, on average, we

obtain the expected convergence rate for 1000 independent

repetitions of this experiment. More precisely, the empiri-

cal convergence rate is given by N� 2:009, which is close to

the theoretical convergence rate.

5 Discussion

In this paper, we discuss several aspects related to Kar-

hunen–Loève expansions of axially symmetric Gaussian

processes. We illustrate how to obtain the limit cases,

isotropy and longitudinal independence, by means of an

adequate choice of the Karhunen–Loève coefficients. We

have also incorporated an antisymmetric coefficient, which

allows for the parametric regulation of longitudinal

reversibility. Bounds for the L2-error associated with a

truncated version of the Karhunen–Loève expansion have

been derived. This weighted sum of finitely many spherical

harmonic functions serves as a natural simulation strategy.

Simulation experiments are performed that show the

effectiveness of our proposal: (1) it reproduces the pre-

scribed second-order dependency, and (2) the empirical

convergence rate of the truncation error matches the the-

oretical one.

The investigation of more complex coefficients and their

impact on the attributes of the axially symmetric process is

an interesting topic that merits more attention. The

Fig. 7 Empirical variograms for 1000 independent simulations from

Example 1 versus theoretical variograms. Here, we consider four

distinct latitudes and the parameters m ¼ 1:5, s2 ¼ 100 and a ¼ 10.

For each panel, the red dashed line is the theoretical variogram, the

blue dotted line is the average empirical variogram, and the gray

zones show the empirical variogram envelopes based on the 1000

repetitions
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smoothness and Hölder continuity properties could be

explored in a similar fashion to the works of Lang and

Schwab (2015), Kerkyacharian et al. (2018) and Cleant-

hous et al. (2020). The simultaneous modeling of multiple

correlated spatial processes on spheres, each one having an

axially symmetric structure, is also a promising research

direction. The findings of Jun (2011), Alegrı́a et al. (2019)

and Emery et al. (2019b) might be useful here. Exploring

axially symmetric processes that evolve temporally is

another interesting topic.

Our findings are not limited to the simulation of axially

symmetric processes and may certainly be used for both the

modeling and prediction of global data. The search for

accurate and efficient methods to estimate the parameters

involved in our models is a challenging topic that we

expect to tackle in the future.
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