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Abstract
Data with spatial dependence are often modeled by geoestatistical tools. In spatial regression, the mean response is

described using explanatory variables with georeferenced data. This modeling frequently considers Gaussianity assuming

the response follows a symmetric distribution. However, when this assumption is not satisfied, it is useful to suppose

distributions with the same asymmetric behavior of the data. This is the case of the Birnbaum–Saunders (BS) distribution,

which has been considered in different areas and particularly in environmental sciences due to its theoretical arguments.

We propose a geostatistical model based on a new approach to quantile regression considering the BS distribution. Global

and local diagnostic analytics are derived for this model. The estimation of model parameters and its local influence are

conducted by the maximum likelihood method. Global influence is based on the Cook distance and it is compared to local

influence, in both cases to detect influential observations, whose detection and removal can modify the conclusions of a

study. We illustrate the proposed methodology applying it to environmental data, which shows this situation changing the

conclusions after removing potentially influential observations. A comparison with Gaussian spatial regression is

conducted.

Keywords Diagnostic techniques � Environmental data � Maximum likelihood method � R software � Spatial models

1 Introduction

The Birnbaum–Saunders (BS) distribution constantly arises

in the applied statistical literature. In the last decades, it has

been shown to be versatile and efficient in several fields of

science, being widely studied, due to its theoretical justi-

fication, its good properties and its close relation with the

Gaussian or normal model. The BS distribution is uni-

modal, with asymmetry to the right and support defined on

the positive real numbers, in addition to being indexed by

two parameters that control its shape and scale. The BS

distribution has its origins in physics and engineering,

being it derived to model a fatigue phenomenon related to

crack development in metallic objects; see Leiva (2019).

Recently, Budsaba et al. (2020) suggested a physical

model of this phenomenon which shows exactly how

Birnbaum and Saunders (1969) derived their distribution to

fit the model of a crack development. However, at the

present, the BS distribution has gained increasing popu-

larity in diverse areas including business (Leiva et al.

2014, 2016b; Saulo et al. 2019; Sánchez et al. 2020a),

industry (Huerta et al. 2019; Leiva et al. 2019), and med-

icine (Lemonte et al. 2015; Leao et al. 2018a, b), among

other areas. Nevertheless, outside the material fatigue

phenomenon where the BS distribution was originated, the

field where it has been widely applied is air pollution

(Ferreira et al. 2012; Saulo et al. 2013; Marchant et al.

2018, 2019; Cavieres et al. 2020) and natural phenomena

(Garcia-Papani et al. 2018a, b; Martinez et al. 2019; Car-

rasco et al. 2020), that is, in environmental sciences. The
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reason for this increasing applicability of the BS distribu-

tion in environmental sciences is because Leiva et al.

(2015) proposed a chemical-physical model which shows

how the derivation of Birnbaum and Saunders (1969) can

be adapted to fit environmental data. These applications

have been conducted by an interdisciplinary, international

group of researchers. Note also that the study of method-

ological and theoretical issues of the BS distribution

has received growing interest and a considerable amount of

work is available; see Leiva and Saunders (2015), Leiva

(2016), Aykroyd et al. (2018), Balakrishnan and Kundu

(2019), Dasilva et al. (2020) and references therein, which

summarize most of the works to the date.

Standard regression models describe the mean response

given values of the explanatory variables. Nevertheless, if

the response has an asymmetrical distribution, the mean is

not a suitable centrality measure to summarize the data.

Quantile regression was proposed by Koenker and Bassett

(1978), extending the median regression to the ordinary

quantiles by using the regression context. We propose to

model the median or other quantiles of the BS distribution

by regression. Considering a spatial component in the

modeling may improve the accuracy of an estimator of the

mean (or median); see Diggle and Ribeiro (2007). A first

idea of spatial quantile regression was suggested by Kostov

(2009). Trzpiot (2013) derived a spatial regression model

using the quantile function; see McMillen (2013) for some

variants of spatial quantile regressions. Garcia-Papani et al.

(2017, 2018a, b) introduced BS spatial models for the

mean, which need multivariate BS distributions; see, for

example, Kundu (2015), Lemonte et al. (2015), Sánchez

et al. (2015), Marchant et al. (2016a, b) and Garcia-Papani

et al. (2017, 2018a, b). BS quantile regression was intro-

duced by Sánchez et al. (2020a) and spatial BS quantile

regression by Sánchez et al. (2020b), but to the best of our

knowledge, global and local influence diagnostics for the

spatial BS quantile regression do not have been formulated

to the date.

Diagnostic analytics plays a relevant role in statistical

modeling, which can be divided into global and local

influence techniques. The Cook distance and residuals are

well-known and often used as measures of global influence

for detecting the model adequacy; see Krzanowski (1998)

and Leiva et al. (2016a). However, the local influence

technique is currently very popular, which allows us to

evaluate the local effect of perturbations on the estimates

of parameters and then to detect potentially influential

cases in different models; see, for example, Diaz-Garcia

et al. (2003), Santana et al. (2011), Garcia-Papani et al.

(2017), Tapia et al. (2019a, b), and Liu et al. (2020).

Detection and removal of potentially influential cases can

modify the conclusions of a study.

This research has as objective to derive a geostatistical

model based on Birnbaum–Saunders quantile regression

and its global and local influence diagnostics. We use a

new quantile parameterization to generate the model,

which permits us to consider a similar framework to gen-

eralized linear models, providing wide flexibility. A com-

parison with Gaussian spatial regression is performed, but

with other natural competing models, as gamma, lognormal

or Weibull, it is not possible because such models based on

our new parameterization are not available in the literature.

In Sect. 2, we present the original parameterization of

the multivariate BS distribution and a new parameteriza-

tion of it to model quantiles. Section 3 proposes the model

and provides estimation of its parameters based on the

maximum likelihood (ML) method. Then, in Sect. 4, we

derive global influence measures based on the Cook dis-

tance for detecting influential potentially observations.

Section 5 introduces the local influence technique for the

new model including two schemes of perturbation. Next,

we illustrate the proposed methodology in Sect. 6 consid-

ering an example related to environmental data. Some

conclusions and future works are given in Sect. 7. All the

numerical calculations were carried out with the aid of the

R software; see R-Team (2018). Mathematical details of

our results are provided in the Appendix.

2 The BS distribution and a new
parameterization

2.1 The BS distribution

A random variable T given by the stochastic represention

T ¼ TðZ; a; rÞ ¼ r aZ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aZ=2ð Þ2þ1

q

� �2

; ð1Þ

where Z �Nð0; 1Þ, follows a BS distribution of shape

(a[ 0) and scale (r[ 0) parameters. We use the notation

T �BSða; rÞ to indicate it.

Let the random vector V ¼ ðV1; . . .;VnÞ> 2 Rn follow

an n-variate normal distribution, which we denote as

V�Nnðl;CÞ, where l ¼ ðliÞ 2 Rn is a mean vector and

C ¼ ðqjkÞ 2 Rn�n is a variance-covariance matrix, with

rankðCÞ ¼ n. If l ¼ 0n�1, that is, the null vector with 0n�1

being an n� 1 vector of zeros, we use the notation /n and

Un for the n-variate normal density and distribution func-

tion, respectively. Then, T ¼ ðT1; . . .; TnÞ> 2 Rn
þ is an n�

1 random vector with n-variate BS distribution of param-

eters a ¼ ða1; . . .; anÞ> 2 Rn
þ, r ¼ ðr1; . . .; rnÞ> 2 Rn

þ, and

C 2 Rn�n, if Ti ¼ TðVi; ai; riÞ, for i ¼ 1; . . .; n, where the

T function, with V instead of Z, is given in (1) and

V ¼ ðV1; . . .;VnÞ> 2 Rn �Nnð0n�1;CÞ. Note from (1) that
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Z�Nð0; 1Þ and then C 2 Rn�n has its diagonal elements

equal to one. Hence, the variance-covariance matrix C is

also the correlation matrix of V, but not of T, although for

simplicity we denote the n-variate BS distribution as

T�BSnða; r;CÞ. The variance-covariance matrix of T is

expressed as

VarðTÞ ¼ 1

16
X� C� C� Nþ 4!ð Þ; ð2Þ

where X ¼ ðxijÞ, N ¼ ðnijÞ and ! ¼ ðtijÞ have elements

xij ¼ a2i a
2
j rirj, nij ¼ aiaj and tij ¼ Iðai; aj; qijÞ, respec-

tively, for i; j ¼ 1; . . .; n, and � is the Hadamard product;

see details in Marchant et al. (2016a) and Sánchez et al.

(2020b). Thus, the density and distribution function of T

are, respectively, given by

fTðt; a; r;CÞ ¼ /nðA;CÞ aðt; a; rÞ;
FTðt; a; r;CÞ ¼ UnðA;CÞ; t ¼ ðt1; . . .; tnÞ 2 Rn

þ;

where A ¼ Aðt; a; rÞ ¼ ðA1; . . .;AnÞ>; with

Aj ¼ ð1=ajÞð
ffiffiffiffiffiffiffiffiffi

tj=rj
q

�
ffiffiffiffiffiffiffiffiffi

rj=tj
q

Þ;

and aðt; a; rÞ ¼
Qn

j¼1 aðtj; aj; rjÞ; with

aðtj; aj; rjÞ ¼ ð1=ð2ajrjÞÞð
ffiffiffiffiffiffiffiffiffi

rj=tj
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrj=tjÞ3
q

Þ:

2.2 A new quantile parameterization of the BS
distribution

Let T ¼ ðT1; . . .;TnÞ�BSnða; r;CÞ and q 2 ð0; 1Þ be a

fixed value. Then, we have a new parameterization of the

n-variate BS distribution by the transformation expressed

as ða; r;CÞ7!ða;Q;CÞ, where Qi and ri are related by

Qi ¼
ri
4
c2a; ð3Þ

with ca ¼ aizq þ ða2i z2q þ 4Þ1=2, for the marginal distribu-

tion of Ti, Qi being the q-th quantile of the BSðai;riÞ
distribution (Sánchez et al. 2020a), for all i ¼ 1; . . .; n, and
zq being the q-th quantile of the standard normal distribu-

tion. This new parameterization of the n-variate BS dis-

tribution is denoted by T�BSnða;Q;CÞ, with density and

distribution function given, respectively, by

fTðt; a;Q;CÞ ¼ /nð ~A;CÞ ~aðt; a;QÞ;
FTðt; a;Q;CÞ ¼ Unð ~A;CÞ; t ¼ ðt1; . . .; tnÞ 2 Rn

þ;
ð4Þ

where ~A ¼ ð ~A1; . . .; ~AnÞ>, with

~Aj ¼
1

ajcaj

ffiffiffiffiffiffiffiffi

4Qj

tj

s

tjc2aj
4Qj

� 1

 !

;

~aðt; a;QÞ ¼
Y

n

j¼1

1

ajcaj
ffiffiffiffiffiffiffiffiffiffi

4Qjtj
p

c2aj
2
þ 2Qj

tj

 !

;

and caj being defined in (3).

2.3 A shape analysis of the BS distribution
parameterized by its quantiles

From Fig. 1, note that some shapes of the density expressed

in (4) and their corresponding level curves are shown, for

n ¼ 2, varying the parameters a (a)–(c) and Q ( d)–(f).

3 Formulation and estimation
of the geostatistical model

3.1 The BS spatial quantile regression model

To describe data dependent spatially, assume the stochastic

process T ¼ fTðsÞ; s 2 Dg defined on D 2 R2. We con-

sider that T is stationary and isotropic, and that for spatial

locations in si, with i ¼ 1; . . .; n, the quantile function of

the process may be formulated as

QðTðsiÞÞ ¼ QiðbÞ ¼ h�1ðx>i bÞ; i ¼ 1; . . .; n; ð5Þ

with h being a strictly monotone function of positive sup-

port and at least twice differentiable. Observe that x>i ¼
ð1; xi2; . . .; xipÞ are the values of p� 1 explanatory vari-

ables, with xij ¼ xjðsiÞ, for j ¼ 1; . . .; p� 1, that is, xij is the

value of the explanatory variable Xj at si. Here,

b ¼ ðb0; b1; . . .; bqÞ>, for q ¼ p� 1\n, corresponds to a

vector of regression coefficients to be estimated. In

addition,

ðTðs1Þ; . . .; TðsnÞÞ�BSnða1n�1;QðbÞ;CÞ; a[ 0; ð6Þ

Notice where a is a scalar shape parameter, 1n�1 is an n� 1

vector of ones, C is the n� n matrix defined in (4), and

QðbÞ> ¼ ðQ1ðbÞ; . . .;QnðbÞÞ, with QiðbÞ given in (5), for

i ¼ 1; . . .; n. From (2), note that the variance-covariance

matrix of the BS spatial quantile regression model can be

written as

VarðTÞ ¼ 4a2

c4a
ðQðbÞQðbÞ>Þ � ða2C� Cþ 4!Þ: ð7Þ

Notice that the variance-covariance matrix of the BS spa-

tial process stated in (7) depends on its quantile function.
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3.2 Modeling spatial dependence

Suppose that the spatial dependence is established by

means of the n� n spatial correlation matrix C, which is

symmetric, non-singular and positive definite. The struc-

ture of this matrix is described by the Matérn model

(Diggle and Ribeiro 2007) following an alternative

parameterization proposed by Stein (1999). Thus, the ele-

ments of the matrix C are given by

qij ¼
1; i ¼ j;

ud

2d�1CðdÞ h
d
ijKd hij u
� �

; i 6¼ j;

8

<

:

ð8Þ

where d[ 0 is a shape parameter; C is the usual gamma

function; hij is the Euclidean distance between the locations

si and sj, that is, hij ¼ jjsi � sjjj; u[ 0 is a parameter

known as the inverse spatial dependence radius (Zhang and

Wang 2010) and also related to a parameter named

microergodic by Stein (1999); and Kd is the modified

Bessel function of the third kind of order d; see Gradshteyn
and Ryzhik (2000). Note that the expression defined in (8)

can be written in matrix form as

C ¼ CðuÞ ¼ In þ
ud

2d�1CðdÞ J �Hd � Kd; ð9Þ

where In is the n� 1 identity matrix; J is a matrix with

diagonal elements equal to zero and all other elements are

ones; Hd ¼ ðhdijÞ and Kd ¼ ðKdðu hijÞÞ. Table 1 provides

some special members of the Matérn family.

 t1
0.5

1.0
1.5

2.0
2.5

 t2

0.5
1.0

1.5
2.0

2.5

 f

−6
−4

−2

0

2

4

(a)

 t1
0.5

1.0
1.5

2.0
2.5

 t2

0.5
1.0

1.5
2.0

2.5

 f

−4

−2

0

2

(b)

 t1
0.5

1.0
1.5

2.0
2.5

 t2

0.5
1.0

1.5
2.0

2.5

 f

−4
−2

0

2

4

(c)

 t1
0.5

1.0
1.5

2.0
2.5

 t2

0.5
1.0

1.5
2.0

2.5

 f

−10

0

10

20

30

(d)

 t1
0.5

1.0
1.5

2.0
2.5

 t2

0.5
1.0

1.5
2.0

2.5

 f

−6
−4
−2
0

2

4

6

(e)

 t1
0.5

1.0
1.5

2.0
2.5

 t2

0.5
1.0

1.5
2.0

2.5

 f

−3
−2

−1

0

1

(f)

Fig. 1 Bivariate BS density

plots for (a) ai ¼ 0:3,
(b) ai ¼ 0:7, (c) ai ¼ 1:3, with
Qi ¼ 1:0, and (d) Qi ¼ 0:3,
(e) Qi ¼ 0:7, (f) Qi ¼ 1:3, with
ai ¼ 1:0, for i ¼ 1; 2 and

q ¼ 0:9

Table 1 Special members of the Matérn correlation function

Shape parameter Spatial correlation Model

d ¼ 1=2 rðhÞ ¼ expð�huÞ Exponential

d ¼ 1 rðhÞ ¼ huKdðhuÞ Whittle

d ! 1 rðhÞ ¼ expð�ðhuÞ2Þ Gaussian
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3.3 Estimation of model parameters

For the spatial model formulated in (5), as usual, we con-

sider the shape parameter d of the Matérn model to be a

fixed value. Thus, the ðpþ 2Þ � 1 parameter vector of the

BS spatial quantile regression model to be estimated is

h ¼ ðb>;u; aÞ>, where b are the regression coefficients, u
is the spatial correlation parameter, and a is the shape

parameter of the BS distribution, which is assumed to be

constant but unknown in the BS spatial process. Therefore,

by using the observations t ¼ ðt1; . . .; tnÞ, the corresponding
BS spatial quantile regression parameter can be estimated

by the ML method with log-likelihood function for h

defined as

‘ðhÞ ¼ � n

2
logð2pÞ � 1

2
logðjCjÞ � 1

2
~A
>
C�1 ~Aþ logð~aÞ;

ð10Þ

where ~A ¼ ~Aðt; a1n�1;QÞ and ~a ¼ ~aðt; a1n�1;QÞ, with Q ¼
QðbÞ given from (6), and C ¼ CðuÞ given in (9). By taking

the derivative of (10), with respect to h, allows us to obtain

the ðpþ 2Þ � 1 score vector given by

_‘ðhÞ ¼ o‘ðhÞ
ob

� �>
;
o‘ðhÞ
ou

;
o‘ðhÞ
oa

� �>
 !>

¼ _‘b1 ; . . .;
_‘bp ;

_‘u; _‘a

� �>
;

where

_‘bj ¼ � ~A
>
C�1 o

~A

obj
þ o

obj
ðlogð~aÞÞ;

_‘u ¼ � 1

2
tr C�1 oC

ou

� �

þ 1

2
~A
>
C�1 oC

ou
C�1 ~A;

_‘a ¼ � ~A
>
C�1 o

~A

oa
þ o

oa
ðlogð~aÞÞ;

with o ~A=obj ¼ ðo ~Ak=objÞ and o ~A=oa ¼ ðo ~Ak=oaÞ, whose
elements are expressed as

o ~Ak

obj
¼ � 1

aca
ffiffiffiffiffiffiffiffiffi

tkQk

p tkc2a
4Qk

þ 1

� �

1

h0ðQkÞ
xkj;

o ~Ak

oa
¼

ffiffiffiffiffiffiffiffi

4Qk

tk

r

� 1

ðacaÞ2
ðca þ ac0aÞ

tkc2a
4Qk

� 1

� �

þ c0atk
2aQk

 !

;

o

obj
ðlogð~aÞÞ ¼

X

n

k¼1

� 1

2Qk
þ 4

tkc2a þ 4Qk

� �

1

h0ðQkÞ
xkj;

o

oa
ðlogð~aÞÞ ¼ � n

aca
ðca þ ac0aÞ þ

X

n

k¼1

2tkcac
0
a

tkc2a þ 4Qk
:

In addition, oC=ou ¼ ðoqij=ouÞ, with elements defined as

oqij
ou

¼
hdij

2d�1CðdÞ dud�1Kdðu hijÞ þ udK 0
dðu hijÞhij

� �

; i 6¼ j;

0; i ¼ j;

8

<

:

where K 0
dðuÞ ¼ dKdðuÞ=du. To estimate h, _‘ðhÞ ¼ 0ðpþ2Þ�1

must be solved. Note that this system does not have an

analytical solution. Then, bh must be obtained with iterative

procedures for non-linear systems; see Nocedal and Wright

(1999) and Lange (2001).

4 Global influence diagnostics

4.1 Likelihood distance

A global influence technique of case-deletion is based on

the likelihood distance (LD) and established as

LDiðhÞ ¼ 2ð‘ðbhÞ � ‘ðbhðiÞÞÞ; i ¼ 1; . . .; n; ð11Þ

where ‘ is the log-likelihood function, and bh; bhðiÞ are,

respectively, the ML estimates of h considering the full

data set and the data set without case i; see Cook et al.

(1988). The expression given in (11) measures the change

in the LD with estimated parameters when case i is deleted

and may be employed as global influence technique to

assess the potential influence of this case.

4.2 Cook distance

The Cook distance (CD) is other global influence technique

based on case deletion and an alternative to the measure

defined in (11). This has been generalized to several non-

normal models; see Desousa et al. (2018). The usual

expression for the CD is given by

CDiðhÞ ¼ ðbh � bhðiÞÞ>Mðbh � bhðiÞÞ; i ¼ 1; . . .; n; ð12Þ

where M is an appropriately chosen positive definite

matrix, which can be, for example, the inverse of the

asymptotic covariance matrix. Thus, a measure based on

the CD established in (12) is stated as

CD
ð1Þ
i ðhÞ ¼ ðbh � bhðiÞÞ>ð�€‘ðiÞðbhÞÞðbh � bhðiÞÞ; i ¼ 1; . . .; n;

ð13Þ

where

€‘ðiÞðhÞ ¼
o‘2ðiÞðhÞ
ohoh>

;

with ‘ðiÞ being the log-likelihood function obtained after

deleting case i. Note that

M ¼ ð� €‘ðiÞðbhÞÞ
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defined in (12) is the inverse of ð� €‘ðiÞðbhÞÞ�1
, which is an

estimate of the corresponding asymptotic covariancematrix.

If n is too large, the computation of €‘ðiÞðbhÞmay became hard

and, in this case, €‘ðbhÞ can be used instead of €‘ðiÞðbhÞ; see De
Bastiani et al. (2018). Then, an alternativemeasure of global

influence based on the CD expressed in (13) is given by

CD
ð2Þ
i ðhÞ ¼ ðbh � bhðiÞÞ>ð�€‘ðbhÞÞðbh � bhðiÞÞ; i ¼ 1; . . .; n:

ð14Þ

4.3 Generalized Cook distance

Other measure based on the CD defined in (14) uses the

first order approximation bh � bhðiÞ � €‘�1
ðiÞ ðbhÞ _‘ðiÞðbhÞ, which

considers a Taylor expansion around bh, until the second

order term, and the one-step-late Newton-Raphson esti-

mate. This third measure based on (14) is expressed as

CD
ð3Þ
i ðhÞ ¼

�

_‘ðiÞðbhÞ
�>� €‘ðiÞðbhÞ

��1� _‘ðiÞðbhÞ
�

; i ¼ 1; . . .; n;

ð15Þ

where

_‘ðiÞðbhÞ ¼
o‘ðiÞðhÞ
oh

:

Other alternative measures based on the CD similar to (15)

can be seen in Garcia-Papani et al. (2018b). In many cases,

CDiðhÞ is preferred to LDðbhðiÞÞ, because of its heavier

computational burden. A large value of CDðiÞðhÞ means

that case i is potentially influential. A definition of what is

large has been an unresolved aspect, but Cook et al. (1982)

established this depends on each problem upon study.

5 Local influence diagnostics

5.1 Local influence distance based on normal
curvature

The local influence technique examines the effect of small

perturbations in the data and/or the model assumptions on

the estimated parameters. Cook (1987) evaluated local

influence considering

LDðhxÞ ¼ 2ð‘ðbhÞ � ‘ðbhxÞÞ; ð16Þ

with bh and bhx being the ML estimates of h in the proposed

model and the model perturbed by x, respectively. Cook

(1987) analyzed the normal curvature of the influence

graph LDðhxÞ around the non-perturbation point x0 in the

direction of a unit vector d. Cook (1987) showed that this

curvature based on (16) takes the form

Cd ¼ 2jd>Bdj;

where

B ¼ �D> €‘ðbhÞ�1D; ð17Þ

with €‘ðbhÞ being the Hessian matrix, evaluated at h ¼ bh,
and

D ¼ o2‘ðh;xÞ
ohox>

ð18Þ

being the perturbation matrix, evaluated at h ¼ bh and

w ¼ w0. Specific details of the perturbationmatrix defined in

(18) are shown in the Appendix. Because the maximum

normal curvature Cdmax is reached at dmax, which is the

eigenvector associated with the largest absolute eigenvalue

of the matrix B, Cook (1987) stated that d ¼ dmax is an

important direction to pay attention. Thus, the plot of the i-th

element (in absolute value) of dmax versus the index i can

detect observations that are (in a local manner) potentially

influential on bh. The direction d ¼ ei, with ei being a basis

vector of Rn whose i-th coordinate is one and the others are

zero, corresponds to other relevant direction to analyze. For

such a direction, the normal curvature is given by

Ci ¼ 2jbiij; i ¼ 1; . . .; n;

where bii is the i-th element on the diagonal of the matrix B

indicated in (17). When considering case i, if

Ci [ 2
X

n

i¼1

Ci

n
¼ 2 �C; i ¼ 1; . . .; n;

then this case is potentially influential; see Lesaffre and

Verbeke (1998).

5.2 Local influence distance based on conformal
curvature

In addition to the normal curvature of Cook (1987), other

measures of local influence have been studied and

employed. Poon and Poon (1999) defined the conformal

curvature as

Bi ¼
Ci

traceðBÞ ; i ¼ 1; . . .; n; ð19Þ

which demands a similar computational burden to Ci. The

measure indicated in (19) is standard because it is invariant

under conformal reparameterizations. Hence, it is not dif-

ficult to establish a cut-off point for it. According to Poon

and Poon (1999), if for case i we obtain

Bi [ 2
X

n

i¼1

Bi

n
¼ 2 �B; i ¼ 1; . . .; n;
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where �B is the arithmetic mean of the basic conformal

curvatures, that is, of B1; . . .;Bn, then case i is potentially

influential. Another cut-off point implies to consider case i

as potentially influential if

Bi [ �Bþ 2SDðBÞ; i ¼ 1; . . .; n;

where SDðBÞ is the standard deviation (SD) of B1; . . .;Bn.

5.3 Perturbation scheme in the response

We assume the perturbation

TxðsÞ ¼ TðsÞ þ Ax;

where A is a symmetric, non-singular matrix and x ¼
ðx1; . . .;xnÞ 2 Rn is a perturbation vector. It is clear that

x0 ¼ 0n�1 is the non-perturbation vector. In this scheme,

the perturbed log-likelihood function is given by

‘ðh;xÞ ¼ � n

2
logð2pÞ � 1

2
logðjCjÞ � 1

2
~A
>
xC

�1 ~Ax þ logð~axÞ;

ð20Þ

where ~Ax ¼ ð ~A1ðxÞ; . . .; ~AnðxÞÞ> and ~ax ¼ ~aðtðxÞ; a;QÞ,
with

~AkðxÞ ¼ AðtkðxÞ; a;QkÞ; k ¼ 1; . . .; n:

Zhu et al. (2007) established that the perturbation x is

appropriate if and only if Gðh;x0Þ ¼ cIn, where c[ 0 and

Gðh;xÞ ¼ Eð _‘ðh;xÞ _‘>ðh;xÞÞ;

with _‘ðh;xÞ ¼ o‘ðh;xÞ=ox. Obtaining the matrix Gðh;x0Þ
can be a very difficult. In this paper, we assume that the

form of A to obtain an appropriate perturbation x is the

same obtained in Garcia-Papani et al. (2018b), that is,

A ¼ a
4
C1=2 � 1

a
C�1=2

� ��1

; ð21Þ

where C1=2 is the square root matrix of C, that is,

C1=2C1=2 ¼ C. For details of computations for this square

root matrix, see De Bastiani et al. (2015). Therefore, we

assume that an appropriate perturbation scheme for the

response is given by

TxðsÞ ¼ TðsÞ þ a
4
C1=2 � 1

a
C�1=2

� ��1

x:

5.4 Perturbation in a continuous explanatory
variable

Now, we perturb a continuous explanatory variable,

labelled as Xl namely, and the other explanatory variables

are not perturbed. Thus, we have

xl;xðsÞ ¼ xlðsÞ þAx; xj;xðsÞ ¼ xjðsÞ; j 6¼ l; j¼ 1; . . .;q;

where x 2 Rn and x0 ¼ 0n�1. Hence, in this scheme, the

perturbed log-likelihood function is given by

‘ðh;xÞ ¼ � n

2
logð2pÞ � 1

2
logðjCjÞ � 1

2
~A
>
xC

�1 ~Ax þ logð~axÞ;

ð22Þ

where ~Ax ¼ ð ~A1ðxÞ; . . .; ~AnðxÞÞ> and ~ax ¼ ~aðt; a;QðxÞÞ,
with ~AkðxÞ ¼ Aðtk; a;QkðxÞÞ, for k ¼ 1; n. Once again,

obtaining the matrix A for an appropriate perturbation in Xl

can be a hard work. As in the case of the response per-

turbation with A given in (21), we assume that the most

appropriate explanatory variable perturbation may be

expressed as

xt;xðsÞ ¼ xtðsÞ þ
a
4
C1=2 � 1

a
C�1=2

� ��1

x:

5.5 Other perturbations

In order to illustrate the methodology of perturbation

associated with the local influence technique, we consider

only perturbations in the response and in a continuous

explanatory variable. However, other schemes of pertur-

bation of the local influence technique can also be con-

sidered for the BS spatial quantile regression model

derived in this investigation. These perturbation schemes

may be proposed to assess changes in the cases (that is,

case-weight perturbation), in the scalar parameters a or u,
as well as in the correlation matrix C. For instance, when
perturbing the parameter a, we must consider

ai ¼
a
xi

; i ¼ 1; . . .; n;

with xi [ 0; see Sánchez et al. (2020a). Similarly for

perturbing the parameter u. For perturbing the correlation

matrix C, see Marchant et al. (2016b).

6 Empirical illustrative example

6.1 The data set and exploratory analysis

The methodology presented in this paper is illustrated

considering an environmental data set related to key

nutrients in the soil. The data set belongs to n ¼ 82 loca-

tions of an area in Brazil, where levels of magnesium (Mg)

and calcium (Ca) are measured. Mg affects the develop-

ment of the root system, while Ca is analyzed as a com-

petitor of Mg for absorption of nutrients. The response

variable (T) is the content of Mg in the soil (in cmolc/dm3)
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and the explanatory variable (X) is the content of Ca in the

soil (in cmolc/dm3).

Descriptive statistics for the vector of Mg values are

summarized in Table 2. This summary shows the asym-

metric behavior of the distribution of the response variable,

which is also observed in the histogram of Fig. 2a, while

the boxplot of the values of the response T allows us to

observe two outliers, which are cases #12 and #47. A three-

dimensional scatter plot of the response values is provided

in Fig. 2b. The directional variogram of Fig. 2c indicates

that there is no preferred direction, meaning an omni-di-

rectional semi-variogram is suitable. Hence, we can con-

sider the associated stochastic process as isotropic.

6.2 Formulation, estimation of parameters,
and comparison of models

We estimate the spatial dependence parameters assuming a

variogram using the Matérn model with d ¼ 0:5. Suppose

that

ðTðs1Þ; . . .; TðsnÞÞ ¼ ðT1; . . .; TnÞ�BSnða1n�1;QðbÞ;CÞ;

considering three cases for the link function h defined in

(5), that is, logarithm, square root and identity functions,

which are expressed, for i ¼ 1; . . .; 82, as

logðQðTðsiÞÞÞ ¼ x>i b;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

QðTðsiÞÞ
p

¼ x>i b;

QðTðsiÞÞ ¼ x>i b;

with b ¼ ðb0; b1Þ> being the regression coefficient vector

and x>i ¼ ð1; xi1Þ being the value of Xi.

In order to compare spatial regression models, we

employ the Schwarz Bayesian information criterion (BIC)

and corrected Akaike information criterion (CAIC) stated

as

BIC ¼ d logðnÞ � 2‘ðbhÞ;

CAIC ¼ 2d � 2‘ðbhÞ þ 2d2 þ 2d

n� d � 1
;

where d ¼ pþ 2 ¼ 4 is the number of model parameters,

n ¼ 82 is the dimension of the data set, and ‘ðbhÞ corre-

sponds to the log-likelihood function for h of the under-

lying model evaluated at h ¼ bh. BIC and CAIC use the

log-likelihood function and penalize a model with more

parameters. When a small quantity of information is

obtained from a model in relation a specific data set,

then large values for BIC and CAIC are obtained for this

model, which indicates that the model is less adequate than

other with smaller BIC or CAIC. Then, the best model is

that with the smallest value for the BIC or CAIC; see

Ferreira et al. (2012). Table 3 reports the values of the log-

likelihood function, CAIC and BIC for the model with link

functions defined in (23). Also, we compare the models

given in (23) with the Gaussian spatial regression model

applied to the data set, which considers the description of

the mean (or equivalently the median) with identity link

function; see Table 3. Note that the BS model with square

root link is the best one among the considered models and

therefore this should be used to describe the environmental

data upon analysis. The ML estimates of the selected

model parameters and their corresponding estimated

asymptotic standard errors, estimated by using the robust

covariance matrix method (Bhatti 2010) and indicated in

parenthesis, are:

bb0 ¼ 0:382 ð0:0030Þ; bb1 ¼ 0:1884 ð0:0093Þ;
bu ¼ 0:0045 ð0:0021Þ; ba ¼ 0:2323 ð0:0460Þ;

and ba ¼ 0:2323 ð0:0460Þ. These standard errors are small

indicating all the parameters are estimated with good sta-

tistical precision and allow us to infer they must be part of

the model. Therefore, the estimated model is

bQi ¼ ð0:3821þ 0:1884 xi1Þ2, for i ¼ 1; . . .; 82, while the

scale-dependence matrix is estimated as bC ¼ CðbuÞ; with
CðuÞ being defined in (8) for d ¼ 0:5 and evaluated at

bu ¼ 0:0045.

6.3 Spatial dependence, residuals analysis,
and model fitting

Note that the parameter u is significant at 5% using the

confidence interval-method, which means that exists spatial

dependence.

The quantile versus quantile (QQ) plot of the residuals

transformed by the Wilson-Hilferty approximation

(Marchant et al. 2016b), after removing a location which

was outside the bands, is displayed in Fig. 3a. An alter-

native method to evaluate the fit of the model is to em-

ploy the randomized quantile residual defined by Dunn and

Smyth (1996). Observe that most of the residuals are inside

of the bands (at 1%). In addition, Fig. 3b shows a three-

Table 2 Descriptive statistics for Mg data (in cmolc/dm3)

Median Mean SD Coef. variation Coef. skewness Coef. kurtosis Minimum Maximum n

2.0306 2.008 0.7713 0.3841 0.3394 2.9717 0.5734 4.25380 82
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dimensional scatter plot of the estimated and observed

values for the response. These two graphical plots permit

us to detect a good fit of the BS spatial quantile regression

model with square root link to the data. Thus, our model

seems to be appropriate to describe the environmental data.

However, if we use a heavy-tailed asymmetric distribution,

such as the BS-Student-t model, we could obtain a better

fitting, which implies further research this in line.

6.4 Global and local influence diagnostic
analytics

Figure 4 presents the potentially influential cases in the ML

estimates of the parameter vector h considering the CD as

criterion of global influence. It is possible to see that cases

#5, #31, #40 and #73 are potentially influential for the

estimate of h because their values of CD are outside of the

cut-off point.

For local influence, we assume two types of scheme: (1)

perturbation in the response; and (2) perturbation in the

explanatory variable X. We consider three measures of

local influence: (1) the absolute value of the components of

dmax; (2) normal curvature in the direction of basis vectors

(Ci); and (3) conformal curvature in the same direction

(Bi). Figure 5 displays the local influence graphs corre-

sponding to perturbations in the response and explanatory

variable. Note that all cases detected in the global influence

plots are not locally influential by the plots associated with

dmax, Ci and Bi when the response or explanatory variable

are perturbed. For the response, observe that three cases

(#17, #28 and #81) are detected as potentially influential

points in two plots. For explanatory variable perturbation,

we again detect the three earlier cases as potentially

influential, but also cases #50 and #54; see plots (f) and (g).

Note that no outliers are detected as potentially influential

in plots of diagnostics, that is, in spatial statistics, an

influential point is not necessarily an outlier and viceversa.

We study the relative change (RC) when cases detected

as potentially influential are removed, that is, cases #17,

#28 and #81, which are the points detected for the most of

the plots in Figs. 4 and 5. We consider removing individual

cases and combinations of them. The impact of the

potentially influential cases on the parameter estimates is

evaluated by computing RChjðIk Þ
¼ jðbhj � bhjðIkÞÞ=bhjj �

100%; where bhjðIkÞ is the ML estimate of hj after removing

the subset Ik, for j ¼ 1; . . .; 4 and k ¼ 1; . . .; 7, with

h1 ¼ b0, h2 ¼ b1, h3 ¼ u and h4 ¼ a. The RCs in the

parameter estimates obtained by considering the data with

removed cases are presented in Table 4. In general, the

RCs are larger for the parameters b0 and b1. Note that only
when cases #17 and #81 are removed simultaneously the

parameter u is not significant, and u and a presents the

largest changes. In all other cases, each parameter is sig-

nificant. When analyzing the p-values of the corresponding

t-tests (see values in parentheses in Table 4), note that b0,
b1 and u do not change their significance, but u changes.

This indicates that the detection of potentially influential

1 2 3 4

47 12

Response

F
re

q
u

en
cy

1 2 3 4

0
5

1
0

1
5

2
0

(a)

2.390 2.395 2.400 2.405 2.410

0
1

2
3

4
5

72.365

72.370

72.375

72.380

72.385

2.390

 Coord X
C

o
o

rd
 Y

T

(b)

0 500 1000 1500

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

distance

se
m

i−
va

ri
an

ce

0°
45°
90°
135°

(c)

Fig. 2 (a) Histogram with boxplot, (b) scatterplot, and (c) semi-variogram for the response variable of environmental data

Table 3 Values of log-likelihood, CAIC and BIC for indicated

models with environmental data

Model ‘ðbhÞ CAIC BIC

Gaussian - 32.1411 70.5900 77.5024

BS-identity link - 36.3659 81.2513 90.3587

BS-logarithm link - 36.3659 81.2513 90.3587

BS-square root link - 24.9112 58.3419 67.4493
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cases alters the conclusions of the study. Therefore, we

conclude that removing the potentially influential cases can

modify the spatial dependence and then our predictive

model can be affected changing the conclusions of the

study.

7 Conclusions and future works

This paper reported the following findings:

1. A geostatistical model based on a new approach to

quantile regression considering the multivariate Birn-

baum–Saunders distribution was formulated and the

maximum likelihood estimation of their parameters

was performed.

2. Global and local influence diagnostic analytics were

derived for this model based on the Cook and

likelihood distances, respectively.

3. An illustration of the proposed methodology was

considered using an example related to environmental

data to show potential applications.

In summary, we developed a novel Birnbaum–Saunders

spatial quantile regression model to describing data gen-

erated from a positive skew distribution. The principal

characteristic of this spatial model is the description of a

quantile for a response variable that follows the Birnbaum–

Saunders distribution. The numerical evaluation reported

the excellent performance of the new spatial model, indi-

cating that the Birnbaum–Saunders distribution is a good

modeling choice when dealing with data which have spatial

dependence, positive support and follow a distribution

skewed to the right. Therefore, our investigation may be a

relevant addition to the tool-kit of engineers, applied

statisticians, and data scientists.

Applications of the new Birnbaum–Saunders spatial

quantile regression are of interest in household income data

which must be georeferenced to model them spatially.

Also, georeferenced criminal, epidemiological, political,

socio-economic data, where an asymmetric behavior is

detected for its distribution, could be described by this new

model. Some open problems that arose from the present

investigation to be studied in further works are the

following:

1. A test for independence can be proposed considering

H0: qij ¼ 0 (or C ¼ In) based on the likelihood ratio

test.
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Fig. 3 (a) QQ plots for transformed residuals and (b) three-dimensional scatter plots of estimated versus observed response values with
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Fig. 5 Perturbation in the response for (a) dmax , (b) Ci and (c) Bi and perturbation in the regressor for (d) dmax , (e) Ci and (f) Bi with

environmental data

Table 4 RC in % of ML

estimates for the indicated

parameter and removed cases

(and p-values in

parentheses) with

environmental data

Removed case(s) b0 b1 u a

None – – – –

ð2� 10�16Þ ð2� 10�16Þ (0.03) ð4� 10�7Þ
#17 8.0283 8.8422 3.7003 4.3282

ð2� 10�16Þ ð2� 10�16Þ ð4� 10�4Þ ð2� 10�16Þ
#28 3.9514 5.8981 8.2019 3.3356

ð2� 10�16Þ ð2� 10�16Þ ð5� 10�8Þ ð2� 10�16Þ
#81 5.0068 1.2219 1.5097 1.6262

ð2� 10�16Þ ð2� 10�16Þ ð2� 10�12Þ ð2� 10�16Þ
#17;#28 15.1840 8.6900 1.2410 4.4255

ð2� 10�16Þ ð2� 10�16Þ ð2� 10�08Þ ð2� 10�16Þ
#17;#81 1.3742 3.0580 29.5218 17.1233

ð2� 10�16Þ ð2� 10�16Þ (0.2) ð4� 10�4Þ
#28;#81 4.6209 1.7029 1.3709 3.1269

ð2� 10�16Þ ð2� 10�16Þ ð2� 10�16Þ ð2� 10�16Þ
#17;#28;#81 7.7262 6.0797 2.1668 6.4591

ð2� 10�16Þ ð2� 10�16Þ ð2� 10�16Þ ð2� 10�16Þ
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2. The hypothesis H0: u ¼ 0 versus H1: u[ 0 can be

contrasted using the likelihood ratio test.

3. The asymptotic behavior and performance of maxi-

mum likelihood estimators is also of interest, but

applicability of asymptotic frameworks to spatial data

is not an easy aspect; see Genton and Zhang (2012).

4. The Birnbaum–Saunders distribution is generated from

the standard normal distribution and then its parameter

estimation in spatial quantile regression can be affected

by atypical cases. Thus, robust estimation to these

cases, for example based on the Birnbaum–Saunders-t

distribution, may be addressed to diminish their effects;

see (Athayde et al. 2019).

5. Random effects may also be considered producing

more sophisticated Birnbaum–Saunders spatial quan-

tile regressions; see (Villegas et al. 2011).

6. Other perturbation schemes for local influence diag-

nostics can be conducted for Birnbaum–Saunders

spatial quantile regression models.

Research on these and other issues are in progress and their

findings will be reported in future articles.
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Appendix: Perturbation matrices for the BS
spatial model

For the model defined by (5) and its corresponding log-

likelihood function given in (10), we have

o‘ðh;xÞ
oxi

¼ � ~A>
xC

�1 o
~Ax

oxi
þ o

oxi
logð~axÞð Þ:

The corresponding ðpþ 2Þ � n perturbation matrix is given

by D ¼ ðo‘2ðh;xÞ=ohjxiÞ, where j ¼ 1; :::; pþ 2 and

i ¼ 1; :::; n, with h1 ¼ b0; . . .hp ¼ bp�1, hpþ1 ¼ u and

hpþ2 ¼ a. The elements of this matrix are given by

o‘2ðh;xÞ
obj oxi

¼� o ~Ax

obj

 !>

C�1 o
~Ax

oxi
þ ~A>

xC
�1 o2 ~Ax

oxiobj

 !

þ o

obj

o logð~axÞ
oxi

� �

;

o‘2ðh;xÞ
ou oxi

¼� o ~Ax

ou

� �>

C�1 o
~Ax

oxi
þ ~A>

x

oC�1

ou
o ~Ax

oxi

 

þ ~A>
xC

�1 o2 ~Ax

oxiou

�

þ o

obj

o logð~axÞ
oxi

� �

;

o‘2ðh;xÞ
oa oxi

¼� o ~Ax

oa

� �>

C�1 o
~Ax

oxi

 

þ ~A>
xC

�1 o2 ~Ax

oxioa

�

þ o

oa
o logð~axÞ

oxi

� �

:

ð23Þ

Perturbation in the response: In the case of perturbation in

the response and based on its corresponding log-likelihood

function given in (20), we have

o ~AkðxÞ
oxi

¼aðtkðxÞ; a;QkÞAki;

o ~AkðxÞ
obj

¼� 1

aca
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tkðxÞQk

p

tkðxÞc2a
4Qk

þ 1

� �

1

h0ðQkÞ
xkj;

o2 ~AkðxÞ
oxiobj

¼ � c2a
4Qk

þ 1

tkðxÞ

� �

1

2aca
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

QktkðxÞ
p

1

h0ðQkÞ
xkjAkj;

o

obj

o logð~axÞ
oxi

� �

¼� 4
X

n

k¼1

tkðxÞca
t2kðxÞc2a þ 4QktkðxÞ

� �2
1

h0ðQkÞ
xkjAkj;

o ~AkðxÞ
ou

¼aðtkðxÞ; a;QkÞ
otkðxÞ
ou

;

otkðxÞ
ou

¼ k-th row of
oA

ou

� �

x;

oA

ou
¼A

1

a
C�1=2 oC

1=2

ou
C�1=2 þ a

4

oC1=2

ou

 !

A;

o2 ~AkðxÞ
oxiou

¼ 1

aca
ffiffiffiffiffiffiffiffi

4Qk

p � 1

2t
3=2
k ðxÞ

c2a
2
þ 2Qk
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where oC�1=ou ¼ �C�1ðoC=ouÞC�1, oA=oa ¼
Aðð1=a2ÞC�1=2 þ ð1=4ÞC1=2ÞA and Aki corresponds to the

ki-th element of the matrix A. To calculate oC1=2=ou, see
De Bastiani et al. (2015).

Perturbation in the explanatory variable: Based on the

corresponding log-likelihood function given in (22), the

elements defined in (23) have as components the expres-

sions stated as
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where qjl ¼ 1, if j ¼ l; qjl ¼ 0, if j 6¼ l; Zkj ¼ 1 for j ¼ 1;

Zkj ¼ XklðxÞ, if j ¼ l; Zkj ¼ Xkj, for j 6¼ 1; l; and Ak corre-

sponds to the k-th row of A.
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