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Abstract
This paper explores and combines implicit stochastic optimization (ISO) with copula functions to simulate long-term

operating policies for a hydropower reservoir located in the Northeastern region of Brazil. Overall, ISO is considered as

one of the most reliable techniques to derive long-term reservoir operating rules for reservoirs. This method employs a

deterministic optimization model to estimate the optimal reservoir allocations under different inflow scenarios and later

constructs operating rules for each month by relating the ensemble of the optimal releases, the initial storage volume and

future inflow values. Those rules are generally established by fitting approaches including linear regression or nonlinear

methods. This work illustrates the applicability to combine copulas with ISO to define reservoir operation policies based on

a probabilistic procedure. Firstly, synthetic streamflow scenarios are simulated using a periodic vine copula model.

Afterward, optimal release data are estimated by ISO for a set of inflow scenarios. Joint probability distribution functions

based on copulas are constructed in order to forecast the expected release, conditioned to the initial reservoir volume and

future inflows data. Results indicate that the proposed model represents a flexible approach to construct operating rules and

derive long-term reservoir operating policies with low variability, allowing to reproduce different dependence structures of

simulated data.
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1 Introduction

Reservoir operation represents one of the major tasks in

water resources management and hydropower engineering.

Decisions in reservoir operation problems deal with the

amount of water that should be released and stored over a

period of time considering the variation and uncertainties

of future streamflows and demands (Nagesh Kumar and

Janga Reddy 2007). Several researchers have been applied

diverse analysis techniques involving simulation and opti-

mization algorithms to study decision-making in multi-

purpose reservoir systems (Labadie 2004). Simulation

models associated with reservoir operation are generally

based on mass balance equations, representing the hydro-

logical behavior of reservoir systems using inflows, oper-

ating conditions and, in some cases, the economic

performance of the reservoir system (Rani and Moreira

2010). Although simulation models permit detailed and

realistic representation of the complex characteristics of a

reservoir system, this approach can be too time-consuming

to find optimal solutions (Neelakantan and Pundarikanthan

2000). On the other hand, optimization techniques have

become increasingly important in the last decades to rep-

resent the management and operations of complex reser-

voir systems, reducing significantly the computational cost

(Cheng et al. 2008). Different studies provided an exten-

sive literature review and evaluate different optimization

methods associated with reservoir operation and water

resources management (Yeh 1985; Wurbs 1993; Labadie

2004).

Overall, optimization techniques used in reservoir sys-

tems can be classified into two types. Explicit stochastic
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optimization (ESO) and implicit stochastic optimization

(ISO). Explicit stochastic optimization (ESO) considers the

uncertainties of streamflows and other parameters of the

problems in an explicit way. This approach is commonly

used when inflows cannot be reliably forecasted for a rel-

atively long period, requiring the use of probability dis-

tribution functions to represent uncertainties of the data

(Celeste and Billib 2009). In such cases, the problem is

typically addressed by stochastic dynamic programming

(SDP) (Stedinger et al. 1984), being described in the lit-

erature as one of the most robust methods to derive optimal

policies for water reservoirs. Nevertheless, Giuliani et al.

(2016) pointed out that the adoption of SDP in complex

real-world water resources problems is challenged by the

three well know curses (dimensionality, modeling, and

multiple objectives). In that way, approximate dynamic

programming has been explored to overcome some or all

the SDP curses (Powell 2007). For instance, Giuliani et al.

(2016) discuss the adoption of direct policy search (DPS)

to reduce the limiting effects of the three curses of SDP. In

general DPS considers a parametrization of the operating

policies using a set of family functions. Although DPS

represents a simplification of SDP, this method still

involves the use of dynamic programming and requires in

some cases the estimation of several parameters. Moreover,

the final results can be significant affected when a bad

approximation function is chosen.

Contrary to ESO, ISO derive operational policies of

reservoirs based on deterministic models (Zambelli et al.

2006). This approach takes into consideration the use of

independent inflow scenarios, providing an optimal solu-

tion for each one (Zambelli et al. 2011). Thus, the

stochastic aspects of this kind of problem can be implicitly

handled by the analysis of the optimal deterministic solu-

tions associated with different hydrological scenarios

(Diniz et al. 2008). One of the main advantages of ISO is

the facility to derive operation rules for large-scale sys-

tems, which might be more attractive to operators who are

skeptical to use complex optimization approaches as a

replacement to easier-to-understand simulation procedures

(Celeste and Billib 2012; De Souza Zambelli et al. 2013).

Operation rules specify operational decisions (e.g. releases)

as a function of current reservoir water level and the hydro-

meteorological conditions (Guo et al. 2004). Different

functional methods have been applied to derive operation

rules, including linear regression (LR) (Liu et al. 2011),

two-dimensional surface models (SURF) (Celeste and

Billib 2009), fuzzy models (Mousavi et al. 2007; Russell

and Campbell 1996), bayesian networks (Mesbah et al.

2009) and support vector machines (SVMs) (Karamouz

et al. 2009; Zhang et al. 2015). In general, the performance

and goodness-of-fit of each method vary according to the

studied area. For instance, Celeste and Billib (2009)

pointed out that the SURF model achieve the best perfor-

mance for the Epitácio Pessoa Reservoir. Liu et al. (2014)

concluded that LR operating rules were suitable for the

hydropower operation of China’s Three Gorges Reservoir.

Ji et al. (2014) proposed SVM operating rules for the Jin-

sha Reservoir system, whereas Li et al. (2014) explored the

use of genetic programming (GP) to derive the explicit

nonlinear formulation of operating rules for multi-reservoir

systems that included the Three Gorges and the Qing River

cascade hydropower reservoirs. Nonetheless, there is no

evidence that any particular fitting approach is superior and

must be used under all conditions to derive operating rules

for water reservoirs.

This study explores and proposes a probabilistic

approach by the usage of copulas to derive operating rules

for the long-term policies for water reservoir systems.

Copulas represent a robust approach for multivariate

modeling, and its development resulted in a surge in

building multivariate distributions to handle nonlinear

dependence of hydroclimatic variables in a suite of appli-

cations (Genest and Favre 2007; Hao and Singh 2015;

Jaworski et al. 2010). In hydrology, the first studies with

copulas were related to exploring multivariate aspects of

extreme events including floods and droughts (Zhang and

Singh 2007; Favre et al. 2004; Salvadori and De Michele

2004). Copulas are being extended to other applications of

water resources and environmental sciences, including

simulation or predicting processes (Lee and Salas 2011;

Sadiq et al. 2008; Shi and Xia 2016). Other type of studies

related copulas to construct the transition probability

matrix of inflow values, useful to solve SDP problems for

reservoir operation (Lei et al. 2018). For multivariate

cases, vines copulas offer a flexible way to represent dif-

ferent dependence structures (Joe 2014), being commonly

used to modeling the spatial and temporal distribution of

random variables (Pham et al. 2016; Erhardt et al. 2015;

Ávila et al. 2019).

In this case, copulas are employed to relate hydrological

variables that affect the operation of water reservoirs and

used derive probabilistic long-term operational policies for

a single hydropower reservoir located in a semiarid region

of Brazil. Using a deterministic optimization model, an

ISO approach is performed to estimate the optimal allo-

cations under different streamflow scenarios previously

generated by a periodic vine copula model. For each

month, the optimal water releases are related to the initial

storage volume and inflows in order to construct the cor-

responding joint probability distribution functions. Thus, a

simulation process based on vine copulas is performed in

order to forecast the expected amount of water that should

be released, given the prior knowledge of the initial store

volume and future hydrological conditions in the reservoir.

Goodness-of-fit tests and error analysis show that the
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proposed model can well represent the operation of

hydropower reservoirs located in semiarid regions with

seasonal streamflow regimes. The remainder of this paper

is organized as follows: Sect. 2 describes the principal

methods used for this study in order to derive probabilistic

reservoir operation policies by ISO and copulas. Section 3

presents the application and results of the proposed model

considering a hydropower reservoir located in the North-

eastern region of Brazil as a case study. Finally, Sect. 4

draws the main conclusions.

2 Methodology

This section introduces the principal methods used in this

study, which was conducted into three stages: (1) Simulate

monthly streamflow scenarios based on a periodic vine

copula-entropy model; (2) Compute optimal releases poli-

cies using an ISO approach; and (3) Estimate reservoir

operational policies based on a probabilistic simulation

process with copulas. Figure 1 depicts the general frame-

work used for the development of this study. Overall, the

simulation of monthly streamflows time series is carried

out by the definition of a periodic vine copula model. This

approach allows the construction of multivariate distribu-

tion functions without any restriction to represent nonlinear

dependencies between adjacent months. The streamflow

simulation process was supported by the Principle of

Maximum Entropy (POME) in order to derive the marginal

distribution function of each month. Simulated streamflow

scenarios were used as input of an Implicit Stochastic

Optimization model (ISO) to derive the operational poli-

cies of a single water reservoir. Finally, the ensemble of

initial water volume, inflow and water release of each

month was related and modeled using multivariate distri-

bution functions in order to represent operating rules for

the selected reservoir. Notice that this study considered

different vine copulas structures (eg. D-vine, C-vine) for

Fig. 1 General framework to derive reservoir operation policies combining ISO and copulas
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the construction of multivariate distribution functions.

Section 2.1 presents a formal introduction of vines copulas,

showing the main differences of each one.

2.1 Joint distribution based on copulas

A copula C is a multivariate distribution function with

marginals as the uniformly distributed U(0, 1) (Joe 1997;

Nelsen 2006). Copulas were firstly introduced by Sklar

(1959) and are useful to derive joint distributions given the

marginals, especially when dealing with non-normal dis-

tributions (Suroso and Bárdossy 2018). The main advan-

tage of copulas can be explained through the Sklar’s

theorem (1959), which stated that for a d random vector

X ¼ ðX1; :::;XdÞ with joint cumulative distribution H and

marginals F1; :::;Fd, a copula C : ½0; 1�d ! ½0; 1� exists

such that for all x ¼ ðx1; :::; xdÞ 2 Rd.

Hðx1; :::; xdÞ ¼ C½F1ðx1Þ; :::;FdðxdÞ� ¼ Cðu1; :::; udÞ ð1Þ

where u1 ¼ FiðxiÞ and ui �Uð0; 1Þ for i ¼ 1; :::; d: Hence,

marginal and joint distribution analysis can be done

separately.

Some bivariate copulas and its relationship between the

dependence structure parameter h and Kendall’s s are listed
in Table 1. Kendall’s s is a rank correlation coefficient and

it is defined as the probability of concordance minus that of

discordance. For two variables x1 and x2 with n observa-

tions, the empirical Kendall’s s can be calculated as

(Genest and Favre 2007):

s1;2 ¼
Pn � Qn

n

2

� � ¼ 4

nðn� 1ÞPn � 1
ð2Þ

where Pn and Qn represent the number of concordant and

discordant pairs, respectively.

Computational modeling for d-dimensional cases

(d[ 2) can be addresed by the so-called vine copulas.

Proposed by Joe (1996) and subsequently addressed by

Bedford and Cooke (2001; 2002) and Aas et al. (2009), a

vine copula allows the decomposition of a multivariate

density function by a set of conditional and unconditional

bivariate copulas.

For dimensions greater than two, vines copulas are

commonly organized by a set of trees composed by edges

and vertices. Two special vines (C-vine and D-vine) are

illustrated in Fig. 2 for a 3-dimensional case. In general, a

C-vine is characterized for modeling dependence structures

centered in one variable, while a D-Vine presents a

sequential structure useful to modeling time dependence.

For the three-dimensional case the vines are composed by 2

trees (T1 and T2); the first tree has 3 nodes (circles) and 2

edges (lines), and the second tree has 2 nodes and 1 edge.

Note that the edges in T1 become nodes in T2. Vine copulas

offers the flexiblity of selecting different bivariate family

copulas for each edge.

2.2 Principle of maximum entropy (POME)

The concept of entropy was firstly introduced in the context

of information theory by Shannon (1948). Subsequently,

Jaynes (1957a, b, 1982) developed the Principle of Maxi-

mum Entropy (POME) useful to derive probability distri-

bution functions of random variables when some

information is given in terms of constraints. For a random

variable X, the most probable probability density function

(PDF) is the one that maximizes the Shannon entropy H(x)

defined as:

HðxÞ ¼ �
Z b

a

f ðxÞ log f ðxÞdx ð3Þ

where f(x) is the PDF of X; and x is a value of X defined in

the upper and lower limits b and a respectively. According

to Jaynes (1957a), the PDF of X can be obtained by

Table 1 Bivariate copula functions and the association between their parameters and Kendall’s s

Copula Chðu; vÞ h 2 s

Gumbel exp�½ð� ln u1Þh þ ð� ln u2Þh�
1
h ð1;1Þ 1� h�1

Clayton ðu�h
1 þ u�h

2 þ 1Þ
�1
h ð0;1Þ h

hþ2

Frank � 1
h ln 1þ ðexp�hu1 �1Þðexp�hu2 �1Þ

exph �1

h i
R6¼0 1þ 4

h
1
h

R h
0

t
expðtÞ�1

dt � 1
h i

Gaussian UqðU�1ðu1Þ;U�1ðu2ÞÞ ð�1; 1Þ 2
h arcsinðqÞ

t-Student Tm;RðT�1
m ðu1Þ;T�1

m ðu2ÞÞ ð�1; 1Þ 2
h arcsinðqÞ

Joe 1� ðð1� u1Þh þ ð1� u2Þh � ð1� u1Þhð1� u2ÞhÞ1=h [ 1
1� 4

h2

Z 1

0

ylnðyÞð1� yÞ2ð1�hÞ=h
dy

Note: U and T are the univariate standad Normal and t-Student distribution respectively
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maximizing the Shannon entropy for a set of statistical

moments as constraints such as:

Z b

a

f ðxÞdx ¼1 f ðxÞ� 0 8 x 2 ½a; b� ð4Þ

Z b

a

hif ðxÞdx ¼hiðxÞ i ¼ 1; :::;m ð5Þ

where hiðxÞ is a function of X, and hiðxÞ is the expected

value of hiðxÞ. For a given set of constraints, a unique

distribution can be defined (Chen and Singh 2018).

Therefore, finding the appropriate constraint is critical to

define a suitable PDF. According to Kapur and Kesavan

(1992), the maximum entropy-based (ME-based) PDF of X

can be obtained as follows:

f ðxÞ¼exp �ln

Z b

a

exp �
Xm
i¼1

kihiðxÞ
 !

dx

 !
�
Xm
i¼1

kihiðxÞ
" #

ð6Þ

The corresponding cumulative distribution function (CDF)

can be expressed as:

EXðxÞ ¼
Z x

a

f ðtÞdt ð7Þ

where ki ði ¼ 1; 2; . . .;mÞ are the Lagrange multipliers

that must be estimated. In general, Equation (6) has not an

analytical solution for m[ 2; therefore, numerical methods

are needed to perform the computation. For this case, the

conjugate gradient (CG) method is applied (Kong et al.

2015) to estimate the Lagrange multipliers in Equation (6).

Moreover hiðxÞ is defined as a known function of X, such as
h1 ¼ x, h2 ¼ x2, h3 ¼ x3 and h4 ¼ x4 for the constraints

presented in Equation (5), and hiðxÞ i ¼ 1; :::; 4 are asso-

ciated to the sample mean, variance, skewness, and kurtosis

respectively (Hao and Singh 2009).

2.3 Goodness-of-fit statistical tests

This study employs goodness-of-fit (GOF) tests to evalu-

ated the performance and relative errors of simulated data

generated by POME and copula functions. Firstly, the

estimated marginal distributions are compared with the

empirical distributions obtained from the the Gringorten

(Gringorten 1963) plotting position formula expressed as:

PðK � kÞ ¼ k � 0:44

N þ 0:12
ð8Þ

where N stands for the sample size and k is the kth smallest

observation in the data set arranged in an increasing order.

The Kolmogorov-Smirnov (K-S) test is used to assess

the performance of the marginal distributions. The K-S test

quantifies the vertical distance between the empirical dis-

tribution of a sample and the cumulative distribution

function of the reference distribution. Given n increasing

ordered data points, xð�Þ, the K-S test stastistic is defined as

(Kolmogorov 1933):

T ¼ sup
x

jF�ðxÞ � FnðxÞj ð9Þ

where F�ðxÞ stands for the specified distribution; FnðxÞ
represents the empirical distribution; and sup is the

supremum function. The null hypothesis Ho is: FðxÞ ¼
F�ðxÞ for all x from �1 to 1. For a significance level a,
the null hypothesis is rejected if T exceeds the 1� a quantil
(Razali et al. 2011).

In addition, the RMSE and NSE coefficients are applied

to asses the error of simulated data. The RMSE (Willmott

and Matsuura 2005) and NSE (Nash and Sutcliffe 1970)

coefficients can be expressed as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1ðxestk � xobsk Þ2

N

s
ð10Þ

NSE ¼1�
PN

i¼1ðxestk � xobsk Þ2PN
i¼1ðxobsk � xobsÞ2

ð11Þ

where xestk is the simualted value; xobsk is the corresponding

observed value; xobs is the mean of observed values; and

N is the sample size

2.4 Streamflow simulation with copulas

The simulation of monthly streamflow time series is based

in the periodic vine copula model proposed by Pereira and

Veiga (2018). This approach allows to consider lags that

are greater than one, and non-linear dependence structures

between adjacent months. Basically, a d-dimensional

D-vine structure is defined for each month to model the

periodic structure of historical data. The dimension of the

D-vine is related to the maximum time lag dependence

1 3

2

13

12

12 23
23|1

1 2 3
12 13

12 23
13|2

(i): C-vine (ii): D-vine

T1:

T2:

Fig. 2 Three-dimensional vine copula construction
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considered for each month. To determine those dimen-

sions, the authors suggest performing an iterative proce-

dure together with a bivariate asymptotic independence test

proposed by Genest and Favre (2007).

The general sampling procedure for new dependent

uniform datasets ðu1; . . .udÞ using R-vine structures,

including D-vines, is performed as follow. First, sample

wi �Uð0; 1Þ for i ¼ 1; :::; d and subsequently iterate:

1. u1 :¼ w1

2. u2 :¼ C�1
2j1ðw2ju1Þ

3. u3 :¼ C�1
3j1;2ðw2ju1; u2Þ

..

.

4. ud :¼ C�1
dj1;:::;d�1ðwdju1; :::; ud�1Þ

In a streamflow simulation, we are interested in the simu-

lation of ut conditioned on the previos d � 1 observations.

Assuming that t belongs to the month m, we have that

ut :¼ C�1
tjt�1;t�2;:::;t�dþ1ðwtjut�1; ut�2; :::; ut�dþ1Þ ð12Þ

For a better simulation process, Equation (12) can be

expressed in terms of h-functions such as (Aas et al. 2009):

ut ¼ h�1ðwt; u; hÞ ¼ F�1
i�1jiðwijuÞ i ¼ 1; :::; t ð13Þ

where h is the parameter of the copula C; w is uniformly

distributed and u ¼ ut�1; ut�2; :::; ut�dþ1.

The simulated sample dataset ðu1; . . .; utÞ must be

rescaled to obtain the desired streamflow scenarios using

the corresponding inverse cumulative distribution function,

such as xi ¼ F�1ðuiÞ, i ¼ 1; :::; t, where x is a simulated

streamflow time series. This study employed the Principle

of Maximum Entropy (POME) method to derive the mar-

ginal distribution function for each month. The Gaussian,

t-Student, Gumbel, Frank, Clayton, Frank, Joe and Inde-

pendence copulas, as well as their rotated versions were

considered to model different dependence structures. The

selection of the best copula was carried out via the Baye-

sian information criterion (BIC) (Schwarz et al. 1978), and

the parameters of each copula are estimated using the

maximum likelihood (ML) method. More information

about regular vine and simulation process of h-functions is

presented in Brechmann and Schepsmeier (2013).

2.5 Forecasting method with copulas

Additional to simulation, copulas can be used to forecast

future realizations of random variables, considering its

temporal dependence structure. Forecasting procedures

with copulas have been commonly applied in univariate

and multivariate time series (Simard and Rémillard 2015;

Patton 2013; Sokolinskiy and van Dijk 2011). For instance,

Khedun et al. (2014) and Nguyen-Huy et al. (2017) used

copulas to predict precipitation anomalies caused by cir-

culation patterns and in the state of Texas (US) and Aus-

tralia, respectively. Liu et al. (2015) employed a vine

copula model to predict one month ahead the streamflow

presented in a basin located in South China, whereas Wang

et al. (2017) proposed a vine copula-based model to asses

wind power uncertainties in power systems.

Basically, this approach follows the assumption that the

expected value of a future realization can be estimated by

the mean of a simulated data set. This study adopted a

multivariate approach based on vines copula to estimated

the expected amount of water that should be released,

conditioned on the initial reservoir storage and the pre-

dicted inflow. Hence, a R-vine structure is constructed for

each month, considering the dependence structures of these

random variables. The forecasting method with copulas is

performed by a simulation process based on the inverse

transformation procedure, and follows the algorithm pre-

sented by Matthias and Jan-frederik (2017). For a specific

month m, the general prodedure is followed as: Set FSð�Þ,
FRð�Þ and FIð�Þ as the marginal distribution functions of the

storage volume (S), the releases (R) and the inflows (I) of

the reservoir; and St, Itþ1, Rtþ1 as the initial storage vol-

ume, the future inflow and the expected release in the

reservoir at time m ¼ t. Perform the iterative procedure

described as:

1. Set ut ¼ FSðStÞ and vtþ1 ¼ FIðItþ1Þ;
2. For i ¼ 1; :::; k, calculate z

ðiÞ
tþ1 ¼ C�1ðwðiÞjut; vtþ1Þ.

Where wi �Uð0; 1Þ; k is the length of the vector

ztþ1; and z
ðiÞ
tþ1 is the i copula data of water release at

time t þ 1 ;

3. Transform the uniform values to the original scales:

R
ðiÞ
tþ1 ¼ F�1

R ðzðiÞtþ1Þ i ¼ 1; :::; k;

4. Estimate the mean of the simulated values: ^Rtþ1 ¼
1
k

Pk
i¼1 R

ðiÞ
tþ1

Notice that the described procedure generated a simulated

dataset of water release R
ðkÞ
tþ1 based on a stochastic process.

In particular, Step (4) estimated the expected water release

as the mean of the simulated data. Moreover, we can well

construct the corresponding uncertainty bounds (e.g 90%,

95%) at each period of time. Matthias and Jan-frederik

(2017) provide several simulation algorithms to estimate

the corresponding values of z for different R-vine struc-

tures, including D-vines and C-vines.

2.6 Implicit stochastic optimization (ISO)

Implicit stochastic optimization, also referred to as Monte

Carlo optimization, uses a deterministic optimization

model to find the optimal reservoir allocations under
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different inflow scenarios (Celeste et al. 2009). For each

inflow sequence, a different operating policy is found.

Hence, the stochasticity and uncertainties of streamflow

regimes are addressed in an implicit way. According to

Celeste et al. (2009), the ISO procedure is described as

follows:

1. Generate M synthetic N-month inflow sequences.

2. For each inflow sequence realization, find the optimal

releases for all N months by means of a deterministic

optimization model.

3. Use the ensemble of optimal releases (M 	 N) to

develop monthly operating rules.

For a specific month, the releases obtained by the opti-

mization model are conditioned on the initial reservoir

storage and the predicted inflow. In general, multiple

regression analysis is applied to determine the operating

rules for each month. Instead, this study explores the use of

copulas to construct a joint probability distribution function

to related the dependence structure of these random vari-

ables. Thus, given the information of initial reservoir

storage and forecasted inflow for a month m, the expected

amount of water that should be released can be estimated

by a simulation process.

2.6.1 Deterministic reservoir operation optimization model

The deterministic optimization model assumes that the

main objetive of the operation is to find the allocations of

water that best satisfy their respetive demands without

compromising the systems. Furthermore, the objetive

function need to satisfies the mass balance and operative

constraints of the system respectively. Therfore, the gen-

eral problem is formulated as:

minimize ¼
XN
t¼1

RðtÞ � DðtÞ
DðtÞ

� �2
ð14Þ

subject to

SðtÞ ¼Sðt � 1Þ þ IðtÞ � EðtÞ � RðtÞ � SpðtÞ; 8t
ð15Þ

0�RðtÞ�DðtÞ; 8t
Smin � SðtÞ� Smax; 8t
SpðtÞ� 0; 8t

ð16Þ

where t is the month index; N is the operating horizon in

months; R(t) and D(t) are the release and demand in the

month t; S(t) is the final storage in reservoir at the end of

month t (when t ¼ 1, Sðt � 1Þ is equal to the initial storage

S0); I(t) and E(t) are the inflow and evaporation volume in

the month t; Sp is the water volume that might eventually

spill from the reservoir during month t; Smin is the dead

storage and Smax is the storage capacity of the reservoir.

In order to limit spills from the reservoir in periods of

time that the demand have been met and the final reservoir

storage S(t) is equal to Smax, Celeste and Billib (2010)

recommended to use an additional constraint that include a

deficit variable dðtÞ, such as:

Sðt � 1Þ þ IðtÞ � EðtÞ � DðtÞ � SpðtÞ � dðtÞ ¼ Smax

ð17Þ

In that way, Equation (14) is reformulated as:

minimize ð18Þ

Note that the first term of the summation in Equation (18)

varies within the interval [0, 1] while the second terms

varies within ½0; lðtÞ�, where

lðtÞ ¼ max½SpmaxðtÞ þ dmaxðtÞ�, such as SpmaxðtÞ 

IðtÞ � DðtÞ and dmaxðtÞ ¼ Smax þ DðtÞ. Therefore, Celeste
and Billib (2010) suggest multiply the first term of Equa-

tion (18) by aðtÞ ¼ l2ðtÞ. The interior-point-convex algo-

rithm is used to optimize Eq. (18) (Nesterov and

Nemirovskii 1994).

3 Case study

3.1 Overview

The Sobradinho reservoir was selected as a case study to

demonstrate de applicability of the proposed method. The

Sobradinho reservoir is located in the Northeastern region

of Brazil, has a surface area of 4.214 km2 and a storage

capacity of 34.1 km3 approximately. This reservoir enclo-

ses the waters of the São Francisco River, which is the

longest river that runs entirely in Brazilian territory, with a

mainstream length of 2.830 km and a drainage area of

641.000 km2 (Figure 3). The Sobradinho reservoir has dead

and a maximum storage volume equal to 5.447 hm3 and

34.116 hm3 respectively. In terms of power generation, the

Sobradinho hydropower plant has an installed capacity of

1.050 MW and was projected to add about 4 billions of

KWh of electrical energy per year to the Northeastern

region of Brazil (Lima and Abreu 2016). Furthermore, the

reservoir is also used to control and regulate water

resources in the region, providing water supply for irriga-

tion, fishing, and recreation (Azevedo et al. 2018).

Monthly streamflow records from 1931 to 2017 at the

Sobradinho hydropower station were used in this study.

The streamflow data was provided by the Brazilian

National Electrical System Operator (ONS) and consists of

naturalized streamflows, i.e., without the influence of the

dam nor consumptive water uses. Figure 4 depicts the
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original streamflow time series and the annual cycle

observed in the Sobradinho reservoir. The recorded

monthly time series presents a strong periodicity in this

region, characterized by drought periods (smaller average

and variance) in the middle of the year, in comparison with

the wet periods (at the beginning and end of the year).

3.2 Results analysis

3.2.1 Monthly streamflow simulation

The first step in this study consists in simulate monthly

streamflow scenarios in the São Francisco River using a

periodic vine copula model. Without loss of generality, the

application of this method involves: (a) the construction of

marginal distribution of monthly streamflows based on the

POME, estimating the values of Lagrange multipliers

through the CG method, and (b) the definition of joint

Fig. 3 Location of the Sobradinho reservoir
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Fig. 4 (a) Monthly streamflow time series and (b) annual cycle in São Francisco River
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distribution between adjacent monthly streamflows con-

sidering lags greater than one using d-dimensional D-vine

structures.

In order to define the ME-based marginal distributions,

expressed by Eq. (6), the Lagrange multipliers must be first

estimated. The CG method was used to calculate the cor-

responding Lagrange multipliers for each month. This

study considered the first four statistical moments as con-

straints. The generated PDFs and CDFs were compared

with the empirical histograms and the empirical CDFs

obtained from the Gringorten plotting position formula.

Figure 5 depicts the marginal PDF and CDF for April

streamflow in São Francisco river.

A goodness-of-fit based on the Kolmogorov-Smirnov

test (K-S) and RMSE was applied to evaluate the estimated

ME-based marginal distributions. Table 2 reports the

obtained p-values and statistical T calculated from the K-S

test for each month. For a significant level a ¼ 0:05, the

results show that the null hypothesis cannot be rejected,

and the estimated ME-based distribution functions can

appropriately represent the observed monthly streamflows

in São Francisco river. In addition, the RMSE results

indicate that the corresponding relative errors are relatively

small for the months of April to December. On the other

hand, the RMSE is higher for the months of January to

March. This result is congruent with Fig. 3, indicating a

greater variability of streamflow values presented for those

months.

Based on the marginal distribution analysis, the

streamflow data can be converted into copula data

U�ð0; 1Þ in order to construct the joint probability dis-

tributions between adjacent months. The joint analysis data

was performed based on the construction of d-dimensional

D-vine structures for each month using the bivariate
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Fig. 5 Comparison of the

theoretical and empirical PDF

and CDF for April streamflow

in São Francisco river

Table 2 The goodness-of-fit for monthly streamflow marginal

distributions

Month K-S test RMSE

T p-value

1 0.06 0.99 212

2 0.09 0.79 208

3 0.05 1.00 207

4 0.05 1.00 99

5 0.08 0.89 91

6 0.09 0.79 61

7 0.08 0.89 39

8 0.08 0.89 27

9 0.07 0.96 31

10 0.05 1.00 27

11 0.06 0.99 53

12 0.04 1.00 72
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Fig. 6 Simulated streamflow scenarios in São Francisco river
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asymptotic indepdendece test (Genest and Favre 2007).

The analysis exposed that the temporal dependence for all

months can be modeled with bivariate copulas, with the

exception for the months of January and May (4-dimen-

sional D-vine).

Figure 6 presents 300 simulated scenarios (grey lines),

each one containing 60 months, generated by the periodic

vine-copula entropy based model in São Fransico river.

The figure compares the historical averages (black line)

and the simulated averages (red line), showing that syn-

thetic scenarios successfully reproduce the periodic char-

acteristics of historical streamflow regimes in the studied

area. Moreover, Fig. 7 compares the monthly statistics of

simulated and observed streamflow data in São Francisco

river, including maximum and minimum values.

We also demonstrate that the simulated scenarios

replicate time dependence of historical data by a monthly

autoregressive analysis. Thus, for each month the Kendall’s

s coefficient is calculated up to lag five (previous 1–5

months). Figure 8 presents a comparison between the

historical values (black dot) and the average of the simu-

lated values (red triangle). Results evidence the good per-

formance of vine copula models to represent nonlinear

autocorrelation structures. In that way, the stochastic vine

copula model can be used to construct synthetic streamflow

sequences to derive long-term operational policies in the

Sobradinho reservoir employing a deterministic optimiza-

tion model.

3.2.2 Reservoir operation optimization with ISO

A deterministic optimization model is performed to derive

the optimal operational policies in the Sobradinho reser-

voir. A Monte Carlo process was executed over an oper-

ating horizon of 1320 months (110 years) for 70 inflow

sequences. The initial storage was set to Smax. The monthly

demand D(t) of the objective function (Eq. 18) was

assumed to be the reservoir yield at 95% reliability. This

value represents the amount of energy that can be produced

95% of the time and is estimated by the Brazilian
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Electricity Regulatory Agency (Agência Nacional de

Energia Elétrica (ANEEL)) (ANEEL 2019). The opti-

mization results for the first and last five years obtained for

each inflow sequence were discarded in order to avoid the

influence of the boundary conditions (initial and final

storages) (Celeste et al. 2009). Initial storage, inflow, and

water release values were grouped month by month to

construct the respective operational curves. Figure 9 pre-

sents the scatterplots and Kendall’s s of the studied vari-

ables for the month of June. In general, the figure shows

that the variables present positive correlations with differ-

ent tail dependence structures that could be modeled by

copulas. Notice that inflow data are significant correlate

with monthly water release. The dominance of this

hydrological variable in the operation of water reservoirs is

further discussed in Tejada-Guibert et al. (1995) and Pic-

cardi and Soncini-Sessa (1991).

3.2.3 Reservoir operation simulation with copulas

Based on the results of Fig. 9, a set of joint probability

distribution functions is constructed using a vine copula

approach. Hence, the data must be first transformed into a

uniform distribution U�ð0; 1Þ using the inverse transfor-

mation procedure. For each variable, a marginal ME-based

distribution function is estimated using the first four sta-

tistical moments as constraints. Table 3 presents the esti-

mated Lagrange multipliers using the CG method. Based

on the Lagrange multipliers, the PDFs and CDFs of the

random variables associated with the monthly operation of

the Sobradinho reservoir could be determined using

Equations (6) and (7).

Figure 10 compares the empirical and theoretical ME-

based marginal probability density function (PDF) and

cumulative distribution function (CDF) for the optimized

water releases in the Sobradinho reservoir in June,

including some parametric probability distribution
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functions such as Normal, Weibull and Gamma. Moreover,

Table 4 presents a goodness-of-fit based on Kolmogorov-

Smirnov (K-S) test for the marginal distribution functions.

Results show that the POME method can better fit the

distributions of the variables that represent the operation in

the Sobradinho reservoir, whereas parametric distributions

exhibit p-values lower than a ¼ 0; 05, rejecting the null

hypothesis.

A multivariate distribution function is constructed for

each month in order to estimate the expected water release

given the initial volume and inflows in the Sobradinho

reservoir. According to the obtained data of the optimiza-

tion model, the C-vine structure is chosen to represent the

dependence structure of the studied variables. Considering

the Kendall’s s presented in Figure 8, the inflows It was

selected to represent the first dimension, the initial volume

Fig. 9 Scatterplots of optimized

operating reservoir variables in

June

Table 3 Estimation of Lagrange multipliers for ME-based marginal

distribution of random variables associated with reservoir operation in

June

Variable k1 k2 k3 k4

Initial storage (hm3) �0,839 0,449 0,384 0,082

Inflow (m3/s) 0,493 0,530 �0,195 0,027

Water rekease (m3/s) 0,297 0,508 -0,108 0,012
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Fig. 10 Comparison of

theoretical and empirical

marginal density function (PDF)

and cumulative distribution
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storage St�1 the second dimension, and the water release Rt

was set as the third dimension of the C-vine. Figure 11

depicts the trees of the 3-dimensional C-vine defined for

June and Fig. 12 shows the copula density surfaces, as well

as the copula family and parameters used for this month.

A simulation procedure based on copula was performed

to forecast the expected amount of water that should be

released in the Sobradinho reservoir one-month ahead. For

each step, the performed model assumes the prior knowl-

edge of the initial storage volume and the future inflow

conditions in the river. In order to avoid overfitting, the

simulation process was carried out for a dataset used to

define the vine copula model (inside) and another sample

dataset that was not considered for this purpose (outside).

Figures 13 and 14 compare the simulated and optimized

water release in the Sobradinho reservoir for both sample

datasets respectively. Moreover, the corresponding 90%

uncertainty bound are represented for each period of time.

Results indicate that simulated data can well represent the

variation of water releases in the study area, particularly for

the peak values of turbinate water flow. In addition, sim-

ulated data show randomness over period of time that

operating policies defined by the optimization model

remain constants. However, the simulation by copulas

allows to construct uncertainty bounds for each month

rather than estimate a single water release value. Moreover,

the QQ-plots show a good performance of the proposed

Table 4 Goodness-of-fit based

on Kolmogorov-Smirnov (K-S)

test for marginal distribution

functions in June. Red values

indicate p-values lower than

a ¼ 0; 05

Variable POME Normal Weibull Gamma

p-value K-S stat p-value K-S stat p-value K-S stat p-value K-S stat

Initial storage (hm3) 0.206 0.019 0.000 0.095 0.000 0.051 0.000 0.116

Inflow (m3/s) 0.077 0.022 0.000 0.064 0.000 0.060 0.135 0.020

Water release (m3/s) 0.080 0.022 0.000 0.038 0.000 0.054 0.735 0.012

It

St−1

Rt

CIt,St−1

CIt,Rt

It, St−1 It, Rt

CSt−1,Rt|It

Fig. 11 C-vine structure used to model operational policies in June

Fig. 12 Copula density surfaces associated to the C-vine structure of June
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model to represent water allocations in the Sobradinho

reservoir.

Figure 15 shows the relative errors between the opti-

mized and simulated monthly water releases for both

datasets. Furthermore, the RMSE and NSE are estimated to

evaluate the performance of the proposed model. Consid-

ering the optimized data of Figs. 13 and 14 as observed

values, the relative error between simulated and optimized

values is 11%, the calculated NSE is 0.55 and the RMSE is

350 m3/s approximately. Hence, the results show that the

variability of simulated data is low when it is compared to

the optimized monthly water release.

4 Conclusions

Reservoir operation is a key task for water resources

management. Numerical methods, including optimization

and simulation techniques, are commonly used to derive

suitable operational policies. In particular, Implicit

Stochastic Optimization (ISO) combines optimization

deterministic models and Monte Carlo methods to derive

operational policies under different inflow scenarios. ISO is

commonly supported by fitting approaches including linear

regression or nonlinear methods to derive long-term oper-

ating rules for multipurpose water reservoirs. Although
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such approaches give feasible solutions for future water

releases, the adoption of optimal parameters for specific

functions may not consider the uncertainties or nonlinear

dependence structure of hydrological variables. This study

explored a probabilistic approach to derive monthly oper-

ating rules for a single hydropower reservoir based on the

definition of joint probability distribution functions, com-

bining copulas and ISO. In that way, the expected water

release and the correspoding uncertainty bounds can be

estimated for future months, rather than a single optimal

value. Thus, the proposed method is presented as a sup-

portive approach for operators to derive long-term water

release policies.

Considering the importance of inflow scenarios to derive

feasible water allocations, simulation models should rep-

resent the main statistical features of historical data.

Therefore, this study started with the simulation of monthly

streamflow sequences based on a vine copula model. In this

case, D-vine structures were employed to represent the

periodic and sequence dependence of adjacent months in

the Sobradinho river. The Principle of Maximum Entropy

(POME) was used to support the simulation process by

fitting the marginal distribution function for each month.

Overall, the simulated scenarios showed good adherence to

the periodic behavior of historical data and well perfor-

mance to represent nonlinear autocorrelation structures.

Simulated streamflow scenarios were used as input to

derive the optimal water allocations in the Sobradinho

reservoir using a deterministic optimization model. Based

on a Monte Carlo process, the resulting ensemble of initial

storage volume, inflow, and water release was related

month by month in order to represent the corresponding

operating rules. In this case, C-vine structures shown a

feasible approach to construct multivariate distribution

functions in order to relate and represent the dependence

structure of the studied variables. A simulation procedure

based on copulas was performed to forecast the expected

water release one-month ahead. The proposed model was

tested on a sample inside and outside the stochastic model.

Results show that simulated data can well represent the

variability of monthly water release in the Sobradinho

reservoir with small relative errors in comparison with the

data obtained by the optimization model. In general, the

average relative error for both samples is 11%, the esti-

mated RMSE was equal to 350 and NSE was equal to 0.55.

In comparison with other fitting approaches, the main

advantages of the proposed model are the non-restriction to

represent nonlinear dependencies between hydrological

variables and the non-assumptions regarding the marginal

distributions. Moreover, the flexibility of copula allows the

construction of multivariate probability distributions con-

sidering other variables that may constrain reservoir oper-

ation. The main observed disadvantage of the proposed

model is the randomness presented by simulated values,

increasing the variability of the results when it is compared

with optimized data. However, the simulation process

allows considering uncertainty bounds rather than a single

water release for each period of time. In this study, the

performance of the proposed model was evaluated by the

comparison with the water release obtained by the opti-

mization model. Nonetheless, the application of this model

can be well extended for real cases when the initial volume

and expected future inflows of a single water reservoir are

well known. Further studies may explore the performance

of copulas to derive short-term operating policies in water

reservoirs as well as the operating policies for cascade

water reservoir systems.
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simulated water release in the

Sobradinho reservoir for a

dataset a inside and b outside

the vine copula model. The red

lines represent the average of
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