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Abstract
While Stochastic Weather Generators (SWGs) are used intensively in climate and hydrological applications to simulate

hydroclimatic time series and estimate risks and performance measures linked to climate variability, there have been few

investigations into how many realizations are required for a robust estimation of these measures. Given the computational

cost and time necessary to force climate-sensitive systems with multiple realizations, the estimation of the optimal number

of synthetic time series to generate with a particular SWG for a predefined accuracy when estimating a particular risk or

performance measure is particularly important. In this paper, the required number of realizations of five SWGs coupled

with a SWAT model (the Soil and Water Assessment Tool) needed in order to achieve a predefined Relative Root Mean

Square Error is investigated. The statistical indices used are the mean, standard deviation, skewness, and kurtosis of four

hydroclimatic variables: precipitation, maximum and minimum temperature, and annual streamflow obtained for each

observed and model-generated time series. While the results vary somewhat across SWGs, variables and indicators, they

overall show that the marginal improvement decreases dramatically after 25 realizations. The results also indicate that the

benefit of generating more than 100 realizations of climate and streamflow data is very minimal. The methodology

presented herein can be applied in further investigations of other set of risk indicators, SWGs, hydrological models, and

watersheds to minimize the required workload.

Keywords Stochastic weather generators � Stochastic hydrological modeling � Hydrometeorology � Hydrological risk
assessment � Climate ensemble � Climate sensitivity � Climate realizations � Hydrological realizations

1 Introduction

Stochastic weather Generators (referred to as SWGs here-

after) are numerical tools employed broadly to simulate the

statistical characteristics of observed climate variables and

generate random time series that can be used as inputs for

climate-sensitive hydrological models (Wheater et al.

2005). The variability in the input translates into variability

in the generated hydrological time series. The risk associ-

ated with and performance of the modeled water system are

assessed by estimating the statistics for the simulated

variables. The use of SWG outputs in such studies is

convenient, as SWGs can generate long and gap-free syn-

thetic sequences based on historical observations and can

be used for water resources planning and management (Vu

et al. 2018). A large ensemble of synthetic weather

sequences (or realizations) is assumed to represent the

internal variability of hydroclimatic variables, consisting

mostly of precipitation, maximum temperature, minimum

temperature, solar radiation, and relative humidity (Santer

et al. 2008) at different spatial and temporal scales (Ailliot

et al. 2015).

According to Guenni (1994), SWGs are mainly useful

in: (1) extending insufficient or incomplete records that
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constrain the modeling approach (e.g., Fodor et al. 2013;

Fatichi et al. 2016), (2) developing datasets for ungauged

sites via spatially interpolating model parameters from

adjacent areas with sufficient records (e.g., Baffault et al.

1996; Fodor et al. 2013), and, recently, (3) accounting for

the uncertainty that arises from natural variability along

with anthropogenic forcing in climate-change simulations

(e.g., Räisänen and Ruokolainen 2006; Minville et al.

2008; Deser et al. 2012; Thompson et al. 2015). Ailliot

et al. (2015) classified SWGs in into four group according

to the random number generation process: resampling

techniques (e.g., Räisänen and Ruokolainen 2006; Oriani

et al. 2014), multivariate autoregressive models applying

Box-Jenkins Method (e.g., Box and Jenkins 1976), point

process models (e.g., Rodriguez-Iturbe et al. 1987; Onof

et al. 2000) and Bayesian hierarchical modeling such as

weather type models (e.g., Thompson et al. 2007).

SWGs were introduced initially for hydrological appli-

cations requiring long sequences of daily weather data

(e.g., Gabriel and Neumann 1962; Todorovic and Wool-

hiser 1975; Buishand 1977). Since then, SWGs have found

wide application in various hydrologic investigations, such

as the assessment of anthropogenic climate change impacts

(e.g., Zwiers 1996; Eames et al. 2012; Kilsby et al. 2007;

Candela et al. 2012), crop yield estimates (e.g., Vesely

et al. 2019), ecosystem and food security models (e.g.,

Stevens and Madani 2016), and in streamflow simulations

(e.g., Zhang and Garbrecht 2003; Dubrovský et al. 2004;

Alodah and Seidou 2019a) mainly to characterize internal

atmospheric variability (or climate noise) (Räisänen and

Ruokolainen 2006; Santer et al. 2008; Deser et al. 2012)

and particularly under conditions of data scarcity (Breinl

et al. 2017). The use of observed climate data in hydro-

logical modeling is always preferable; however, SWGs

provide a suitable alternative, as some localized risky

events that are not covered fully in the observed set may be

overlooked (Räisänen and Ruokolainen 2006; Ivanov et al.

2007; Santer et al. 2008; Vu et al. 2018).

Several authors investigated the abilities of SWGs in

representing the statistical properties of observed weather

series (e.g., Semenov et al. 1998; Hayhoe 1998, 2000; Qian

et al. 2004; Ivanov et al. 2007; Chen et al. 2014; Ailliot

et al. 2015; Breinl et al. 2017; Mehan et al. 2017; Gitau

et al. 2018; Vesely et al. 2019). Well-known limitations of

SWGs include their inability to generate low-frequency

variability very well (Soltani and Hoogenboom 2003a) or

correctly reproduce the dependence of temperature vari-

ables and precipitation amount in wet days on wet/dry spell

lengths determinant parameters (Wilby et al. 2004).

Alternatively, Panagoulia (2006) showed the great poten-

tial of artificial neural network (ANN) models in simulat-

ing nonlinear processes of extreme river flows in various

climates conditions. The ability of ANN in flow

simulations was also proven even at the level of detailed

localized studies taking into consideration the appropriate

selection of input variables (Panagoulia et al. 2017).

SWGs are often employed to study the impacts of cli-

matic variability, for instance, in rainfall-runoff simula-

tions (e.g., Dubrovský et al. 2004; Panagoulia 2006),

erosion simulations (e.g., Zhang and Garbrecht 2003),

simulations of extreme precipitation events (e.g., Furrer

and Katz 2008; Semenov 2008), and in climate-change

studies (e.g., Kilsby et al. 2007; Kim et al. 2007; Al-

Mukhtar et al. 2014; Alodah and Seidou 2019b). Yet,

unlike observed weather data which provide only one

realization, an unlimited number of weather realizations

can be generated (Kim et al. 2018; Vu et al. 2018), and it is

very improbable statistically that any two realizations will

be identical (i.e., uncorrelated data from a realization to the

next one). In general, multiple stochastically-generated

time series can provide a broad range of weather possi-

bilities for a detailed sensitivity analysis (Dubrovský et al.

2004; Santer et al. 2008), such as the recently introduced

vulnerability-based methods (e.g., bottom-up approaches)

for evaluating uncertainty in projected climate change

impacts (e.g., Brown et al. 2011; Steinschneider and Brown

2013; Mukundan et al. 2019; Alodah and Seidou 2019b).

An ensemble of multiple realizations is recommended in

order to characterize the variability in climate data ade-

quately and estimate realistic mean values and variances of

meteorological variables (Alodah and Seidou 2019a; Guo

et al. 2018; Mehrotra et al. 2006; Anyah and Semazzi 2006;

Dubrovský et al. 2004).

Multiple realizations of climate series are increasingly

becoming the adopted modeling approach when evaluating

the variability of complex climate systems to account for

rare occurrences of climate variables (Anyah and Semazzi

2006). Typically, an arbitrary (and commonly limited)

number of realizations (ranged from 5 to 1000) is used.

Examples of some recent publications utilizing multiple

runs of weather generators are presented in Table 1. It is

also common to use SWGs to produce a time series that is

longer than observed ones (e.g., Kou et al. 2007; Caron

et al. 2008; Chen et al. 2012; Eames et al. 2012), although

this might lead to biases due to an insufficient sampling of

the distribution (Mithen and Black 2011). Therefore, it is

recommended that multiple realizations with the same

lengths as the training set be used (Dubrovský et al. 2004;

Guo et al. 2018). However, the use of multiple realizations

requires high-performance computational resources, espe-

cially when used in conjunction with a complex impact

model. For example, Gitau et al. (2012) analyzed 172

management scenarios and ran a SWAT model 250 times

for each of them, for a total of 43,000 runs, using an

extremely large computing Condor framework. However,

they stated that their work could have taken up to 3.3 years
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to complete via a traditional desktop computer workstation.

Thus, given the acknowledged limitations imposed by time

and computational expenses, the question related to the

required number of realizations to fairly characterize the

hydrological space is still open.

This prolonged process, particularly for large water-

sheds, may be overcome with the help of expensive

supercomputers or by identifying a sufficiently represen-

tative number of outputs needed to capture the random

component of the hydrological model and ultimately

reduce the computations. Guo et al. (2018) investigated the

numbers of realizations necessary for capturing several

statistical characteristics of meteorological variables satis-

factorily (i.e., for precipitation and minimum and maxi-

mum temperature) generated synthetically by CLIGEN,

LARSWG, and WeaGETS. They analyzed increasing

discrete numbers of realizations (1, 25, 50, and 100) and

concluded that a weather generator would reproduce

essential climate characteristics well by 25 realizations.

The current work generally builds on their ideas. However,

the statistics considered in their work belong to the climatic

data space only (precipitation and temperature variables);

thus, their findings may not be applicable for hydrological

variables, especially due to the non-linearity of the

hydrologic response in rainfall-runoff transformations.

Frequently, synthetically generated climate sequences

are fed to hydrological models and used after that to

examine some risk spaces. This study aims to analyze how

the accuracy of the estimates of key statistics evolves with

the number of realizations of SWGs. Five SWGs were used

to generate ensembles of daily precipitation occurrences

and amounts (PCP) and daily maximum (Tmax) and

Table 1 Examples of ensembles of multiple realizations used in the prior hydrological investigations

Stochastic weather generator(s) Number of

realizations

Time series

length

Impact models? References

Met and Roll 30 30-year SAC-SMA Dubrovský et al. (2004)

WEGN and WeaGETS 30 300-year HSAMI Caron et al. (2008)

MNHMM 100 22-year Sacramento Kwon et al. (2011)

WGEN 100 30-year Several conceptual models Bastola et al. (2012)

Unique SWG 200 25-year HEC-HMS and

VisualBALAN

Candela et al. (2012)

WXGEN 250 28-year SWAT Gitau et al. (2012)

WeaGETS, MulGETS, and KNN 1000 41-year SWAT Alodah and Seidou (2019a)

MulGETS 250 30-year SWAT Alodah and Seidou (2019b)

WXGEN 10 30-year Socio-hydrologic model Han et al. (2019)

Unique Stochastic Model 1000 42-year Crop simulation models Hansen and Ines (2005)

WGEN, SIMMETEO, and SWG 100 71-year Crop simulation models Apipattanavis et al. (2010)

AR(1) model 20 50-year Climate only Alhassoun et al. (1997)

CLIGEN 10 20-year Climate only Elliot and Arnold (2001)

HMM, KNN, and Wilks 100 43-year Climate only Mehrotra et al. (2006)

Simple resampling method 20 30-year Climate only Räisänen and Ruokolainen

(2006)

MMLR 50 40-year Climate only Jeong et al. (2012)

Improved KNN 50 62-year Climate only Steinschneider and Brown

(2013)

CLIGEN, LARS-WG, and

WeaGETS

50 50-year Climate only Mehan et al. (2017)

TripleM 30 30-year Climate only Breinl et al. (2017)

AWE-GEN-2d 50 30-year Climate only Peleg et al. (2017)

LARS-WG 50 50-year Climate only Gitau et al. (2018)

CLIGEN, LARS-WG, and

WeaGETS

100 50-year Climate only Guo et al. (2018)

AWE-GEN 100 30-year Climate only Kim et al. (2018)

Parametric and Non- parametric

SWGs

50 17-year Climate only Benoit et al. (2019)
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minimum (Tmin) temperatures coupled with a hydrological

model (SWAT) to simulate streamflow. A variety of

diagnostic tools were then applied to identify the optimal

number of realizations needed for both the climatic and

hydrologic variables.

2 Materials and methods

2.1 Study area and available hydro-climatic data

The study area is the South Nation Watershed (SNW),

located in Eastern Ontario, Canada. The SNW has a rela-

tively flat area of about 4000 km2 between 74�220 to 75�430
W longitude and 44�400 to 45�380 N latitude. The water-

shed is drained by the South Nation River, which runs

northeast for 175 km towards Plantagenet, with a low

topographic gradient of only 80 m between its headwaters

and the confluence with the Ottawa River. This charac-

teristic maximizes the flood risk and boosts the erosion of

riverbanks and agricultural topsoil. The reader is referred to

Alodah (2015, 2019) for detailed descriptions of the study

area. Climate data were collected for a 41-year period,

based on the availability and consistency of the observed

data, between 1971 and 2011 at four metrological stations,

namely, Russell Station (Climate Identifier (CI): 6107247,

Latitude: 45� 150 4600N, Longitude: 75� 210 3400W, Eleva-

tion: 76.2 m), South Mountain Station (CI: 6107955, Lat-

itude: 44� 580 0000N, Longitude: 75� 290 0000, Elevation:
84.7 m), Morrisburg Station (CI: 6105460, Latitude: 44�
550 2500N, Longitude: 75� 110 1800W, Elevation: 81.7 m),

and St. Albert Station (CI: 6107276, Latitude: 45� 170

1400N, Longitude: 75� 030 4900W, Elevation: 80 m). In

addition, the observed downstream daily discharge data

was collected at the Plantagenet Gauging Station (ID:

02LB005, Latitude:45� 310 0100 N, Longitude: 74� 580 4100
W). There was no missing data in either dataset for the

reference period. A detailed description of the observed

hydroclimatic data has been presented previously in Alo-

dah and Seidou (2019a).

2.2 Stochastic weather generators

The observed 41-year climate series for maximum air

temperature, minimum air temperature, and precipitation

from the four metrological stations were fed into five

SWGs, namely, the WeaGETS implementing multi-

Gamma (referred to as WG hereafter) and multi-Expo-

nential (referred to as WE hereafter) distributions for wet-

day sequences (Chen et al. 2012), MulGETS implementing

multi-Gamma (referred to as MG hereafter) and multi-

Exponential (referred to as ME hereafter) distributions for

wet-day sequences (Chen et al. 2014), and the k-nearest

neighbor resampling models (Sharif and Burn 2007; Goyal

et al. 2013). WeaGETS, a uni-site weather generator from

the École de Technologie Supérieure (ÉTS), is a multi-

variate parametric model that simulates temperature vari-

ables conditional to each other based on a normal

distribution and using first-order linear auto-regression

coupled with constant lag-1 autocorrelation and cross-

correlation. It also considers seasonal cycles with the help

of Finite Fourier series with two harmonics. The Mul-

GETS, a multi-site weather generator also from ÉTS, is an

extension of WeaGETS and has the ability to take into

account the spatial attributes of climate data, which is

crucial in most hydrological models. For the simulation of

a precipitation occurrence, MulGETS uses a two-state (dry

or wet) first-order Markov chain with Cholesky factoriza-

tion, whereas WeaGETS uses a third-order Markov model

without parameter smoothing.

A higher-order Markov model is used in WeaGETS

since it is recommended for better predicting long dry and

wet spells (Bastola et al. 2012; Chen et al. 2012), whereas a

first-order Markov chain is the only option in MulGETS.

The order determination in the Markov chain models for

the simulation of precipitation has been assessed by

numerous studies (e.g., Schoof and Pryor 2008; Stowasser

2012). For instance, Schoof and Pryor (2008) examined

Markov chains of order 0–3 to replicate monthly precipi-

tation occurrence using the Bayesian information criteria

(BIC) and found that the higher-order models performed

better in simulating wet spells, while underperformed in the

dry spell lengths. The inherent inadequacy of simulating

the length of dry and wet spells by the exponential Markov

approach proposed by Richardson (1981) was purportedly

improved by the serial model- spell length approach

(Racsko et al. 1991). Also, temperature variables and

precipitation amount in wet days are conditional on wet/dry

spell lengths determinant parameters (Wilby et al. 2004).

Stowasser (2012), however, indicated that the improvement

in producing precipitation statistics when using the theo-

retically best mixed-order model was minimal in compar-

ison to simpler models.

Both models (WeaGETS and MulGETS) were used

twice to simulate the daily wet-day precipitation sequences

while implementing two probability distribution functions:

a multi-Gamma distribution (a combination of several

gamma distributions) and multi-Exponential distribution.

The probability distribution functions (PDFs) of the

Gamma and Exponential models are:

fGammaðx) =
x=bð Þa�1

exp �x=b½ �
bC að Þ ð1Þ

fExpðx) = ke�kx ð2Þ
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The k-nearest neighbor resampling model (KNN) is a

daily generator that applies different methodologies based

on the nonparametric resampling of an observed climate

dataset. Since it is nonparametric, KNN has the advantage

of being able to generate unprecedented values in the his-

torical period but within the sampled values. For further

information, the reader is referred to a previous paper

(Alodah and Seidou 2019a) for a full description of the

configurations of the abovementioned stochastic models

and their performances.

2.3 Rainfall-runoff model

The Soil and Water Assessment Tool (SWAT) is a well-

known hydrological model that has been used widely for

many applications, including the simulation of sediment

and nutrient flow but mainly for streamflow simulations

(Neitsch et al. 2011). SWAT is a semi-distributed water-

shed-scale model that relies on hydrologic response units

(HRUs) of uniform land and climate characteristics. The

SWAT model for this study was first calibrated and vali-

dated with the observed climate data using a daily time step

and based on the Nash–Sutcliffe efficiency (NSE), the

RMSE-observations standard deviation ratio (RSR), and

the percent bias (PBIAS). Mehrotra et al. (2006) pointed

out that care should be taken when applying NSE alone

particularly for its dependence on the size of test samples.

Alternatively, more than one metric should be considered

(Criss and Winston 2008). The results of the calibration

and validation of the model indicate a good fit between the

observed and simulated flows (Metric: Calibration, Vali-

dation; NSE: 0.90, 0.81; RSR: 0.31, 0.43; PBIAS: -10.0%,

-8.3%). The reader is referred to Alodah and Seidou

(2019a) for an enhanced description of the SWAT con-

figuration and parameter selection. Next, synthetic climate

time series were fed independently into the SWAT model

to generate synthetic daily streamflow time series. To

examine the hydrological responses to various synthetic

climate scenarios, all SWAT parameters were kept

unchanged except for the climate input when synthetic

climate time series replaced the observed ones, enabling

the effect of climate variability on hydrological variables to

be tracked.

2.4 Definitions and notations

For additional clarity, the definitions of some terms used

herein are given below:

• Realization is a random output generated by running a

SWG (climate) or the SWAT model with synthetic

climate data (streamflow) for a number of years (a

41-year cycle herein), where all realizations are

considered equally plausible for a given SWG (the

terms ‘‘realization’’, ‘‘run’’, ‘‘iteration’’ and ‘‘scenario’’

are frequently interchangeable in the prior literature).

• Cloud refers to an ensemble of separately-generated

realizations (i.e., one thousand herein) of synthetic

climate (or streamflow) series accomplished by running

a given SWG (coupled with SWAT) 1000 sperate

times.

• Sample refers to a set of N realizations (for example a

10-realization sample), where this set with length N is

reproduced randomly 10,000 times from the cloud.

To ease comprehension, the following notations are

adopted:

• Index s goes from 1 to S and represent the metrological

stations listed below:

1. Russel

2. South Mountain

3. Morrisburg

4. St. Albert

where, S is the number of stations (4).

• T is the length in years of all climatic and hydrological

time series (41-yr series).

• The observed climate and flow time series are denoted

as:

– PCP
obs;s
t , t = 1,…,T; s = 1,..,S, which represents the

observed precipitation at time t at meteorological

station s

– Tmax
obs;s
t , t = 1,…,T; s = 1,..,S, which represents

the observed maximum temperature at time t at

meteorological station s

– Tmin
obs;s
t , t = 1,…,T; s = 1,..,S, which represents

the observed minimum temperature at time t at

meteorological station s

– Qobs
t , t = 1,…,T, which represents the observed

discharge (OBS Flow) at time t at the outlet for

the SNW.

• The flow time series at the outlet for the SNW obtained

by forcing the SWAT model using observed climate

data, called Simulated Flow using Observed Climate, is

denoted as:

– SFOCt, t = 1,…,T.

The following sections provide a more enhanced

description of the main steps involved in the integrated

framework: (a) the generation of multiple realizations of

climate and streamflow data, and (b) the evaluation criteria

used to define the number of realizations needed in

hydrological simulations. A schematic illustration of the

overall modeling framework is presented in Fig. 1.

Stochastic Environmental Research and Risk Assessment (2020) 34:993–1021 997

123



2.5 Climate and flow cloud generation

In this work, 41 years (1971–2011) of observed climate

and streamflow records are used as the reference data from

which the deviations are calculated. The synthetic precip-

itation and temperature time series in this paper are also

41 years long to permit an adequate risk analysis to be

conducted (Semenov and Barrow 1997; Elliot and Arnold

2001). Each SWG was run 1000 separate times, resulting in

a total of 5000 realizations of weather sequences at a daily

time step. Each realization is 41-year long to match the

length of the observed climate data, resulting a total of

205,000 synthetic weather years (5 SWGs 9 41 years 9

1000 realizations). Soltani and Hoogenboom (2003b)

found that at least 15 years of historical climate data is

required to generate synthetic time series that mimic the

observed statistical characteristics. Similarly, the SWAT

model was run 5000 separate times, with each run pro-

ducing a unique 41-year realization of the climate. The

choice of 1000 for the number of realizations for each

weather generator, despite the excessive computational

demand particularly for the hydrological modeling, was

done to form a dense cloud of realizations and thus identify

a satisfactory number of realizations. The 1000 synthetic

time series for precipitation, minimum temperature, and

maximum temperature generated using SWGs and repre-

senting the climate at station s (referred to as the climate

cloud hereafter) are denoted:

• PCP
i;s
t , t = 1,…,T; s = 1,..,S for the precipitation time

series,

• Tmax
i;s
t , t = 1,…,T; s = 1,..,S for the maximum temper-

ature time series,

• Tmin
i;s
t , t = 1,…,T; s = 1,..,S for the minimum temper-

ature time series.

The 1000 streamflow time series obtained by forcing the

SWAT model with the synthetic climate time series (re-

ferred to as the flow cloud hereafter) are each called Sim-

ulated flow using synthetic climate ( SFSC) and denoted as:

• SFSCi
t;SWG, t = 1,…,T; i = 1,…,1000, SWG

2 ME,MG,WE,WG, KNNf g.

Fig. 1 Schematic representation of the current work, where N ranges from 1 to 1000 unique realizations
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2.6 Estimation of a statistic V using N
realizations

The following algorithm is used to estimate a statistic

V using N realizations. For k between 1 and 10,000:

• Sample without repetition from a subset of size N of

indices between 1 and 1000, i.e., jk1; j
k
2; . . .; j

k
N

� �
.

• A kth estimate of the mean value of a statistic V is,

lk ¼
1

N

XN

m¼1

PT
t¼1 V

jm;s
t

T

 !

The more variability in lkf g; k ¼ 1; . . .; 10000, the less

precise the estimate. The variability in these estimated

means can be illustrated using a violin-plot graph. The

deviations from Yref quantify the biases of the estimates.

2.7 Evaluation criteria

Given that a series of samples generated by the SWGs will

not be identical, the impact of such variations between the

samples is investigated visually using time-series graphs of

the simulated sequences, such as sequence plots, running

mean plots, and violin and boxplots of the samples.

2.7.1 Visual convergence assessment

An examination using proper graphical techniques can

produce a general idea concerning the variable of interest

(Ott and Longnecker 2015). Plots of each parameter and

the running mean are used to examine the simulation

process as the number of realizations increases. A time

series plot of the running mean is simple and easy to

implement and used to check when a new stochastic gen-

eration of flow data is no longer deviating significantly

from the mean of previous realizations. The running mean

is computed as the mean of all sampled values up to and

including the current realization. The plot then shows

whether the running mean stabilizes at a realization (ran-

domly ordered) against the mean of all realizations (Smith

2007). These plots will eventually converge to a constant

value, which is the mean of all realizations according to the

Central Limit Theorem. These visual evaluations should

provide general insights, yet they are not sufficient indi-

cators and further statistical analyses must be conducted.

2.7.2 Quantitative assessment

The four key statistics to be estimated from the time series

are the mean (l), standard deviation (r), and the skewness

(a3) and kurtosis (a4) coefficients of the climate or flow

variable of interest. For the sake of simplicity, Y will be

used herein to indicate any of the estimates of above

statistics. The statistical measures considered in this paper

are the Relative Error (RE), the Relative Root Mean

Squared Error (RMSEr) and the Cohen’s effect size (d).

The relative error (RE) refers to the magnitude of the dif-

ference between an experimental (sample) value (Yi) and

the known or accepted value (Yref ):

RE %ð Þ¼ Yref � Yi

Yref

� �
� 100 ð3Þ

The root mean squared error (RMSE), also called root-

mean-square deviation, is one of the most common metrics

used to measure the accuracy of continuous variables via

measuring the average magnitude of the error. It is a

negatively-oriented score that has a range between 0 to !,

meaning that values closer to 0 are preferable. This metric

is particularly useful when a large error cannot be tolerated,

as the errors are squared when computing it. The RMSE

and relative RMSE (RMSEr) are computed as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

KN

XK

j¼1

XN

i¼1

Yref � Yj
� �2

vuut ð4Þ

RMSEr %ð Þ ¼ RMSE

Yref

� �
� 100; ð5Þ

The improvement in the RMSEr value obtained by adding

one more realization (RMSEr;improvement) and the marginal

improvement (RMSEr;mar:improvement) are defined as:

RMSEr;improvement ¼ RMSEr;n�1 � RMSEr;n ð6Þ

RMSEr;mar:improvement ¼ RMSEr;n¼1 � RMSEr;n ð7Þ

where n = 2, 3, …., N, and N = 1000.

2.7.3 Evaluation of effect size

The Cohen’s Effect Size (Cohen’s d) is a standardized

quantitative index that can help in better understanding

such large Monte-Carlo-like runs by checking the deviation

(or overlap) between two groups in standard deviation

units. Cohen’s d uses the differences in means of the

control (or reference) and sample groups and the standard

deviation (SD) of the control group (Rosnow and Rosenthal

1996), and determined mathematically as

Cohen0sd ¼
MeanYref

�MeanYi

		 		

SDYref

ð8Þ
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The standard deviation of the control group is used

following Mehan et al. (2017), assuming variances of the

two groups are not similar. This method govern by the

control group is also known as Glass’s d or D (Glass 1976).

Large effects mean larger differences in means and lesser

overlap between the two distributions. Some rules of thumb

were given by Cohen (1988), who stated that the effect size

could be interpreted as small (d\ 0.2), medium

(0:2\d\0:8), and large (d[ 0.8). Nevertheless, the

interpretation of the effect sizes shouldn’t rigidly follow

Cohen’s framework; rather results should be evaluated in

the context of prior related literature as suggested by

Vacha-Haase and Thompson (2004).

2.7.4 The reference values for the key statistics

For any given statistic, several reference statistics can be

used to calculate both the RE and the RMSEr. The three

reference values for the key climate statistics are:

• The statistics calculated from observations (Vref ;Y ;OBS),

and

• The average of the statistics calculated from the 1000

realizations in the synthetic climate (Vref ;Y ;SC).

The three reference values for the key flow statistics are:

• The estimates of statistics V calculated with observa-

tions, denoted by (Vref ;OBS);

• The estimates of statistics V calculated from the time

series simulated via SWAT using the observed climate,

denoted by (Vref ;SFOC); and

• The average of statistics V calculated from the 1000

realizations in the flow cloud, denoted by (Vref ;SFSC).

3 Results and discussion

The results are presented and discussed in three parts: first,

a visual assessment of the synthetically generated climate

and flow time series is presented. Second, the effect of the

number of SWGs realizations on the accuracy of basic

annual climatic indices is assessed. Third, the degree of

divergence between the sample and the cloud mean (the

Fig. 2 Plots of the precipitation statistics generated by five SWGs compared to the observed climate values (black line). The side boxes delineate

distributions of all realizations with the interquartile range (IQR: q25,q75), while the whiskers limits correspond to q25 ± 1.5 IQR

1000 Stochastic Environmental Research and Risk Assessment (2020) 34:993–1021

123



control group) is characterized by Cohen’s d effect size.

Variability is presented via violin and boxplots and

graphics of the running mean, the RMSEr, and the RE,

where the x-axis in each case represents the number of

realizations, which goes from 1 to 1000. The same analysis

is performed for each climate and flow variable, perfor-

mance index, and reference value.

3.1 Visual convergence assessment

Figure 2 shows that the mean annual precipitation esti-

mated by the MulGETS and WeaGETS realizations is

reasonably close to the mean of observed values

(lref;PCP;OBS), but that the observed values are underesti-

mated by KNN. However, the WeaGETS models (WE and

WG) and KNN underestimated the standard deviation

Fig. 3 Plots of mean annual streamflow statistics generated by five

SWGs compared to the observed flow and SFOC values (shown by

the black and blue dashed lines, respectively). The side boxes

delineate distributions of all realizations with the interquartile range

(IQR: q25,q75), while the whiskers limits correspond to q25 ± 1.5 IQR
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rref;PCP;OBS of the annual precipitation, while both the

MulGETS models (ME and MG) were able to capture r
adequately (Fig. 2). The kurtosis coefficients for the syn-

thetic annual precipitation were consistently higher than

those for the observed precipitation (Fig. 2). Thus, the

results are consistent with the findings of Chen and Bris-

sette (2014), who reported that the kurtosis coefficient of

the mean annual precipitation is poorly reproduced by

SWGs. The differences among the five models in terms of

generating a3 for the synthetic annual precipitation were

not notable.

The interannual r’s of SFSCWE and SFSCWG were

underestimated compared to the observed flow and—to a

lesser degree—the SFOC (Fig. 3). The interannual vari-

ability of SFSCKNN closely matched that of SFOC, while

SFSCME and SFSCMG were between the two reference

datasets (mostly underestimated the observed flow but

overestimated the SFOC). Interestingly, the SFSCs of all

SWGs performed similarly in well reproducing the a3 of

the OBS Flow and overestimating the a3 of the SFOC.

Similar to precipitation results, the poor performance

(overestimation) of most outputs of the tested SWGs in

replicating the a4 of the annual streamflow was observed

Fig. 4 Running mean plots for the mean annual precipitation statistics generated by five SWGs in which the order of the realizations is random.

The black dashed lines indicate the observed climate values
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when compared to both the OBS Flow and SFOC data

(Fig. 3). In general, it is fairer to compare the SFSC to the

SFOC than to the observed flow, as the first two were both

simulated by SWAT and inherited the biases within the

model itself. Such figures can help grasp a general idea

about the realizations, but further investigation using more

sophisticated statistical methods is certainly needed.

The annual precipitation and streamflow statistics are

plotted as a function of the number of realizations in

Figs. 4 and 5. The running mean plots show the mean of

previous realizations up to and including each iteration

displayed on the x-axis. Such figures show how the running

mean highly fluctuates at the beginning of the sequence,

making it difficult to construct robust confidence intervals.

The statistics for the outputs of the five weather generators,

however, do not differ much after 100 realizations. That is,

almost all parameter estimates appear to stabilize around

100 realizations. Biases caused by the stochastic generation

of the cloud are clearly outweighed eventually by the

increased number of realizations, as stated in Räisänen and

Ruokolainen (2006), as it is the case for any Monte Carlo

experiment (Cunha et al. 2014). That is, the approximation

or the performance gains can be improved by increasing

the number of realizations to achieve a certain level of

precision. We are not presenting graphs for temperature

parameters due to lack of space, but similar patterns were

observed.

Fig. 5 Running mean plots for the annual streamflow statistics generated by five SWGs in which the order of the realizations is random. The

observed flow (SFOC) values are represented by the black (blue dashed) lines
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3.2 Variations in the spread, RMSEr’s, and REs
for key statistics as a function of the number
of realizations

3.2.1 Climate space

As explained in the methodology section, the spread of the

estimates was visualized using violin and box plots. Violin

plots are accompanied with black boxplots (25th and 75th

percentiles representing interquartile ranges, and 1.5 times

the IQR whiskers). These plots were generated using the

functions by Bastian Bechtold available on the GitHub

repository (Violin plots for Matlab https://github.com/

bastibe/Violinplot-Matlab). As expected, the variability in

each of the indicators decreases as the number of realiza-

tions increases (Figs. 6, 7, and 8). The use of a single

realization is not recommended due to the high error

expected, particularly for applications that depend heavily

on higher moments, such as an assessment of extremes. For

instance, the precision when estimating the a3 of the annual
precipitation using one realization can be off by more than

500%. Once the number of realizations increases, the

expected error decreases dramatically. This decrease in the

expected error is particularly clear for higher moments at

25 realizations and higher. Moreover, the use of more than

100 realizations seems very unnecessary.

Fig. 6 Violin plots of the relative errors (%) of the main annual precipitation statistics for the N-realization samples used to estimate these

statistics from the cloud; an N-realization sample is derived from 10,000 different randomly selected SFSC sets
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The marginal improvements in the RMSEr’s of PCP,

Tmax, and Tmin as the number of realizations increases are

shown respectively in Figs. 9, 10, and 11, where the syn-

thetic climate using N realizations (relative to using N-1

realizations) is compared to the two reference datasets: the

climate cloud (synthetic climate) and the observed climate.

Tables 2, 3, and 4 present a similar comparison for the

three climate variables but relative to the results of just a

single realization. These results are consistent with the

previous findings suggesting that after 100 realizations, the

marginal improvement in the RMSEr becomes insignifi-

cant (e.g., less than a 0.21 (1.09) % improvement across

SWGs in lTmax (rTmax) when adding 900 realizations).

Also, 25 realizations appear to be reasonably adequate,

particularly for the first two moments (e.g., less than a 0.46

(2.34) % improvement across SWGs in lTmax (rTmax) when

adding 975 realizations). The results are very similar for

the temperature variables, whereas precipitation indicators

require even fewer realizations.

3.2.2 Hydrological space

For the streamflow data, Fig. 12 presents the REs of the

key annual streamflow statistics, including the mean,

standard deviation, skewness, and kurtosis. The variability

of each RE as a function of different numbers of

Fig. 7 Violin plots of the relative errors (%) of the main annual maximum temperature statistics for the N-realization samples used to estimate

these statistics from the cloud; an N-realization sample is derived from 10,000 different randomly selected SFSC sets
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realizations (1, 5, 10, 25, 50, 100, and 1000) is represented

using violin plots, each of which is based on ten thousand

N-realization samples randomly taken from the cloud

containing all SFSC time series. Figure 12 strongly sug-

gests that a sole realization is not sufficient for representing

SWGs in hydrological modeling. Similar to the situation

for the climate variables, 100 realizations seem adequate,

with very low relative errors across different statistics.

The marginal improvements in the RMSEr’s of the

streamflow statistics are plotted in Fig. 13, and Table 5

lists these improvements as functions of the number of

realizations. In Fig. 13, the estimates are compared to the

three reference values (SFSC, SFOC, and OBS Flow). The

estimate is compared to the estimate obtained using a

single realization (Table 5). The results are consistent with

the previous findings, which suggest that after 100 real-

izations, the marginal improvement in the RMSEr becomes

insignificant (e.g., less than a 0.55% improvement for all

three reference datasets and across all SWGs for l when

compared to the l calculated from 1000 realizations). Also,

25 realizations appear to be reasonably adequate, particu-

larly for the first two moments (e.g., less than a 1.78%

Fig. 8 Violin plots of the relative errors (%) of the main annual minimum temperature statistics for the N-realization samples used to estimate

these statistics from the cloud; an N-realization sample is derived from 10,000 different randomly selected SFSC sets
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improvement for all three reference datasets and across the

SWGs for l when compared to the l calculated from 1000

realizations).

3.3 Impact of the number of realizations
on Cohen’s d effect size

Cohen’s d values of precipitation, maximum temperature,

minimum temperature, and streamflow statistics are pre-

sented in Figs. 14, 15, 16, and 17, respectively. Such fig-

ures clearly indicate a very large effect size, as expected,

when a single realization is used for all variables, statistics,

and SWGs. 5, 10 and 25 realizations are not sufficiently

enough but the effect size diverges decreasingly from zero

as the number of realizations is increasing. Moreover, the

upper quartile of the 10,000 different randomly selected

sample sets across variables, SWGs, and statistics show

that in more than 75%, the effect size deemed to be small

(d\ 0.2) after 50 realizations. Further, figures demonstrate

that 100 realizations are exhibiting even a smaller effect

size of the randomly selected sets as Cohen’s d values are

always below 0.5 (the horizontal red dash-dotted line)

indicating small to medium effect size. Similar interpretive

Fig. 9 Improvement in the RMSEr’s of the main annual precipitation

statistics for the N-realization samples generated by the five SWGs.

The RMSEr’s is calculated using either the observations (red line) or

the cloud mean (blue line) as reference. The N-realization samples are

derived from 10,000 different randomly selected SFSC sets. Scattered

markers represent actual results for which the lines are slightly

smoothed by moving averages with spans of 3. Vertical black dashed,

dash-dotted, and solid lines represent 10, 25, and 100 realizations,

respectively
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framework was also followed in the prior related literature

(cf. Mehan et al. 2017; Guo et al. 2018).

3.4 Discussion

The main finding of this work is that, while a larger number

of realizations may provide a better representation of cli-

mate variability, a limited problem-dependant number of

realizations can provide robust estimates of key risk

statistics. In this particular application, the marginal

improvements in the RMSEr’s of all statistics (climatic and

hydrological variables) are not substantial after 25

realizations, particularly for the first two moments (i.e., l
and r) and to a lesser extent for higher moments (i.e.,a3
and a4). Cohen’s d, which characterizes the degree of

divergence between the sample and the cloud mean (the

control group), was used to compare the effect sizes as the

number of realizations is increasing. Like any Monte Carlo

simulation relying on repeated random sampling, the

marginal value of a realization decreases as the number of

realizations increase. The findings of these metrics suggest

that for this particular SWAT model and this particular set

of SWGs, going beyond 100 realizations is redundant with

a higher computational cost, as the improvement afterward

Fig. 10 Improvement in the RMSEr’s of the main annual maximum

temperature statistics for the N-realization samples generated by the

five SWGs. The RMSEr is calculated using either the observations

(red line) or the cloud mean (blue line) as reference. The N-realization

samples are derived from 10,000 different randomly selected SFSC

sets. Scattered markers represent actual results for which the lines are

slightly smoothed by moving averages with spans of 3. Vertical black

dashed, dash-dotted, and solid lines represent 10, 25, and 100

realizations, respectively
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is very minimal even for higher moments. Such results will

surely serve to better account for risk in quantitative

analysis and decision making in a variety of water and

environmental related problems with minimal computa-

tional and time requirements.

An interesting finding is that there are systematic biases

contained within the weather generators that lead to the

SFSC and SFOC to be different from the observed flow.

However, increasing the number of realizations cannot

reduce these biases. That is, repeated runs of a given SWG

that tends to misestimate a particular variable will not be

useful in obtaining a correct characterization of the

observed variable. A few ways to decrease such biases

include improving the SWGs, selecting a SWG with min-

imal bias, and/or improving the rainfall-runoff model.

Alternatively, one can consider generating a large dataset

of realizations and then select a number of realizations that

better represents the observed set, as suggested by Gitau

et al. (2018). However, the latter approach still presents a

challenge, as it can be computationally expensive and time-

consuming. The simplest of these solutions is to use the

methodology presented herein to select the number of

realizations that leads to the feasibly lowest RMSEr or RE

for the problem at hand (i.e., when the relative

Fig. 11 Improvement in the RMSEr’s of the main annual minimum

temperature statistics for the N-realization samples generated by five

SWGs versus the counterparts. The RMSEr is calculated using either

the observations (red line) or the cloud mean (blue line) as reference.

The N-realization samples are derived from 10,000 different

randomly selected SFSC sets. Scattered markers represent actual

results for which lines are slightly smoothed by moving averages with

spans of 3. Vertical black dashed, dash-dotted, and solid lines

represent 10, 25, and 100 realizations, respectively
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improvement becomes very small). Alternative methods

for assessing SWGs include statistical tests of significance,

such as the t test and F-test (e.g., Min et al. 2011; Chen and

Brissette 2014); v2 goodness-of-fit test (e.g., Semenov et al.

1998); nonparametric tests, such as the Wilcoxon rank sum

test, the Kolmogorov–Smirnov (K–S) test, and Mann–

Whitney test (e.g., Zhang and Garbrecht 2003; Qian et al.

2004; Chen et al. 2010); the RMSEs of various statistics of

interest (e.g., Mehrotra et al. 2006); and employing dis-

tance techniques, such as the Mahalanobis distance

between statistics derived from observed and simulated

time series (e.g., Alodah and Seidou 2019a).

One limitation of the present work is that the results are

specific to a particular hydrological model on a particular

Table 2 Marginal

improvements in RMSEr

(RMSEr;mar:improvement) of two

precipitation reference datasets

obtained by using N realizations

relative to a single realization

SWG N Synthetic Climate (PCP) Observed Climate (PCP)

l r a3 a4 l r a3 a4

ME 5 0.58 6.27 142.48 13.57 1.69 18.23 205.77 31.08

10 0.71 7.83 176.22 16.87 2.02 22.43 244.79 34.62

25 0.84 9.12 206.82 19.84 2.31 25.01 274.30 37.75

50 0.90 9.79 222.73 21.36 2.41 25.98 286.04 38.50

100 0.95 10.27 233.46 22.37 2.46 26.54 291.13 38.88

1000 1.05 11.36 258.24 24.77 2.51 27.06 295.82 39.30

MG 5 0.63 6.28 126.99 13.11 1.86 12.79 205.97 28.18

10 0.78 7.78 156.70 16.12 2.25 15.16 244.57 31.63

25 0.92 8.99 182.07 18.86 2.55 15.96 273.10 34.15

50 0.99 9.68 195.74 20.26 2.67 16.40 284.33 35.16

100 1.04 10.16 205.83 21.24 2.74 16.61 290.43 35.34

1000 1.15 11.20 226.93 23.47 2.80 16.75 294.98 35.72

WE 5 0.47 6.41 285.88 12.95 0.99 0.93 175.79 26.54

10 0.58 7.79 356.21 15.78 1.14 0.93 207.24 29.59

25 0.68 9.11 417.09 18.59 1.25 1.08 226.50 32.37

50 0.73 9.80 448.82 19.97 1.29 1.10 232.03 33.13

100 0.76 10.27 472.18 20.91 1.31 1.13 236.06 33.69

1000 0.84 11.34 521.60 23.08 1.32 1.13 239.04 33.95

WG 5 0.49 6.13 226.69 13.12 0.73 0.93 177.44 29.27

10 0.62 7.60 283.24 15.99 0.83 1.00 207.32 32.51

25 0.72 8.91 330.35 18.76 0.89 1.08 227.91 35.48

50 0.78 9.58 356.13 20.20 0.91 1.12 235.86 35.97

100 0.82 10.05 373.48 21.16 0.93 1.11 240.65 36.19

1000 0.90 11.11 412.88 23.38 0.94 1.14 243.46 36.65

KNN 5 0.52 6.51 191.85 11.95 0.31 0.84 163.73 24.35

10 0.64 7.93 234.66 14.67 0.35 1.14 196.25 27.17

25 0.74 9.28 275.80 17.17 0.36 1.33 215.33 29.15

50 0.80 9.98 296.28 18.49 0.37 1.30 220.19 30.11

100 0.84 10.47 311.13 19.43 0.37 1.30 223.98 30.65

1000 0.92 11.56 343.50 21.46 0.37 1.33 227.40 30.77
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watershed and to particular SWGs. However, the method-

ology can be applied to any case in which multiple weather

generators are compared, and where there is a strong

incentive to limit the number of simulations, for instance to

save time and computational resources. The current paper

required 5,000 runs (scenarios) of the SWAT model, and

the computation time required to complete these scenarios

was almost a month on a typical desktop computer work-

station (Intel Core i7-4790 Processor @ 3.60 GHz (8

CPUs), 16 GB (2 9 8 GB) RAM, 1 TB disk), exclusive of

Table 3 Marginal

improvements in RMSEr

(RMSEr;mar:improvement) of two

maximum temperature

reference datasets obtained by

using N realizations relative to a

single realization

SWG N Synthetic climate (Tmax) Observed climate (Tmax)

l r a3 a4 l r a3 a4

ME 5 0.42 6.42 1351.87 12.17 1.34 2.11 74.70 29.94

10 0.53 7.90 1657.07 15.19 1.67 2.46 83.22 35.15

25 0.62 9.23 1944.42 17.84 1.95 2.73 90.18 38.34

50 0.67 9.95 2089.46 19.21 2.09 2.85 92.18 39.41

100 0.70 10.48 2190.06 20.17 2.18 2.94 92.34 40.07

1000 0.77 11.57 2418.07 22.30 2.32 2.94 93.52 40.46

MG 5 0.43 6.20 18012.49 12.88 1.36 2.28 70.78 33.29

10 0.54 7.56 22297.20 15.77 1.69 2.75 82.49 37.84

25 0.63 8.94 26099.98 18.56 1.98 3.02 87.79 41.25

50 0.67 9.59 27944.27 19.86 2.12 3.02 90.34 42.44

100 0.70 10.05 29327.05 20.82 2.23 3.05 91.42 42.77

1000 0.78 11.12 32349.77 22.96 2.44 3.08 92.27 43.36

WE 5 0.22 5.92 7365.25 13.16 0.49 0.43 72.32 35.22

10 0.27 7.43 9071.86 16.28 0.57 0.51 85.17 40.58

25 0.32 8.67 10584.92 19.14 0.62 0.47 90.27 43.46

50 0.34 9.33 11364.65 20.67 0.64 0.48 92.55 45.00

100 0.36 9.82 11947.48 21.70 0.65 0.49 93.55 45.71

1000 0.40 10.87 13177.97 24.02 0.66 0.49 94.41 46.19

WG 5 0.19 6.19 2852.45 13.17 0.47 0.35 77.10 35.97

10 0.24 7.72 3521.50 16.13 0.55 0.36 88.91 40.25

25 0.28 9.01 4121.78 18.84 0.61 0.44 94.49 43.68

50 0.30 9.67 4424.45 20.22 0.63 0.43 96.81 44.85

100 0.31 10.16 4651.55 21.20 0.64 0.41 97.93 45.32

1000 0.35 11.23 5136.53 23.36 0.65 0.43 99.02 45.86

KNN 5 0.07 1.18 6.41 2.15 0.23 3.45 19.76 6.16

10 0.09 1.47 7.87 2.67 0.29 4.17 24.01 7.42

25 0.11 1.71 9.19 3.13 0.33 4.66 27.24 8.36

50 0.11 1.83 9.90 3.37 0.36 4.84 28.69 8.71

100 0.12 1.93 10.39 3.54 0.38 4.95 29.54 8.89

1000 0.13 2.12 11.48 3.92 0.41 5.04 30.36 9.08
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the subsequent time spent in the post-processing of the

outputs. The time involved could even be higher for larger

watersheds or a longer simulation period. Thus, the use of a

small but adequate representative number of realizations,

as determined herein, can significantly minimize the

computational challenge and reduce the simulation time

without losing much information (e.g., it would take less

than a day for 25 realizations on a 3.60 GHz Intel Core i7

Table 4 Marginal

improvements in RMSEr

(RMSEr;mar:improvement) of two

minimum temperature reference

datasets obtained by using

N realizations relative a single

realization

SWG N Synthetic climate (Tmin) Observed climate (Tmin)

l r a3 a4 l r a3 a4

ME 5 5.03 6.31 2108.35 12.04 14.53 2.02 69.78 38.38

10 6.26 7.76 2585.52 14.99 17.84 2.40 77.83 47.41

25 7.31 9.15 3034.60 17.70 20.25 2.65 84.66 54.45

50 7.84 9.85 3241.87 18.94 21.10 2.62 86.21 57.09

100 8.23 10.35 3408.78 19.90 21.65 2.70 86.95 58.78

1000 9.08 11.44 3762.85 21.99 22.12 2.70 88.16 60.46

MG 5 5.11 6.11 5881.90 12.33 15.25 2.03 67.72 39.32

10 6.35 7.48 7281.93 15.14 18.78 2.54 77.99 47.48

25 7.41 8.85 8495.20 17.83 21.39 2.78 81.76 54.88

50 7.95 9.51 9083.50 19.09 22.41 2.81 83.99 57.90

100 8.36 9.97 9537.18 20.04 23.06 2.84 85.11 59.57

1000 9.24 11.03 10523.34 22.11 23.72 2.84 86.01 61.27

WE 5 2.87 6.10 2627.83 12.91 3.95 0.40 71.97 40.98

10 3.54 7.54 3268.96 16.08 4.48 0.39 80.42 50.31

25 4.12 8.83 3840.86 18.87 4.71 0.43 86.16 57.61

50 4.45 9.46 4126.73 20.20 4.83 0.43 88.24 60.29

100 4.66 9.96 4342.01 21.20 4.91 0.45 89.38 61.95

1000 5.13 11.00 4799.23 23.46 4.92 0.44 90.39 63.59

WG 5 2.25 6.23 6879.67 12.30 1.20 0.16 70.64 39.40

10 2.77 7.68 8491.17 15.24 1.38 0.20 80.76 48.17

25 3.25 8.99 9922.20 17.88 1.43 0.24 85.73 55.20

50 3.50 9.67 10678.55 19.16 1.45 0.23 88.08 57.95

100 3.67 10.15 11216.60 20.11 1.47 0.21 89.14 59.54

1000 4.06 11.22 12401.88 22.17 1.48 0.23 90.22 61.25

KNN 5 0.72 1.07 8.59 3.11 2.29 3.18 27.18 9.70

10 0.90 1.32 10.71 3.87 2.85 3.86 33.68 11.96

25 1.05 1.54 12.51 4.52 3.31 4.40 38.80 13.80

50 1.12 1.67 13.42 4.86 3.55 4.61 41.10 14.55

100 1.18 1.75 14.10 5.09 3.73 4.71 42.52 15.08

1000 1.31 1.93 15.57 5.63 4.05 4.83 43.96 15.58
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CPU with a 16 GB RAM machine). Furthermore, the

methodology presented in this paper has the advantage of

making a straightforward link between the number of

realizations and common statistical indicators and is more

likely to appeal to practitioners.

Indeed, it can be argued that the results depend on the

SWG, the hydrologic model, and the risk parameter used.

High quantiles of flow, and hydrological parameters, such

as sediments, would perform differently. Therefore, the

results of this work can be further extended to include

multiple hydrological models and more such risk parame-

ters. However, the vast majority of risk statistics derived

from environmental models are related to the four first

moments of the time series that were examined in this

paper. We also used a relatively complex hydrological

model that is used worldwide, suggesting that the results of

this study would be a reasonably informed guess in most

practical cases where the modeler does not want to run an

Fig. 12 Violin plots of the relative errors (%) of the main annual streamflow statistics for the N-realization samples used to estimate these

statistics from the cloud; an N-realization sample is derived from 10,000 different randomly selected SFSC sets
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experiment to determine the optimal number of realisa-

tions. Our findings are comforted by Guo et al. (2018), who

found that the optimal number of realizations is 25 by using

a different set of SWGs and risk parameters on a different

watershed.

4 Conclusions

In summary, five SWGs coupled with a SWAT model are

used to generate multiple time series for four hydroclimatic

variables at four climatic stations and one hydrometric

station on the South Nation Watershed located in Ontario,

Canada. The investigated variables, including precipitation,

Fig. 13 Improvement in the RMSEr’s of the main annual streamflow

statistics of the N-realization samples generated by five SWGs. The

RMSEr is calculated using either the observed flow (green line), the

simulated flow using a synthetic climate (SFSC, purple line),

simulated flow using the observed climate (SFSC, blue line). The

N-realization SFSC sample is derived from 10,000 different randomly

selected SFSC sets. Scattered markers represent actual results for

which lines are slightly smoothed by moving averages with spans of

3. Vertical black dashed, dash-dotted, and solid lines represent 10, 25,

and 100 realizations, respectively
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Table 5 Marginal improvements in RMSEr (RMSEr;mar:improvement) of three reference datasets obtained by adding N realizations relative to a

single realization

SWG N Streamflow (SFOC) Streamflow (SFSC) Streamflow (OBS Flow)

l r a3 a4 l r a3 a4 l r a3 a4

ME 5 7.30 25.31 119.37 42.59 2.58 11.26 150.92 16.40 4.70 14.91 351.84 45.39

10 8.75 27.55 134.23 49.14 3.18 13.90 185.64 20.42 5.38 17.73 430.93 52.83

25 9.96 29.10 146.16 52.81 3.75 16.26 217.89 23.73 5.94 19.40 498.71 57.12

50 10.35 30.31 149.08 53.81 4.01 17.49 233.76 25.55 6.07 19.58 529.46 58.41

100 10.61 30.27 151.01 54.69 4.22 18.36 245.21 26.78 6.17 20.04 547.96 59.39

1000 10.79 30.67 152.53 55.25 4.66 20.26 271.34 29.57 6.22 20.19 569.54 60.06

MG 5 8.25 22.32 114.69 42.13 2.63 10.90 157.65 16.49 6.62 19.32 344.81 45.42

10 10.13 25.09 131.59 48.60 3.23 13.44 194.66 20.31 7.72 22.30 421.20 52.85

25 11.78 26.54 139.32 52.87 3.80 15.67 226.59 23.86 8.56 24.30 484.25 57.87

50 12.53 27.00 143.07 54.30 4.07 16.78 244.01 25.71 8.85 24.97 513.25 59.59

100 13.01 27.43 144.61 55.02 4.27 17.59 255.97 26.95 8.99 25.21 529.91 60.44

1000 13.56 27.65 146.05 55.63 4.72 19.42 282.57 29.77 9.13 25.55 547.54 61.19

WE 5 2.41 7.97 133.42 42.32 1.44 10.84 316.82 16.37 1.35 1.23 336.25 45.35

10 2.78 9.13 153.59 49.63 1.79 13.54 391.76 20.56 1.54 1.43 403.62 53.63

25 2.96 9.93 166.72 54.08 2.09 15.78 457.25 24.08 1.61 1.63 451.17 58.76

50 3.03 9.98 171.59 55.88 2.25 16.99 492.42 25.89 1.65 1.57 470.14 60.79

100 3.08 10.12 173.30 56.29 2.35 17.81 517.44 27.17 1.68 1.60 481.07 61.37

1000 3.11 10.23 175.37 56.84 2.61 19.67 570.76 30.07 1.70 1.63 490.04 62.06

WG 5 4.66 11.46 139.17 44.84 1.48 10.82 295.18 16.53 2.73 2.12 337.98 47.66

10 5.84 12.56 162.17 51.57 1.86 13.47 366.79 20.80 3.16 2.09 406.53 55.57

25 6.78 13.67 173.43 55.76 2.18 15.70 427.75 24.50 3.48 2.36 457.92 60.60

50 7.24 13.98 178.00 57.76 2.34 16.81 460.04 26.43 3.57 2.41 477.91 62.86

100 7.54 14.08 180.45 58.16 2.45 17.67 483.34 27.69 3.61 2.40 488.35 63.44

1000 7.92 14.18 182.23 59.04 2.72 19.53 533.48 30.73 3.65 2.41 498.54 64.46

KNN 5 1.73 21.30 152.63 43.95 1.56 9.19 314.20 17.24 1.06 1.72 371.78 46.04

10 2.09 24.88 175.37 50.85 1.92 11.23 384.80 21.32 1.32 1.97 443.76 53.51

25 2.16 27.81 186.78 55.40 2.24 13.25 449.57 24.99 1.34 2.30 503.86 58.45

50 2.24 28.82 192.81 56.13 2.41 14.24 484.70 26.75 1.40 2.40 526.45 59.39

100 2.24 29.25 196.46 56.78 2.53 14.96 508.68 28.11 1.39 2.39 536.67 60.13

1000 2.27 29.69 198.02 57.60 2.79 16.53 560.89 31.08 1.41 2.42 548.85 61.02
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maximum and minimum air temperature and streamflow,

are used to determine the optimal output size of the cloud

representing SWGs. Four risk and performance indicators,

namely, the mean, standard deviation, skewness, and kur-

tosis of these variables were estimated to assess the level of

agreement between synthetic time series and observations.

The number of realizations required to reach a predefined

Relative Root Mean Square Error is then investigated to

ultimately conduct computationally inexpensive impact

studies. Using the two error metrics, namely, RE and

RMSE, and the effect-size metric (Cohen’s d), it was

shown that when the number of realizations is high, the

considered five weather generators perform somewhat

similarly in terms of reproducing the risk and performance

indicators. Overall, the results indicate that there is no very

major benefit from generating more than 25 realizations in

hydrological modeling. Applications requiring more pre-

cision (e.g., analysis of hydro-climatic extreme events)

Fig. 14 Range of Cohen’s d results of precipitation statistics where an N-realization sample is derived from 10,000 different randomly selected

sets from the five SWGs. Horizontal red dashed, dash-dotted, and solid lines represent 0.8, 0.5, and 0.2 Cohen’s d values, respectively
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Fig. 15 Range of Cohen’s d results of maximum temperature statistics where an N-realization sample is derived from 10,000 different randomly

selected sets from the five SWGs. Horizontal red dashed, dash-dotted, and solid lines represent 0.8, 0.5, and 0.2 Cohen’s d values, respectively
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Fig. 16 Range of Cohen’s d results of minimum temperature statistics where an N-realization sample is derived from 10,000 different randomly

selected sets from the five SWGs. Horizontal red dashed, dash-dotted, and solid lines represent 0.8, 0.5, and 0.2 Cohen’s d values, respectively
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may use 100 realizations, as the results obtained from 100

realizations are not notably different from those obtained

using 1000 realizations. Adopting a smaller, but carefully

chosen, number of realizations can significantly reduce the

workload on analysts and therefore benefit a larger audi-

ence in risk assessment studies, particularly when high-

performance machines are not easily accessible.
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