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Abstract
Land subsidence is a complicated hazard that artificial intelligence models can model it without approximation and

simplification. In this study, for the first time in land subsidence studies, we used and compared the accuracy and efficiency

of hybrid fuzzy-gene expression programming (F-GEP) and fuzzy-artificial neural network (F-ANN) models in estimating

land subsidence susceptibility modeling in Varamin aquifer of Iran. For this purpose, after selecting and gathering

information from fifteen geo-environmental and hydrogeological effectual factors including specific yield, erosion, aquifer

thickness, distance of fault, bedrock level, digital elevation model (DEM), annual rainfall, clay thickness, transmissivity

(T), soil type, Debi zonation of pumping wells, slope based on DEM, groundwater drawdown in 20 years, land use, and

lithological units event based on literature review in the GIS environment, they were first standardized with GIS fuzzy

membership functions, and then GEP model was used to integrate the layers. For this step, using 70% of the data (2919

pixels) for the train and 30% (1251 pixels) for the test. Finally, using several statistical criteria and radar image data, the

models were validated. We repeat the model on ANN, and our results showed that F-GEP model (with R2 = 0.99 and

RMSE = 0.004) is more accurate than F-ANN model (with R2 = 0.94 and RMSE = 0.056) for land subsidence suscep-

tibility modeling in the study area.

Keywords Fuzzy-artificial neural network (F-ANN) � Fuzzy-gene expression programming (F-GEP) � GIS �
Land subsidence � Varamin

1 Introduction

A hazardous geological phenomenon that has accrued in

recent years in many urban areas worldwide is land sub-

sidence (Chen et al. 2019). As given from UNESCO define,

land subsidence is ‘‘settlement or gradual downward

settling of the ground’s surface, which may have a slight

horizontal displacement vector’’ (UNESCO 2018). Dam-

ages to the natural environment and even economic losses

are some effects of this geological hazard (Hu et al. 2004;

Waltham 1989). Land subsidence, as one aftereffect of

water resources mismanagement and excessive use, occurs

when the reduction of groundwater levels leads to the

compression of soil (Pacheco et al. 2006). Accordingly,

this phenomenon that can caused by groundwater excessive

pumping has been widely reported in many areas, such as

Rafsanjan (Mousavi et al. 2001), Shanghai (Hu et al. 2004),

Mashhad (Motagh et al. 2007), Mexico City (Calderhead

et al. 2011), Tianjin (Lixin et al. 2011), California (Gal-

loway and Burbey 2011), Su-Xi-Chang (Chen et al. 2013),

Arak (Rajabi and Ghorbani 2016), Antelope Valley, Ker-

man (Abdollahi et al. 2019), Bangkok, Kashmar (Lash-

karipour et al. 2006; Rahmati et al. 2019), Tehran

(Dehghani et al. 2013; Mahmoudpour et al. 2013; Ranjbar
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and Ehteshami 2019). In these areas, severe damages

occurred and are including fractures in underground lines

and transport path, increasing flood risk, building cracking,

and loss of ground level (Mohebbi Tafreshi et al. 2019).

In recent decades, increasing damages of land subsi-

dence caused numerous studies worldwide that have

attempted to susceptibility zonation of land subsidence risk

and identify the factors that affect it (Abdollahi et al. 2019;

Wang et al. 2019).

Some researches have appraised the factors affecting

land subsidence risk. For example, Burbey (2002) assessed

the fault’s effects on land subsidence of Nevada’s sub-

marine sedimentary basins in the United States. Their

research showed those joints in the fault’s adjacent that act

as a barrier to flow, tend to horizontal deformation; con-

versely, in places where they do not, vertical deformation

caused.

Oh and Lee (2010) for evaluating factors affecting land

subsidence, have used seven main factors including land

use, groundwater depths, fault distance, geology, the depth

of faults, the gradient obtained from topographic maps, and

the capability of landing from crater data.

Putra et al. (2011), in Rongkop (Indonesia), appraised

the land subsidence risk. Their risk map developed based

on five parameters of land use structures, distance to val-

ley-like (cratering), slope, lithology, and elevation.

Park et al. (2012) utilized five main factors affecting

land subsidence, including slop, geology, distance of fault,

land use, and fault depth in Samcheok City, Korea.

Shadfar et al. (2016) concluded that ‘‘excessive

groundwater pumping’’ factor primarily and ‘‘lithology’’

factor secondarily, are effectual in creating land subsidence

in the Buin Zahra area.

Rezaee (2016) investigated the land subsidence risk in

Kermanshah Plain. Their results show that in the south and

east of the Deh-e-Platan village, in the east of Kermanshah,

which level of groundwater is low and the aquifer has fine-

grained sediments, the land subsidence risk is higher than

elsewhere.

Behyari et al. (2017) in their research in Marzan Abad,

Iran, studied the effect of tectonic on land subsidence

occurrence. Accordingly, the results showed that the geo-

logical factors such as fault fractures and the presence of

joint have led to the forming weaknesses in the soil

structure and instability in the region, and on the other

hand, has caused the transfer water to the subsurface cal-

careous units and has created dissolution cavities as a

sample of subsidence.

Minderhoud et al. (2018) assessed the interaction effect

of land subsidence and land use in the Mekong delta,

Vietnam. Their results showed that land use can affect on

intensification natural subsidence, the anthropogenic sub-

sidence, or the land subsidence process. In various land use

classes, different rates of land subsidence occurred.

Accordingly, in those classes of land use which natural

variations because of human activities have been changed,

the highest rates of land subsidence occurred.

Moreover, new researches have investigated land sub-

sidence susceptibility using hydrogeological, climate,

geophysical, and geological data, as well as methods like

statistics, genetic algorithm (GA) (Manafiazar et al. 2019;

Taravatrooy et al. 2018), fuzzy algebra (Bianchini et al.

2019; Chanapathi et al. 2019; Ghorbanzadeh et al. 2018;

Rafie and Samimi Namin 2015; Yu et al. 2018), artificial

neural network (ANN) (Abdollahi et al. 2019; Dehghani

et al. 2013; Oh et al. 2019; Tien Bui et al. 2018; Wang et al.

2018), and random forest (RF) models in geographic

information system (GIS) applications (Ilia et al. 2018;

Mohammady et al. 2019; Pourghasemi and Mohseni Saravi

2019).

In recent decades, several meta-modeling techniques

have appeared as promising methods for modeling high

dimensional and nonlinear processes. ANN (Tongal and

Booij 2017; Zaman Zad Ghavidel and Montaseri 2014),

GEP (Aziz et al. 2017; Kisi et al. 2019), fuzzy logic (Ja-

hangoshai Rezaee et al. 2020; Wang and Chen 2015) and

statistical methodologies (Barbulescu and Popescu-Bod-

orin 2019; Elhatip et al. 2008; Leduc and Ouldali 1990) are

the best examples. Accordingly, highly accurate results of

the GEP model and the ANN model in numerous studies

have led us to evaluate and compare the results of these two

models in the land subsidence approach.

Since the results of the hybrid models (Barzegar et al.

2016; Elalfy et al. 2018; Jamshidi et al. 2019; Moeeni and

Bonakdari 2017; Wang and Hu 2019), especially in com-

bination with the fuzzy models (Abass et al. 2011;

Moghassem and Fallahpour 2013; Wang et al. 2010), show

higher efficiency and accuracy than the non-hybrid models,

in this study the hybrid mode of both GEP and ANN

models was used. The advantage of such hybrid techniques

is that they can deal with cases that are difficult for one

alone as a universal approximator, and in particular that

they can potentially find simpler solutions than either

alone, viz. a more parsimonious model.

As a result of the literature, no work or limited works

have evaluated together, erosion, fault, rainfall, land use,

clay thickness, Debi of pumping wells, the effect of soil

type, hydrodynamic properties of the aquifer, such as T,

and Sy, on land subsidence susceptibility and its scatter.

Simultaneous investigation of the parameters that have

been identified as the main cause of the land subsidence in

various researches in different regions of the world helps to

identify and manage the important and effective factor of

the subsidence event in the study area. This recognition can

be applied to managers in adopting appropriate measures to

reduce the negative effects of subsidence. Although the
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number of parameters affecting a phenomenon does not

have a direct impact on the accuracy of the models, the use

of more parameters can extend the evaluation circle of the

parameters affecting the phenomenon and present a com-

prehensive susceptibility assessment procedure. Also, since

there is a significant vacuum in answering the question:

‘‘What is the influence of more factors affect a phe-

nomenon on the accuracy of models?’’, and no direct

research to answer the question has been done, so one of

the aims of this paper, and the reasons for using maximum

parameters affecting the subsidence phenomenon, is to

investigate and attempts to clarify the relationship between

the number of parameters and the accuracy of the model.

Despite using the hybrid ANN and GEP models espe-

cially in combination with fuzzy logic in various resear-

ches, so far, there has been no researches (or limited

researches) worldwide on the use of these types of models

in assessing land subsidence susceptibility. Consequently,

the main objective of this study is to compare the hybrid

F-GEP and the hybrid F-ANN models for land subsidence

susceptibility modeling in Varamin aquifer. The findings of

this research can provide scientific evaluation for sustain-

able development and a decrease in human and ecological

risk due to land subsidence damages, based on land sub-

sidence susceptibility map.

2 Study area

Varamin aquifer in the southeast of Tehran province, Iran

(that is bounded by the latitudes of 540,000–580,000 N and

the longitudes of 3,888,000–3,930,000 E in 39 N zone

according to UTM coordinate system), is a part of Varamin

sub-basin (Fig. 1a). The important communication paths,

such as the East–West transit road and the Mashhad-Teh-

ran railroad (Fig. 1b) are located in this area (Mohebbi

Tafreshi et al. 2019). Moreover, part of the national elec-

tricity transmission network routes is located in this area

(Fig. 1c). It has crossed the area affected by the land

subsidence in Varamin, 2 km from the Mashhad-Tehran

railroad and 5 km from the electricity transmission routes.

Meanwhile, 670,000 people live in the area affected by the

land subsidence and 4 villages and population centers are

in the area.

The Location of Varamin aquifer is in the Central zone

of Iran from the structural viewpoint (Berberian and King

1981). This aquifer is divided into two parts (the mountains

and the plain) by the Pishva hill. This hill is an anticline

(Sadeghi et al. 2006). In terms of structural processes,

especially the folding of Tertiary deposits can have formed

mountains. Geological outcrops in this area (Fig. 2)

included a diversity of formations, mostly marl, sandstone,

shale, and conglomerate with the age of the Eocene to

Quaternary (Sadeghi et al. 2006). Accordingly, the Plio-

cene and Quaternary deposits in the northeast and south of

the Varamin-Eyvanekey road, northeastern and northern

parts of Sharif Abad, and south of the village of Shah Qazi

and Yousef Abad are observable, which according to their

adjacent maps and their consistency, most of them com-

posed of the conglomerate equivalent of the Hezardareh

Formation (Sadeghi et al. 2006). The northeastern and

northern boundary formations of the area are often related

to marl, Eocene volcanic, and Oligomiocene limestone, as

well as silt and shale with evaporative sediments of Mio-

cene (Sadeghi et al. 2006).

As observed in Fig. 3a, Sy ranging from 13 to 16% in

the north of Varamin aquifer (at the beginning of the cone,

which the alluvium has coarse-grained sediments). This

amount around the city of Varamin in the middle of the

plain is about 10% and is about 2–5% in the southern part

of the plain (TRWA 2018).

A remarkable part in the central and southern areas of

the study area has high sensitivity classes (Fig. 3b), in

terms of susceptibility to erosion (Alimohammadi 2009).

Moreover, moderately susceptible and hard erosion-resis-

tant formations are seen in most of the northern areas of the

Varamin sub-basin, and also a few separate parts in the

northern and southern parts of the area (Alimohammadi

2009).

The Varamin aquifer is an unconfined aquifer (Nakhaei

et al. 2019). In the center of the north half of the aquifer

(Fig. 3c), highest thickness is seen up to 280 m, and in the

southwest part of the aquifer the lowest thickness of the

aquifer is less than 50 m (Shemshaki et al. 2006).

The tectonic movements of this region are affected by

Parchin, Kahrizak, Pishva, and Eyvanekey faults (Figs. 2,

3d). The Kahrizak and Eyvanekey faults are thrust faults

with a dip to the north, in which Eyvanekey fault has a

northwest-southeast trend (IIEES 2010). Similarly, Pishva

fault with a dip to the northeast is also a thrust fault that

forms the boundary between the mountains and the plains

in Pishva city by splitting the Quaternary sediments (IIEES

2010).

The average altitude of this area (Fig. 3f) is 950 m

above sea level (Mohebbi Tafreshi et al. 2019). Accord-

ingly, the highest elevation is 1148 m in the northern part,

and the lowest elevation is 810 m in the southern and

southeast of the aquifer (Nejatijahromi et al. 2019). The

northeast to the Southeast of the aquifer is the direction of

the topographic slope (Fig. 3l). The annual average rainfall

of the study area (Fig. 3g) is 187.4 mm and the annual

average temperature is 16.4 �C (Nejatijahromi et al. 2019).

On this basis, Siberian fronts from the north, west, and

northwest, the Mediterranean fronts have often influenced

Varamin aquifer’s climate (Mokhtari and Espahbod 2009).
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In the south and north half of the aquifer (Fig. 3i), the

pattern of transmissivity is heterologous (Atarzadeh et al.

2014). The maximum transmissivity estimated in the north

aquifer reaches up to 3000 m2/day (Mokhtari and Espah-

bod 2009). However, its trend because of a considerable

change in the sediment grain size, or aquifer thickness was

decreasing into the south half of the aquifer. Accordingly,

It is seen that in the east and south half of the aquifer, the

maximum amount is up to 150 m2/day (TRWA 2018).

Fig. 1 a Location of the study area, b and c the railroad and electricity transmission route at the surveyed land subsidence locations. The red lines

are crack boundaries of land subsidence and the arrows indicate the direction of the collapse
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Fig. 2 Geology map of the study area
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Fig. 3 a Sy; b erosion; c aquifer thickness; d distance of fault;

e bedrock level; f DEM; g annual rainfall; h clay thickness; i T; j soil
type; k Debi zonation of pumping wells; l slope based on DEM;

m groundwater level in 1995 (arrows depict general flow path);

n groundwater level in 2015; o groundwater drawdown in 20 years

(1995–2015); p land use; q land subsidence rate based on radar image

technique until 2015
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Forage maize, barley, pistachio, grape, vegetable, and

alfalfa are the main crops of Varamin Aquifer (Nejati-

jahromi et al. 2019).

3 Input data

As shown in Table 1, 18 input layers are evaluated and

prepared to be employed in the GIS environment.

Accordingly, the radar image until 2015 as an indicator of

Fig. 3 continued
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the land subsidence rate was used for comparison and

verification of the results.

3.1 Land subsidence effective factors

In the present study, 15 effectual factors including annual

rainfall, soil type, T, Debi zonation of pumping wells,

aquifer thickness, clay thickness, DEM, Sy, groundwater

drawdown in 20 years, bedrock level, lithological units,

erosion, slope based on DEM, land use, and distance of

fault were used for land subsidence susceptibility model-

ing, based on literature review (Ayalew et al. 2005;

Behyari et al. 2017; Karsli et al. 2009; Minderhoud et al.

2018; Wang et al. 2009). Accordingly, descriptions some

of them are as follows:

Slope: One of the most effective factors which has a

high effect on the development and expansion of diaclase

in lithostratigraphic units and can control land subsidence

(Arca et al. 2018; Dai and Lee 2001; Suh et al. 2013).

Accordingly, in areas with a gentle slope, the speed of

runoff is less, and consequently, there is adequate time for

surface water influence into the depths and the dissolution

cavities formation, especially in calcareous units. There-

fore, the slope because of the loss of calcareous regions

(such as karsts) is an affirmative and causative factor in

karstic subsidence (Behyari et al. 2017).

Land use: From the land use viewpoint, urban areas,

rangelands, and agriculture (due to groundwater harvesting

to irrigate crops) are the most water consumed (Taheri

et al. 2018). Since increased water consumption can lead to

lower groundwater levels and an increased likelihood of

subsidence, those kinds of land use that are more water

consumption, are more important in assessing subsidence

(Minderhoud et al. 2018).

The distance of faults: As the fault activities (such as

earthquake) are affecting the possibility of land subsidence

occurrence, the higher distance from the faults demon-

strating that the region has a lower proportionality for the

Table 1 Input data used for preparing, comparison and verification the land subsidence susceptibility modeling

Data Description Reference

Sy – Tehran Regional Water Authority (TRWA 2018)

Annual rainfall Average long term Tehran Regional Water Authority (TRWA 2018)

Soil type Map with 1:250,000 scale Soil Conservation and Watershed Management Research

Institute (SCWMRI 2010)

T – Tehran Regional Water Authority (TRWA 2018)

Debi zonation of pumping wells Produce in the ArcGIS10.5 by ‘‘Thiessen

polygon’’ method

Tehran Regional Water Authority (TRWA 2018)

Aquifer thickness – Tehran Regional Water Authority (TRWA 2018)

Land use Map with 1:250,000 scale Soil Conservation and Watershed Management Research

Institute of Iran (SCWMRI 2010)

Clay thickness – Tehran Regional Water Authority (TRWA 2018)

Distance of faults Produce in the ArcGIS10.5 by ‘‘Euclidean

distance’’ method

International Institute of Earthquake Engineering and

Seismology (IIEES 2010)

Groundwater level in 1995 Produce in the ArcGIS10.5 by ‘‘Kriging’’

method

Tehran Regional Water Authority (TRWA 2018)

Groundwater level in 2015 Produce in the ArcGIS10.5 by ‘‘Kriging’’

method

Tehran Regional Water Authority (TRWA 2018)

Groundwater drawdown in

20 years (1995–2015)

– Tehran Regional Water Authority (TRWA 2018)

Geological units Map with 1:100,000 scale Geological Survey and Mineral Exploration of Iran

(Sadeghi et al. 2006)

Bedrock level – Tehran Regional Water Authority (TRWA 2018)

Erosion Map with 1:250,000 scale Soil Conservation and Watershed Management Research

Institute of Iran (SCWMRI 2010)

DEM Produces in the ArcGIS10.5 from a topographic

map at a scale of 1:50000

National Geographic Organization of Iran (NGOI 2008)

Slope Produces in the ArcGIS10.5 from a topographic

map at a scale of 1:50000

National Geographic Organization of Iran (NGOI 2008)

Land subsidence rate Radar image until 2015 Sentinel-1 (Sentinel-1 2015)
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likelihood of land subsidence. In the lower distance, this

probability is higher, conversely (Aalipour Erdi et al. 2017;

Arca et al. 2018; Chen et al. 2016; Hu et al. 2019; Pradhan

et al. 2014).

Bedrock depth: When the bedrock is located at a low

depth, because of the low thickness of the alluvium, it is

not possible to drill wells. As we know, groundwater is

stored in areas that have a higher thickness. Usually, in

these kinds of areas, excessive drilling of wells and con-

sequently, excessive pumping leads to increased subsi-

dence and vertical displacement of layers (WRI 2014).

Drawdown: In regions that are covered by semi con-

solidated or unconsolidated alluvial sediments, excessive

groundwater pumping, can lead to land subsidence (Poland

1984). In the USA, more than 80% of the identified land

subsidence has happened because of mismanagement

exploitation and overuse of groundwater (USGS 2019b).

As described, excessive groundwater pumping lead to the

reduction of the groundwater level and consequently

increases the land subsidence occurrence (USGS 2019a).

Lithology: The formations and lithologies that include

fine-grained materials such as silt and clay in their structure

will enhance the subsidence rate. On the other hand,

because of the water influence on dissolution structures

such as carbonates and gypsums, lithological structures

including these materials also erosion and enhance the

subsidence as a dissolved sink.

Soil type: When there are unconsolidated fine-grained

sediment layers (such as silt and clay) in the aquifer

structure, simultaneously with the drop in hydraulic height,

the effective stress is enhanced, and the consolidation

phenomenon happens (Terzaghi 1925). Consequently, the

effect of which becomes manifest as subsidence in the land

surface (Nameghi et al. 2013).

Rainfall: Since the higher amounts of rainfall lead to

enhance water infiltration, it can increase the groundwater

table. Consequently, enhancing rainfall is not only con-

sidered as a non-intensification factor in subsidence occurs

but also it can be considered as a preventive or mitigating

factor in subsidence because of the increase in the

groundwater table.

T: Accurate data of hydraulic properties such as trans-

missivity is significant for reliable predictions of land

subsidence modeling (Li and Zhang 2018). The lower T

amount leads to enhance soil compressibility amount and

subsequently enhances the land subsidence rate.

Aquifer thickness and aquifer hydraulic parameters:

These parameters have a positive correlation and direct

relationship with subsidence occurrence. Based on the

Lohman (1961) equation, the land subsidence depends on

the storage coefficient and its parameters, as bellow:

Db ¼ Dp
S

c
� nbb

� �
ð1Þ

In this equation, Db is the rate of land subsidence, Dp is the

reduces the pressure head on the aquifer, c is the water

density, n is porosity, b is the aquifer thickness (or satu-

rated thickness), b is the water compressibility [conversely

of Young’s modulus for water b ¼ 1
Ew

� �
], S is the storage

coefficient in a confined aquifer that is calculated based on

De Wiest (1966) equation as bellow:

S ¼ bc 1� nð Þaþ nb½ � ð2Þ

In this equation, a is the water compressibility [conversely

of Young’s modulus for the solid grain material of the

aquifer a ¼ 1
Es

� �
].

4 Methods

4.1 Factors standardization

ArcGIS version 10 software has various fuzzy membership

functions to normalizing parameters in the fuzzy logic

extension, which is used usually in many fuzzy logic

applications (Mohebbi Tafreshi et al. 2019; Raines et al.

2010). Uses any of these functions are performed based on

the spread factor and midpoint. Selecting a membership

function for fuzzy normalizing is relevant to the impor-

tance, identity, and relationship of each criterion with the

goal (Mohebbi Tafreshi et al. 2019). In this research, for

normalization the factors, three fuzzy membership func-

tions were used and described as follow:

Fuzzy Small: When small input values have a higher

membership value, this function is used (Mohebbi Tafreshi

et al. 2018; Raines et al. 2010; Zadeh 1965). The mem-

bership amounts that are less than the midpoint have

increased (Fig. 4a).

l xð Þ ¼ 1

1þ xf1
f2

ð3Þ

In this equation, user inputs f1 is the spread, and f2 is the

midpoint.

Fuzzy Linear: This function establishes a linear rela-

tionship between the maximum and minimum values

defined by the user (Raines et al. 2010; Zadeh 1965). 0 and

1 awarded to the values that are less than the minimum

value and the values greater than the maximum value,

respectively (Fig. 4b).

l xð Þ ¼ 0 if x\min; l xð Þ ¼ 1 if x[max;

otherwise l xð Þ ¼ x� minð Þ
max� minð Þ

ð4Þ
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In this equation, min and max are user inputs.

Fuzzy Large: When large input values have more

membership value, This function is used and is precisely

the opposite of the small function (Mohebbi Tafreshi et al.

2018; Zadeh 1965). In this function, the membership

amounts that are more than the midpoint, have increased

(Fig. 4c).

l xð Þ ¼ 1

1þ x�f1

f2

ð5Þ

In this equation, f1 is the inputted spread amount by the

user, and f2 is the midpoint.

4.2 Modeling using GEP

GEP is a generalized genetic algorithm that was first pro-

posed by Ferreira in 1999 (Ferreira 2001) based on Dar-

win’s theory. For gene expression algorithm, the first step

is production an initial population of solutions. To do the

first step, an accidental process or application of some

information can be used. Then a tree expression can be

produced as a form of chromosomes expression, and fitting

function can evaluate it and determine the fitting of a

solution in the problem domain (Abbasi et al. 2019).

Suitability level of fitting function usually can be evaluated

by processing some instances of the actual problem, also

called fitting cases. The tree structure helps to express the

initial population at each stage as a simple linear structure,

and all changes are made only on simple structures, so

there is no need for relatively complex structures to expand

at each stage (Abbasi et al. 2019). If the satisfactory quality

of a solution is found or generations reach a specific

number, evolution ceases, and the best solution is reported

(Maroufpoor et al. 2019). On the other hand, if no stopping

conditions are found, the best solution is kept by the cur-

rent generation (meaning elitism), and the rest of the

solution is left to a selective process. Choosing or choosing

has the function of survival of the fittest, and accordingly,

the best people have a better chance of producing children.

The whole process is repeated for several generations, and

as the generation moves forward, the quality of the popu-

lation is expected to improve on average (Ferreira 2006).

The algorithm defines a target function in terms of quali-

tative criteria and then applies the mentioned function to

compare different problem-solving solutions in a step-by-

step process of data structure correction, and finally, the

appropriate solution. In this method, various phenomena

are modeled using a set of functions and a set of terminals.

The set of functions usually includes the arithmetic func-

tions [?, -, *, /] of trigonometric functions and other

mathematical functions or user-defined functions that they

believe may be appropriate for model interpretation. The

set of terminals consists of constant values and independent

variables of the problem (Ferreira 2001).

In this study, GeneXpro Tools software was used to

predict, develop, and implement a gene expression-based

programming model. One of the strengths of gene

expression planning is that the genetic diversity criterion is

very simple and so genetic operators act on the chromo-

some level. Also, one of the strengths of this approach is its

unique multi-gene nature that allows for the evaluation of

complex models involving several sub-models. The mod-

eling process of prediction of Varamin Plain subsidence is

presented as follows:

The first step was to select the appropriate fitting func-

tion in which the root mean square error function was

chosen as the fitting function (Mehdizadeh et al. 2016). The

second step is to select the set of input variables and the set

of functions to generate the chromosomes. In this study,

four main operators including [?, -, *, /] and mathemat-

ical functions [Tanh, X2, Atan, Inv, 3Rt, Ln, NOT, Min2,

Max2, Exp, Avg2] were ‘used. The third step involves

selecting the structure and architecture of the chromo-

somes, which include the length of the head and the

number of genes (Mehdizadeh et al. 2016). The fourth step

is to select the linking function that was used in this study

to add the link between subcategories. Finally, in step 5,

the genetic operators and the rate of each of them are

selected. In this case, a combination of all refinement

operators such as mutation, inversion, three types of

transposition, and three types of combinations where used.

Fig. 4 Fuzzy membership’s transformation diagrams; a small, b linear, c large
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In GEP that is a development of GA, various kinds of

chromosomes such as linear or simple are encoded to the

individuals, and then transformed into an expression parse

tree completely separating the genotype and phenotype

which causes GEP much faster (100–10,000 times) than the

GP (Ferreira 2001; Dey et al. 2015). For instance, the

expression tree of an algebraic expression (Eq. 6) is shown

in Fig. 5.

Oþ qð Þ � r � Sð Þ ð6Þ

In GEP, more complex technological and scientific

programs can be solved with the help of linear chromo-

somes and Expression Trees (ET) (Dey et al. 2015). A

chromosome is a linear symbolic string of constant length

consisting of one or multiple genes of equal size. A typical

GEP chromosome is presented in Fig. 6. Each linear

chromosome is namely replication, genetically manipu-

lated, replication, recombination mutation, and transposi-

tion (Ferreira 2001; Dey et al. 2015). Structurally, they are

composed of genes that comprised of the tail and head parts

(Dey et al. 2015). As shown in Eq. 7, the tail length (tl) is a

function of head length (hl) and the number of arguments

of the function (m):

tl ¼ hl m� 1ð Þ þ 1 ð7Þ

Although all genes of the GEP have the same size, they

are coded for different expression trees of different sizes

(Alkroosh and Ammash 2015). The trees represent a spatial

illustration showing the interactions among the gene’s

components on the map of the solution (Alkroosh and

Ammash 2015). Figure 7 presents the genes expression

trees of the chromosome in Fig. 6.

4.3 Modeling using ANN

ANNs are one of the computational methods that assisting

the learning process, using processors called neurons, and

by adjusting the weights to obtain a model using the

available input samples. The neuron is the smallest infor-

mation processing unit that forms the basis of neural net-

work performance. Based on Fig. 8 a neuron consists of

three main parts (Arjun and Kumar 2011). The synapse set

establishes the relationship between the input xj and the

neuron by the weights of wkj. The uk is the summing set

that sum up the weighted input signals. An activation

function [u :ð Þ] used to constrain the output range. The bk
bias constant is used to reduce or increase the output of the

neuron.

Equations 8 and 9 represent the neural network structure

mathematically:

uk ¼
Xn
j¼1

wkjxj ð8Þ

yk ¼ u uk þ bkð Þ ð9Þ

The learning process of the learning network is per-

formed by the input–output sample k, where the input

vectors are x1, x2, …, xn and the output vectors corre-

sponding to each input vector are y1, y2, …, yn. wkj and uk
are the weights and bias vectors of hidden layer and net-

work outputs, respectively. Each neuron receives all out-

puts of the previous layer’s neurons, but each receives a

specific weight. After creating the network and determining

the number of hidden layers and the number of neurons, the

network is trained by available input–output samples and is

implemented by a weighted vector learning law (Ross

2005). The activation function of each neuron is to deter-

mine the output from the sum of its weighted inputs.

Generally, for all neurons in a layer, the same activation

function is chosen, although such a condition is not nec-

essary (Ross 2005).

Figure 9 shows the structure of the multi-layer percep-

tron (MLP) network with I inputs, one hidden layer

(number of units in the layer is O) and one output layer.

According to Fig. 9, depending on the type and location,

the layers can be divided into input, hidden, and output

layers. The input layers receive the information and pro-

vide it to the system. The output layers send the obtained

values out of the system. The hidden layers are the layers

whose input and output are only within the system. I is the

number of input variables, H is the number of hidden layer

nodes, and O is the number of output variables. One of the

essential learning algorithms of ANN, which is also used in

this research, is called back error propagation law. The

back error propagation law is used to train multilayer

feedforward neural networks, commonly referred to as

MLP multilayer perceptron networks (Fig. 10). The back

error propagation law consists of two main paths. The first

path is called the forward path in which the input provided

to the input layers is propagated through the network, layer

by layer, to the output layer. In this way, network variables

are considered constant and unchanged. In this algorithm,

the objective function designed for network training is

usually defined as the sum of the mean squares of the

errors. The error value after the calculation is distributed in

the backward path of the output layer and by the networkFig. 5 Expression tree of Eq. 6 (Dey et al. 2015)
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layers throughout the network. In this way, the weights of

the MLP network are changed and adjusted to minimize the

sum of squares of the network error.

4.4 Theoretical comparison between the ANN
and the GEP methods and the conditions
for their applications

An ANN that known as one of artificial intelligence-based

technique, is a flexible mathematical method that is mighty

to recognize intricate nonlinear relationships between input

and output data sets.

The main advantage of ANN models over the statistical

methods is that the latter assume linear relationships and/or

normal distribution, while reality is non-linear and non-

normal. Thus the ANN model is capable to conform to the

real world. An important advantage of ANNs is its capa-

bility to exert large and intricate systems with many

interrelated parameters (Nourani et al. 2011). The no free

lunch theorem states that uniformly averaged over all target

functions the expected error is the same for any two

algorithms. Nonetheless, there are other reasons for stating

that there are advantages of ANN over other algorithms.

For example, the ANNs show graceful degradation was

you may have noisy input data or even the removal of units

and the ANN still functions. Another advantage is the

inherently distributed nature of ANNs which allows better

implementations across a distributed environment. The

ANN is a non-parametric model, thus eliminates the error

in parameter estimation, while most of the statistical

Fig. 6 GEP chromosome

(Alkroosh and Ammash 2015)

Fig. 7 Expression trees of

chromosome in Fig. 6

(Alkroosh and Ammash 2015)

Fig. 8 Non-linear model of a

neuron (Arjun and Kumar 2011)

Fig. 9 The MLP with one hidden layer (Arjun and Kumar 2011)
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methods (MLR, etc.) are parametric models that need

higher background of statistic (Singh and Su 2016).

The drawback of this method is that the final product is

not in the form of mathematical equations that can be

easily implemented. Basically, a major limitation of com-

mon soft computing techniques is that no closed-form

prediction equation is provided by them (Mohammadzadeh

et al. 2019). In the last decade due to the importance of the

research topic Numerous Studies were concentrated on

many linear and nonlinear regression equations (Pham

et al. 2016). Modeling by using artificial intelligence (AI)

has been a very active research area (Pham et al. 2016).

According to previous researches, although AI techniques

such as ANN have demonstrated their superior capability

over traditional modeling methods and so ANN was one

the successful choice that used for prediction problems, it

has some following limitations: 1. ANN does not provide

information about the relative significance of the various

parameters (Samui 2008) 2. A common criticism of neural

networks is that they require a large diversity of training for

operation (Saberi et al. 2013) 3. The knowledge acquired

during the training of the model is stored in an implicit

manner and hence it is hard to come up with reasonable

interpretation of the overall structure of the network (Sa-

mui 2014) 4. In order to the ANN be able to learn it is

essential to define the examples and to teach the network

based on the desired output by demonstrating these

examples to the network. The network’s success is directly

proportional to the selected instances, and if the event

cannot be indicated to the network in all its aspects, the

network can produce false output. In addition, ANN has

some intrinsic disadvantages such as less generalizing

performance, arriving at the local minimum and over-fit-

ting, and slow convergence pace (Samui 2014).

GEP is another artificial intelligence-based technique

commonly used at nonlinear systems. The GEP method is a

newer technique than ANN. The advantages of GEP are:

first, the chromosomes are simple entities: linear, compact,

relatively small, and easy to be genetically manipulated

(replicate, mutate, recombine, transpose) and second, the

expression trees are exclusively the expression of the

respective chromosomes (Moghassem and Fallahpour

2013). The important powerful property of GEP is that the

user can easily take a clear formula of the relation between

the inputs and output, which makes GEP more interesting

(Guven and Kisi 2013; Parasuraman et al. 2007).

Unlike ANN, GEP is self-parameterizing that creates the

model’s structure without any user tuning (Danandeh Mehr

et al. 2014). It is also, unlike ANN, which are black-box

models that do not describe the physical relationships

among various process components (Alavi et al. 2011;

Moghassem and Fallahpour 2013) are capable of giving

Fig. 10 The flowchart of the methodology
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explicit expressions of the relationships between dependent

and independent variables (Wang et al. 2016). Technicians

with less skill can more easily use those expressions than

ANN models (Wang et al. 2016).

As a conclusion, both have similarities in what they can

do, but depending on the problem sometimes ANNs will fit

fine, sometimes GEP will; i.e., ANN are usually straight-

forward to implement and work pretty well but their black

box nature make them non-user friendly (Wolpert and

Macready 1997). On the other hand GEP results are often

human friendly, but coding such an algorithm from scratch

can be painstaking (Wolpert and Macready 1997).

Notwithstanding one has to take a look at the no free lunch

theorem (NFLT) which states that two algorithms are

equivalent when their performance is averaged across all

possible problems (Wolpert and Macready 1997).

4.5 Performance evaluation

To performance evaluation, seven significant statistical

criteria based on observed land subsidence were used. The

descriptions of these statistical criteria are below:

The coefficient of determination (R2) shows how many

percents of the changes in the dependent variable is

explained by the independent variable. In other words, the

R2 indicates how much the dependent variable changes are

affected by the independent variable, and the other changes

in the dependent variable are related to other factors. The

R2 is always between 0 and 100%.
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where Ft is the forecast data, At is the actual data (observed

land subsidence), and n is the number of data.

The average of the second power of the deviation of an

estimator from its real value is the Mean Squared Error

(MSE) defines. This statistic criterion is of particular utility

among statisticians (Lehmann and Casella 1998).Pn
t¼1 At � Ftð Þ2

n
ð11Þ

where Ft is the forecast data, At is the actual data (observed

land subsidence), and n is the number of data.

A robust measure of overlapping data is named the

Median Absolute Error (MAE) criteria. This is a more

resistant criteria in the field of overload data to the standard

deviation (Willmott and Matsuura 2005).Pn
t¼1 At � Ftj j

n
ð12Þ

where At is the actual data (observed land subsidence), Ft is

the forecast data, and n is the number of data.

The number of deviations of estimated values from the

observed values defined as the root mean square error

(RMSE). In other words, dispersion of the data is shown in

this criteria, and the excellent performance of the model

expresses in the smaller RMSE and closer to zero. (Hyn-

dman and Koehler 2006).ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1 At � Ftð Þ2

n

s
ð13Þ

where Ft is the forecast data, At is the actual data (observed

land subsidence), and n is the number of data.

The other three statistical sensors that GeneXpro Tools

software specifically uses to evaluate model performance

are Relative Absolute Error (RAE) (Eq. 14), Relative

Squared Error (RSE) (Eq. 15) and Root Relative Squared

Error (RRSE) (Eq. 16), respectively.Pn
t¼1 At � Ftj jPn
t¼1 At � �Aj j ð14Þ

Pn
t¼1 At � Ftð Þ2Pn
t¼1 At � �Að Þ2

ð15Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1 At � Ftð Þ2Pn
t¼1 At � �Að Þ2

vuut ð16Þ

In the above equations, At is the actual data (measured

subsidence from the radar images), Ft is the data estimated

by the model, and �A is the average of real data.

5 Results and discussions

5.1 Factors standardization with GIS fuzzy
memberships

Based on that lower amounts have a enhance effect on land

subsidence in the DEM, Sy, distance of fault, T, rain, and

slope parameters, it must use the ‘‘Small’’ function to fuzzy

standardize of these factors (Mohebbi Tafreshi et al. 2019).

Figure 11 shows the procedure of fuzzy standardization

one of these kinds of parameters using fuzzy ‘‘small

membership’’ function.

‘‘Large membership’’ function was used in those kinds

of parameters that higher amounts have a higher effect on

the rate of land subsidence (Mohebbi Tafreshi et al. 2019).

Accordingly, the parameters of aquifer thickness, bedrock

depth, Debi, and G.W. drawdown have been fuzzy stan-

dardize by this membership function (Mohebbi Tafreshi

et al. 2019). Figure 12 shows the procedure of fuzzy
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standardization one of these kinds of parameters using

fuzzy ‘‘large membership’’ function.

Since the land use, geology, erosion, and soil type have

qualitative classes, hence to fuzzy standardize these kinds

of parameters, the ‘‘linear membership’’ function was used

after the assigned a numerical value to each qualitative

class (Table 2). Accordingly, the larger numerical value

representative a higher effect on land subsidence (Mohebbi

Fig. 11 Fuzzy standardization of the ‘‘distance of fault’’ parameter using fuzzy ‘‘small membership’’. In this figure, 0 was assigned to low

effective (yellow), and 1 was assigned to most effective (blue)

Fig. 12 Fuzzy standardization of the ‘‘aquifer thickness’’ parameter using fuzzy ‘‘large membership’’. In this figure, 0 was assigned to low

effective (yellow), and 1 was assigned to most effective (blue)

Table 2 The assigned numerical value to each qualitative class according to their effect on land subsidence

Class number Geology Soil type Land use Erosion

1 Eav, K2c Gravel Rocky area, Artificial recharge, Mamlo Dam I

2 E1c, Ek, Jl, Ktzl, PlQc, Plc, Qft1 Gravel and sand Bare Land, Orchard, Poor Range II

3 Qft2, Murm, Murmg, Mursh Gravel, sand and clay Urban area III

4 – Clay and sand Agricultural area IV

5 – Clay, sand and silt – –

6 – Clay and silt – –
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Tafreshi et al. 2019). Figure 13 has been shown the pro-

cedure of fuzzy standardization one of these kinds of

parameters using fuzzy ‘‘linear membership’’ function.

Figure 14 presents all fuzzificated factors.

5.2 Land subsidence susceptibility modeling
with GEP

In this study, 70% of data (2919 pixels) used for training

and 30% (1251 pixels) for testing were entered into the

model, randomly. The statistical measures of the best fit-

ness, R, R2, and RMSE were used to evaluate the perfor-

mance of the model. The parameters and their rates at

various stages of using GeneXproTools software to esti-

mate the subsidence are summarized in Table 3.

Table 4 shows the best mode in the training and testing

phases (Figs. 15, 16). This result shows that the use of

bedrock level, slop, soil, geology, aquifer thickness

parameters, and ?, -, *, /, Tanh, X2, Atan, Inv, 3Rt, Ln,

NOT, Min2, Max2, Exp, Avg2 operators, will lead to

improved model performance and excellent modeling

results with real data.

Figure 17 shows the effect of each parameter on land

subsidence in F-GEP modeling. Accordingly, the G.W.

drawdown parameter had the highest impact, and the Debi

of pumping wells parameter had the least effect on the land

subsidence in the study area. The results of the GEP

modeling on the high influence of G.W. drawdown

parameter on the land subsidence are in line with the results

of Shadfar et al. (2016) and Shemshaki et al. (2006). These

results also are in line with the results of Sundell et al.

(2019) that In their paper mentioned the high impact of

groundwater and clay thickness parameters on subsidence

and its associated hazards.

Since the GEP model can obtain the mathematical

relationship between inputs and output variables, so in

Table 5, the mathematical and numerical relations are

shown. Numerical constants randomly generate each of the

graceful chromosome genes and help simplify the equation

(Table 6). Given the four genes here, each gene has its sub-

tree and its equation, which ultimately yields the final

equation concerning the graft function. Figure 18 shows

the structure of the desired output model tree.

Since the link function is the sum function, the genes

must be aggregated to obtain the answer equation, which

results at the end of the final equation (Eq. 17) is as fellow:

Land subsidence ¼ SUB ET1ð Þ þ SUB ET2ð Þ
þ SUB ET3ð Þ þ SUB ET4ð Þ ð17Þ

Finally, in Fig. 19, land subsidence susceptibility map

based on F-GEP model presented.

5.3 Land subsidence susceptibility modeling
with ANN

In this study, the ANN was used to model the subsidence.

In other words, the ANN receives the input information

that contains bedrock level, T, clay thickness, annual

rainfall, aquifer thickness, slope based on DEM, Debi

zonation of pumping wells, soil type, groundwater draw-

down in 20 year, erosion, distance of fault, Sy, land use,

and lithological units, and relates them to a mathematical

logic with existing responses where subsidence values have

occurred. Figure 20 shows the structure of the neural net-

work with 14 inputs, two hidden layers (number of units in

the first layer eight and the second layer six), and one

output layer used in this study (Table 7). This network used

70% (2919 pixels) used for training and 30% (1251 pixels)

of the data for the test. The hyperbolic tangent function was

Fig. 13 Fuzzy standardization of the ‘‘soil type’’ parameter using fuzzy ‘‘linear membership’’. In this figure, 0 was assigned to low effective

(yellow), and 1 was assigned to most effective (blue)
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used for the processing elements (neurons) in the hidden

layer. R2 and RMSE statistical criteria were used to select

the appropriate number of neurons in the middle layer and

the desired number of replicates and to evaluate neural

network learning and obtain the best results. In order to find

the optimal state of the networks, various threshold

functions such as sigmoid logistic function, linear function,

and hyperbolic sigmoid tangent were used. For each ANN

network, in the default combination and with different

iterations, the values of R2 and RMSE error coefficient

were investigated. The number of iterations (which the

Fig. 14 Fuzzification the factors. a Sy; b erosion; c aquifer thickness; d distance of fault; e bedrock level; f DEM; g annual rainfall; h clay

thickness; i T; j soil type; k Debi zonation of pumping wells; l slope; m geo units; n G.W. drawdown; o land use
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Table 3 The parameters used and their rates at various stages of using GeneXproTools software

Parameters Rate Parameters Rate/type

Head size 7 Gene recombination rate 0.2

Chromosomes 30 IS recombination rate 0.1

Number of genes 3 RIS recombination rate 0.1

Mutation rate 0.033 Gene transposition rate 0.1

DC mutation 0.1 Fitness function error type RMSE, R, Best fitness

One-point recombination rate 0.2 Linking function ?

Two-point recombination rate 0.3 Function set ?, -, *, /, Tanh, X2, Atan, Inv, 3Rt, Ln, NOT, Min2, Max2, Exp, Avg2

Table 4 The values of

statistical criteria for the F-GEP

Model in training and testing

modes

Modes R R2 RMSE Best fitness MSE MAE RAE RSE RRSE

Training 0.99992 0.99984 0.00487 995.15327 0.00002 0.00416 0.01158 0.3464 0.00015

Test 0.99991 0.99983 0.00497 995.05452 0.00002 0.00423 0.01178 0.3324 0.00016

Fig. 15 Fit diagram of the training phase

Fig. 16 Fit diagram of the testing phase
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RMSE error value of the test data was the lowest, and R2

was the highest) selected as the number of initial iterations.

Figure 21 shows the desired output and actual network

output and Fig. 22 shows the correlation coefficient

between observational and computational subsidence, the

error column for each learning process and the error value

for each data for train, validation, and test data. These

results (Table 8) indicate an excellent approximation of

this network for this study (over 94%).

Figure 23 illustrates the importance of input variables to

the neural network in predicting subsidence. According to

Fig. 23, variable G.W. drawdown is the most important and

variables clay thickness, T, Sy, and geology have the next

rank in the subsidence occurrence. The results of the ANN

modeling on the high influence of G.W. drawdown

parameter on the land subsidence are in line with the results

of _ENREF_89 Li and Zhang (2018) that In their paper

mentioned the high impact of G.W. Drawdown, clay

thickness, and hydraulic properties such as transmissivity

on subsidence and its associated hazards.

Finally, in Fig. 24, land subsidence susceptibility map

based on the F-ANN model presented.

Fig. 17 Percentage chart of the effectiveness of each parameter. In this chart, d0 is aquifer thickness, d2 is clay thickness, d3 is Debi of pumping

wells, d4 is the distance to faults, d5 is G.W. drawdown, d6 is erosion, d7 is geology, d8 is land use, d11 is soil type, and d12 is Sy

Table 5 The mathematical

relationship derived from the

F-GEP Model

Gene number The mathematical relation obtained from the model

1 *.*.Tanh.Avg2.Avg2.*.X2.*.Avg2.Avg2.d8.d5.d0.d9.c7.d5.c0.d0.d8.d11.d5

2 d0.d4.Avg2.Avg2.Exp.X2.d12.Exp.-.Avg2.d9.d9.d10.c5.d8.c5.d0.d8.d5.c0.d0

3 d0.Avg2.Max2.d1.c0.d4.-.-.d0.d12.d12.c0.d12.d2.d5.d9.d11.d7.c0.d1.c2

4 Avg2.d12.Avg2.?.Min2.?.d12.Exp.d0.*.d12.c6.c5.d0.d11.d0.d10.d2.d0.d1.d0

Table 6 The constants of each chromosome genes

Gene

number

Constants

1 c0 = -2.31482662892544; c1 = -6.33472701193274; c2 = 3.41742912076174; c3 = -2.91909543137913;

c4 = -9.87426374095889; c5 = -5.26416821802423; c6 = -0.331736198004089; c7 = -1.09269997253334E-02;

c8 = 1.01128666035951; c9 = 3.73638111514634

2 c0 = 9.67955565050203; c1 = -8.35679795831172; c2 = 2.51075777459029; c3 = -7.74198736533708;

c4 = -3.25194402905362; c5 = -3.4957252723777; c6 = 8.31498153630177; c7 = -1.99744819483016;

c8 = -7.26730246894742; c9 = -4.89791558580279

3 c0 = -1.19541001617481; c1 = 9.91576891384625; c2 = 8.2311471907712; c3 = -6.94332407605213;

c4 = -2.89895321512497; c5 = -2.63963744010743; c6 = 7.07327494125187; c7 = -8.59797967467269;

c8 = -6.66313669240394; c9 = 5.33801767293313

4 c0 = -9.99877925962096; c1 = 0.957976012451552; c2 = 8.7420270393994; c3 = -2.321671498764;

c4 = -5.39658803064058; c5 = -8.4129001739555; c6 = -1.63792840357677; c7 = 10.9436017944884;

c8 = -7.04947050386059; c9 = -6.77147740104373
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5.4 Empirical comparison between the F-ANN
and the F-GEP methods

As shown in Fig. 25, the overall accuracy of the GEP

model with higher amounts of R (0.99861) and R2

(0.99722), and lower amounts of MAE (0.00321), MSE

(0.00021), and RMSE (0.01461), is greater than the ANN

model. Based on these results, it seems that in non-linear

geologic events such as land subsidence, landslide, and

flood which are dependent on some other independent

parameters of geology, hydrogeology, hydrology, soil and

so on, the use of the GEP model leads to better concor-

dance with values of actual data and has more accurate

results than the ANN model. This result is in line with

Nourani et al. (2014), Luo et al. (2019), and Pashazadeh

and Javan (2020) researches in which the concordance with

actual data in GEP model is higher than other models

including ANN.

Table 9 shows the accuracy of the two models in each of

the susceptibility classes. Based on this table, the highest

degree of conformity in the ANN model is observed in the

very low class and the low, very high, high, and moderate

classes are in the next category, respectively. Meanwhile,

in the GEP model, the highest degree of conformity is

observed in the low class and the very high, moderate,

high, and very low classes are in the next category,

respectively.

As can be seen in Table 9 and Fig. 26, despite the higher

accuracy of the GEP model in most classes, in the very low

class, the fit of the ANN model based on the R and R2

statistical criteria is higher (red dashed line). However,

according to the RMSE, MAE, and MSE statistical criteria,

it is still the GEP model that has higher accuracy (blue

dashed line).

Based on the results of model validity, it can be seen that

the GEP model using 10 parameters yields better results

than the ANN model using 14 parameters. Its cause can be

attributed to the ‘‘Tree-based’’ nature of the GEP model.

These types of models (like the support vector machine

model) have some advantages such as feature selection and

pruning (Naghibi et al. 2018) and are very robust to noise

(Tien Bui et al. 2016). Feature selection leads to the

selection of the most important factors which can be used

for splitting and making the decision and makes the results

more acceptable (Naghibi et al. 2018)_ENREF_62.

6 Conclusions

In this research, we tried to evaluate the accuracy of GIS-

based hybrid F-GEP and F-ANN models for estimating the

risk of land subsidence in Varamin aquifer based on radar

image data. In order to standardize and fuzzification the

factors before importing them into the two ANN and GEP

models, the factors were divided into three groups

according to their nature and three ‘‘large’’, ‘‘small’’, and

‘‘linear’’ fuzzy membership functions were used. Accord-

ingly, DEM, Sy, the distance of fault, T, rain, and slope

parameters by the ‘‘small’’ membership function, the

parameters of aquifer thickness, bedrock depth, Debi, and

G.W. drawdown by the ‘‘large’’ membership function, and

the land use, geology, erosion, and soil type by the ‘‘linear’’

membership function, were standardized. For modeling

with the F-GEP model, fourteen inputs, and ?, -, *, /,

Tanh, X2, Atan, Inv, 3Rt, Ln, NOT, Min2, Max2, Exp,

Avg2 operators in thirty chromosomes, seven head, and

bFig. 18 Structure of the desired output model in tree form: Sub-ET 1:

the first gene sub tree. In this sub tree, inputs d0, d5, d7, d8 and d9 are

generated and the equation of this sub tree is created as: SUB

(ET1) = *.*.Tanh.Avg2.Avg2.*.X2.*.Avg2.Avg2.d8.d5.d0.d9.c7.d5.

c0.d0.d8.d11.d5; Sub-ET 2: sub tree related to the second gene. In the

following tree, the equation of this sub tree is created as: SUB

(ET2) = d0.d4.Avg2.Avg2.Exp.X2.d12.Exp.-.Avg2.d9.d9.d10.c5.d8.

c5.d0.d8.d5.c0.d0; Sub-ET 3: sub tree related to the third gene. In the

following tree, the equation of this sub tree is created as: SUB

(ET3) = d0.Avg2.Max2.d1.c0.d4.-.-.d0.d12.d12.c0.d12.d2.d5.d9.d11.

d7.c0.d1.c2. Sub-ET 4: sub tree related to the fourth gene. In the

following tree, the equation of this sub tree is created as: SUB

(ET4) = Avg2.d12.Avg2.?.Min2.?.d12.Exp.d0.*.d12.c6.c5.d0.d11.

d0.d10.d2.d0.d1.d0

Fig. 19 Land subsidence susceptibility map based on F-GEP model
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Fig. 20 Neural network

structure
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four genes were used. In this regard, for modeling with the

F-ANN model, fourteen inputs, two hidden layers (number

of units in the first layer eight and the second layer six), and

one output layer were used. In both models, 70% data used

for training and 30% for testing were entered into the

models. The results of the present study showed that

overall accuracy based on the values of R, R2, MSE, MAE,

and RMSE statistical criteria in the F-GEP model are better

than the F-ANN model. Accordingly, the F-GEP model is

more accurate than F-ANN model in land subsidence

susceptibility modeling. Despite the clearly superiority of

the F-GEP model based on R and R2 statistical criteria, the

Table 7 ANN structure information’s

Network information

Hidden layers

Number of unitsa 14

Rescaling method for covariates Standardized

Number of hidden layers 2

Number of units in hidden layer 1a 8

Number of units in hidden layer 2a 6

Activation function Hyperbolic tangent

Output layer

Dependent variables Subsidence

Number of units 1

Rescaling method for scale dependents Normalized

Activation function Sigmoid

Error function Sum of squares

aExcluding the bias unit

Fig. 21 Desired output and

actual network output

Fig. 22 Correlation coefficient

between observational and

computational subsidence

Table 8 The values of statistical criteria for F-ANN model

Performance RMSE MSE MAE R2 R

0.056 0.003 0.036 0.9419 0.9705
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comparison of the susceptibility classes accuracy shows

this model did not perform well in zoning and estimating

‘‘Very low sensitive regions’’ class and the F-ANN model

performed better. However, the model output show that

both models perform very well in estimating and zoning

areas with ‘‘Very high’’ and ‘‘Low’’ risk classes of subsi-

dence. The results also showed in both F-ANN and F-GEP

models, the groundwater drawdown and the clay thickness

parameters had the highest effect on land subsidence in

Varamin aquifer. This result is in line with the previous

studies in Varamin aquifer.

This study showed that the F-GEP is a powerful pro-

gramming algorithm in land subsidence susceptibility

modeling. It seems that the ‘‘Tree-based’’ nature of the

F-GEP model causes the results more accurate.

Using support vector machine (SVM), random forest,

and other tree-based algorithms and comparing them with

the results of the current research is a suggestion for future

work, which may further improve the modeling accuracy,

especially in susceptibility classes.

Fig. 23 The importance of input

variables to neural network

Fig. 24 Land subsidence susceptibility map based on the F-ANN

model
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Fig. 25 The overall accuracy of

F-GEP and F-ANN models

Table 9 The accuracy of

susceptibility classes in F-GEP

and F-ANN models based on

statistical criteria

Model Susceptibility class RMSE MSE MAE R2 R

F-ANN Very low 0.03559 0.00126 0.02342 0.70620 0.84035

Low 0.06468 0.00418 0.04223 0.57459 0.75802

Moderate 0.06760 0.00457 0.04362 0.30899 0.55587

High 0.05621 0.00316 0.03879 0.41776 0.64634

Very high 0.04734 0.00224 0.03916 0.56921 0.75446

F-GEP Very low 0.00666 4.45E-05 0.00389 0.52001 0.72111

Low 0.00643 4.14E-05 0.00374 0.99147 0.99572

Moderate 0.01848 0.00034 0.00500 0.91157 0.95476

High 0.03291 0.00108 0.00732 0.75636 0.8696

Very high 0.00993 9.87E-05 0.00217 0.96503 0.98236

Fig. 26 The accuracy of

susceptibility classes in F-GEP

and F-ANN models
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