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Abstract
Climate internal variability (CIV) plays an important role in understanding climate and is one of the principal uncertainties

in climate projections. This study aims to estimate CIV and climatological mean (CM) in predictions using different

emission scenarios for South Korea. A stochastic weather generator is employed to generate 100 ensembles of 30-year

hourly time series for 40 meteorological stations. CIV is then estimated from the detrended method and compared with the

noise computed by the two approaches. The extremely high value of the coefficient of determination between CIV values

and noise indicates that the methodologies are seamless. The key results of this study include: (1) national average CM and

CIV will increase in the future, and that increase will be greater in Representative Concentration Pathway 8.5 and end

periods; (2) the nature of future changes in CM and CIV differ according to the indices of interest. Characteristics of three

precipitation-quantity indices (total precipitation, totPr; daily maximum precipitation, maxDa; and hourly maximum

precipitation, maxHr) and the precipitation-occurrence index (the number of days without precipitation, nonPr) are largely

distinct; (3) examining the relationship between factors of changes of CIV and CM reveal a high correlation between them

for maxDa and maxHr, but not for other indices; (4) The tail information of distribution for the FOC ratio implies that

future changes in total and extreme precipitation are likely to be decoupled for some months or at some locations. The

degree of decoupling is more noticeable on the hourly than the daily scale; and (5) the spatial deviation of CIV is also

larger during the summer when CIV values are spatially large; this is valid only for totPr and maxDa. Methodologies and

results for finer scales help assess the impact of climate change and develop appropriate adaptation and response strategies.

Keywords Climate internal variability � Climatological mean � Future projection � Finer scales � Weather generator �
Spatial distribution � Factors of change

1 Introduction

Climate internal variability (CIV) in the form of such

phenomena as El Niño–Southern Oscillation (ENSO) and

thermohaline circulation is an essential part of under-

standing climate (Deser et al. 2012a, b, 2014; Frankcombe

et al. 2015). The term refers to natural internal variability

caused by complex feedbacks and nonlinear interactions

among intrinsic components of a climate system, and is a

comparative concept of climate external variability affec-

ted by anthropogenic or natural changes in external forcing

(Deser et al. 2012a, b; IPCC 2013; Thompson et al. 2015;

Aalbers et al. 2017). Due to its physical significance, the

notion of internal variability has long been studied in cli-

matology and appears in the form of various terminologies

in other disciplines, for example, ‘‘endogenous’’ in geol-

ogy, ‘‘autogenic’’ in sedimentology, and ‘‘internal’’ in

hydro-geomorphology (Kim et al. 2016a). In general, the

short-term (within two weeks) predictability of climate

variability is relatively reliable in daily weather forecasts

(Simmons and Hollingsworth 2002; Domeisen et al. 2018;

Scaife and Smith 2018). However, it is challenging to

predict CIV on larger time horizons such as the next 50 or

100 years, even if uncertainties about climate models and

external forcing have been resolved (Hawkins and Sutton
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2009; Deser et al. 2012a; Addor and Fischer 2015). Clearly

defining and quantifying CIV in climate projections is

therefore necessary for providing reliable forecasts and

improving decision-making.

Prediction of CIV has been performed mainly by gen-

erating an ensemble from model simulation results and

calculating the degree of spread among the ensemble

members. Ensemble-generation can be classified by four

approaches using dynamic, analytical, statistical, and

stochastic models (Kim et al. 2018). The dynamic method

employs a deterministic climate model to create a large

number of simulations, with only minor modifications to

the initial conditions of the atmospheric component.

External forcings and the initial conditions of the other

model components are constrained to be identical (Deser

et al. 2012a, b, 2014; Fischer et al. 2013; Fischer and

Knutti 2014; Hu et al. 2018). Sensitivity to the initial

conditions is mostly deemed a component that causes the

internal variability. The analytic approach can estimate the

range of CIV from an analytic mathematical model, but

several key assumptions for the probability distribution of

internal variability, the trend of climate change, and the

stationarity of two statistics used are essential (Thompson

et al. 2015). The statistical and stochastic approaches are

comparable in that they build an ensemble directly from

historical observations. However, they can be further

classified according to whether they allow for climatic

stochasticity in future projections and whether historically

unobserved realizations are fully explored. The statistical

approach often underestimates the variability of a climate

system compared to the stochastic approach which better

reproduces the stochastic nature of natural climate vari-

ables (Hingray and Said 2014; Kim et al. 2018). Kim et al.

(2018) explore the advantages and disadvantages of the

four approaches in more detail.

The contribution of CIV to total uncertainty in a future

projection can be substantial (Hawkins and Sutton

2009, 2010; Deser et al. 2012a, b, 2014; Fischer et al. 2014;

Hingray and Said 2014; Kim and Ivanov 2015; Xie et al.

2015; Monerie et al. 2017; Martel et al. 2018). However,

mixed results have been reported depending on spatial and

temporal scales, locations, and climate indices. First, future

CIV averaged over the globe decreases for mean precipi-

tation (Hingray and Said 2014; Dai and Bloecker 2018) and

mean temperature (Hawkins et al. 2015; Olonscheck and

Notz 2017). In contrast, future CIV averaged over geo-

graphical regions (at regional scales) remains unchanged

(Hawkins and Sutton 2010; Thompson et al. 2015),

increases for mean precipitation (Pendergrass et al. 2017),

or decreases for mean temperature (Hawkins et al. 2015).

At local scales, future CIV for computational cells (2 or

12 km resolution) will be unchanged for mean precipita-

tion (Peleg et al. 2019). Second, no consistent results were

found regarding the temporal scale. Internal variability for

global mean precipitation on a decadal scale (Hawkins and

Sutton 2010) and natural climate variability on a daily

scale (Peleg et al. 2019) were unchanged. Internal vari-

ability decreases slightly for annual precipitation on an

annual scale (Lafaysse et al. 2014), or increases over

almost all land areas on a daily scale (Pendergrass et al.

2017). Third, CIV greatly varies depending on location.

When looking at spatial distributions over different regions

or locations, CIV is high in polar and tropical regions

(Schindler et al. 2015) and low in other regions for daily

precipitation (Schindler et al. 2015). For seasonal mean

temperature, CIV is low for the lower latitudes of North

America and high for the higher latitudes, but CIV of

seasonal mean precipitation is higher in all the regions

except for the middle part of North America (Deser et al.

2012b). Fourth, CIV differs according to the probabilistic

index of interest. For example, CIV of daily maximum

precipitation corresponding to a 20-year return period is

larger than that corresponding to a 10-year return period

(Aalbers et al. 2017). In addition, CIV of precipitation

extremes, such as daily maximum precipitation, is higher

than that of precipitation means (Fischer and Knutti 2014;

Fischer et al. 2014).

Most previous examinations of CIV were performed at

global or regional scales (Deser et al. 2012a, b, 2014, 2016;

Fischer et al. 2014; Thompson et al. 2015; Aalbers et al.

2017; Monerie et al. 2017; Martel et al. 2018; Wang et al.

2018) and daily or monthly temporal scales (Deser et al.

2012a, b, 2014; Fischer et al. 2014; Dai and Bloecker 2018;

Martel et al. 2018). Only a few studies have been quantified

CIV at smaller and finer scales (Fatichi et al. 2011, 2013;

Bengtsson and Hodges 2018; Peleg et al. 2019).

In this study, we use a weather generator to generate

various climate realizations simulated at an hourly scale for

four different periods: control (CTL), early (ERY), middle

(MID), and end (END) periods. South Korea, which is part

of the Far East Asia Monsoon region, was selected as a

study domain (see SM.1. and Fig. S1) because of its

complex rainfall characteristics and distinct seasonal pat-

terns, both temporally and spatially (Kim et al. 2019).

Historical and numerical climate data were collected to

estimate the parameters of a weather generator. Climato-

logical mean (CM) and CIV were then computed for

indices from 40 gauge stations on different temporal scales,

representing rainfall volume, maxima, and occurrence in

the future and control periods. To assess temporal changes

of CM and CIV values between the future periods and the

control period, a factor of change (FOC) and a significance

test (t-test) were applied. The impact of different repre-

sentative concentration pathways (RCP 4.5 and RCP 8.5)

on CM and CIV was also investigated for all locations and

months.
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2 Methodology of future CIV estimation

How future climate information is downscaled, how hourly

ensemble members of weather variables are generated, and

how CIV is quantified is briefly described in the following

paragraphs, referring to a flow chart illustrated in Fig. 1.

1. The first step was to collect the time series of

meteorological variables at gauge locations of interest.

These data should be observed hourly to be used as an

input for a stochastic model. They were obtained from

an automatic weather observation station operated by

the Korea Meteorological Administration as part of the

Automated Surface Observing System (https://data.

kma.go.kr/data/grnd/selectAsosList.do?pgmNo=34). In

total, 40 meteorological stations were selected

according to the availability of at least 30 years of

hourly records. The original data were examined before

use and any inappropriate values were removed to

avoid potential errors (Kim et al. 2018).

2. Hourly observations were then employed to estimate

the present parameters of a stochastic weather gener-

ator, the Advanced Weather GENerator (AWE-GEN)

(Ivanov et al. 2007; Fatichi et al. 2011). The AWE-

GEN was chosen because of the availability of climate

information downscaled at finer scales, the ability to

efficiently generate large numbers of ensembles, and

the performance of estimating CIV (see SM.2. and

Fig. S2). A built-in module for generating precipitation

time series consisted of two submodels of the Ney-

man–Scott Rectangular Pulse (NSRP) model and the

autoregressive model, which were adopted for repro-

ducing the high- and low-frequency characteristics of

rainfall, respectively. Six parameters of the Poisson,

the geometrical, the exponential, and the gamma

distributions are employed in NSRP to generate the

internal structure of precipitation: the storm time

origin, a random number of cells generated for each

storm, the cell displacement from the storm origin, and

the life time and the intensity of a rectangular pulse

associated with each precipitation cell. The parameters

are estimated for each month from using an objective

function including various statistical properties of

precipitation at four different aggregation time scales

of 1, 6, 24 and 72 h. The inter-annual variability of

precipitation is also simulated using an autoregressive

order one model, AR(1), with the skewness modified

through the Wilson–Hilferty transformation (Wilson

and Hilferty 1931). The AR model consists of four

parameters of the average annual precipitation, the

standard deviation, the lag-1 autocorrelation, and the

random deviate of the process, which are determined

1 •Collect hourly observations for 40 gauge locations

2 •Estimate the parameters of AWE-GEN over the control period for each location

3
•Collect the projected data of 18 GCMs and compute the 170 statistics of AWE-
GEN for 3 future periods for 2 RCP scenarios

4 •Apply a BWA method to obtain 170 posterior distributions of FOCs

5 •Estimate the parameters of AWE-GEN downscaled for the future periods

6
•Generate 100 ensemble, 30-year hourly time series by using AWE-GEN for the 
control and 3 future periods, for 2 RCP scenarios

7 •Compute 4 proposed indices from hourly time series generated

8
•Compute the climatological mean, climate internal variability, and noise for the 4 
indices for control and 3 future periods

9
•Perform the tests of significance for testing the mean difference between two 
distributions

Fig. 1 Flow chart of the adopted

procedure and methodology
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from annual observations. More detailed information

of submodels and parameters is supplied in a study by

Fatichi et al. (2011).

3. Regarding the collection of projected data of global

climate models (GCMs), 18 GCMs from the fifth phase

of the Coupled Model Model Intercomparison Project

(CMIP5) were chosen because they contain consistent

daily precipitation data for all time periods and

maintain mutual independence among these models.

A wide range of statistics (mean, variance, skewness,

and frequency of non-precipitation) were then calcu-

lated at four aggregation intervals (i.e., 24, 48, 72 and

96 h) for various temporal scales (monthly and annu-

ally) over four time periods of ‘‘control’’ (1961–1990)

and three future (ERY: 2011–2040; MID: 2041–2070;

END: 2071–2100) periods, respectively. RCP 4.5 and

RCP 8.5 were used to mimic different emission

scenarios. More detailed information on the statistics

used is available in Kim et al. (2016b).

4. The numerical outcomes projected from each GCM

generally do not provide any consistency at local and

finer scales because of differing spatial resolutions and

varying degrees of understanding the physics. Select-

ing a GCM at random to evaluate climate change may

therefore result in considerable uncertainty and risks

with respect to mitigation measures. To avoid this ad

hoc selection, Bayesian weighted averaging (BWA)

(Tebaldi et al. 2005) was applied with the statistical

properties of 18 GCMs and observations. BWA can

quantify the potential uncertainty in each GCM.

A Markov Chain Monte Carlo (MCMC) simulation

was used to estimate marginal posterior distributions of

the FOCs for the 170 statistics. The latter FOCs were

computed in a ‘‘product’’ type (i.e., dividing future

statistics by control statistics) for precipitation statis-

tics. More details on BWA parameters, their prior

distributions, MCMC algorithm, and burn-in period are

summarized in the Step (2) of Kim et al. (2016b).

5. Because the AWE-GEN adopts statistical information

at aggregated temporal scales of 1, 6, 24, 72 h, it was

necessary to downscale the daily precipitation statistics

from the CMIP5 databases to a finer hourly scale. A

few assumptions and empirical relationships were

employed to downscale the mean, variance, skewness,

autocorrelation, and frequency of non-precipitation

identified at 24, 48, 72 and 96 h aggregation intervals

to those at 1, 6, 24, 72 h (Fatichi et al., 2011). By

combining the historical parameters estimated from the

observations with statistics at finer scales, a new set of

precipitation parameters was generated over the three

future periods for the two RCP scenarios (Fatichi et al.

2011).

6. Using the new set of parameters obtained above and

the AWE-GEN, a 100-ensemble, 30-year hourly time

series was generated for precipitation. Ensemble sim-

ulations of AWE-GEN are among the repetitions that

represent the stochastic nature of precipitation charac-

teristics; they assume stationary climate conditions

given periods of interest. Although AWE-GEN can

generate hourly time series for many weather variables

(e.g., cloud cover, air temperature, radiation, and wind

speed), only precipitation was addressed in this study.

The details for estimating parameters and generating

weather components are described in a study by Fatichi

et al. (2011) and a technical reference can be down-

loaded at: https://www.umich.edu/*ivanov/HYDRO

WIT/Models.html. Because a larger number of model

runs does not significantly increase the accuracy of

uncertainty quantification (Kim et al. 2016b; Tran and

Kim 2019), 100 stochastic simulations were employed

for the control and three future periods. For 40 loca-

tions and for seven cases (CTL, ERY45 = ERY ?

RCP45, ERY85 = ERY ? RCP85, MID45 = MID ?

RCP45, MID85 = MID ? RCP85, END45 = END ?

RCP45, and END85 = END ? RCP85), a number of

40 9 700 ensemble simulations were generated. Each

set of 100 simulations was derived from a population

with the same climate information (i.e., the same

AWE-GEN parameters), indicating that external con-

ditions were controlled equally.

7. To quantify internal variability with respect to an

annual time series, we first computed four proposed

indices that may be of interest from the generated

hourly time series. The indices chosen in this study are

total precipitation (abbreviated as totPr), daily

(maxDa) and hourly (maxHr) maximum precipitation,

and the number of days without precipitation (nonPr).

Seasonal and annual patterns can be identified for these

indices in evaluations over each month and the whole

year. The number of ensembles for the reconstructed

annual 30-year time series for the four indices was

therefore 4 (indices) 9 13 (months) 9 40 (loca-

tions) 9 7 (periods) 9 100 (realizations).

8. Given the annual time series (Xij) of the four indices,

the first and second moments were computed. We also

employed the first moment of the mean over 30 years

of the time sies and the second moments of internal

variability and trend. All moments were evaluated for

each ensemble member and then converted to repre-

sentative values over all the members, that is, CM,

CIV, and noise. CM and the CIV referred to the

ensemble average of the temporal mean and internal

variability computed for one ensemble, i, respectively.
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where i and j indicate the ensemble member and the

individual year; N and T are the number of ensemble

members and years, respectively. Internal variability

was quantified largely by using detrended and differ-

enced methods (Kim et al. 2018). The key in both was

to separate the external component (i.e., the forced

signal) from the given time series and compute the

variability (using standard deviation in this study) of

the internal component (i.e., residual). The residual

(Reij) in the detrended and differenced methods was

computed in Eqs. (3) and (4), respectively:

Reij ¼ Xij � Fitij ð3Þ

Reij ¼ Xij �
1

N

XN

i¼1

Xij ð4Þ

Rei ¼
1

T

XT

j¼1

Reij ð5Þ

where Fitij refers to the values of the fitted linear line

with respect to Xij. The two methods differed

depending on how the internal component is calcu-

lated, but the results were largely consistent (Kim et al.

2018). The detrended method was used throughout this

study, which was adopted by many previous studies

(Giorgi and Mearns 2002; Moise and Hudson 2008;

Zhang and Wang 2013; Frankcombe et al. 2015).

The noise, spread around the ensemble mean of model

simulations, was computed in two ways by using the trend

(‘‘noise1’’) and adopting the concept of internal variance

(‘‘noise2) (Kang and Shukla 2006). Regarding the calcu-

lations for the trend, it was generally estimated by two

approaches. The first approach used the first order of linear

regression model to obtain a fitted line over a temporal

period (e.g., 30 years) for each ensemble member (Moise

and Hudson 2008; Zhang and Wang 2013; Frankcombe

et al. 2015). The trend (trendi) for each ensemble member

is determined as the vertical difference between the first

and last point of the fitted line. Depending on time series,

the value of the trend could be negative or positive, rep-

resenting a decrease or increase, respectively. The trend in

the second approach can be estimated by the epoch dif-

ference between the temporal means of two time windows

(e.g., the first and the last 10 years) (Barnes and Barnes

2015). In this study, the first approach was applied to

estimate the trend of time series within 30 years. Using the

set of trends, the noise (‘‘noise1’’) was estimated by taking

the standard deviation of the trends (Deser et al.

2012a, b, 2014) as:

noise1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

i¼1

trendi � trend
� �2

vuut ð6Þ

trend ¼ 1

N

XN

i¼1

trendi ð7Þ

The ‘‘noise2’’ was defined as the temporal and ensemble

average of the sum of the squared difference between the

ensemble member and ensemble mean (Kang and Shukla

2006). This method appeared to be similar to the differ-

enced method.

noise2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T N � 1ð Þ
XT

j¼1

XN

i¼1

Xij � Xj

� �2
vuut ð8Þ

Xj ¼
1

N

XN

i¼1

Xij: ð9Þ

For each location, control, and future period, the CM,

CIV, and noise were computed for the four proposed

indices of totPr, maxDa, maxHr, and nonPr.

9. Because the ensemble of the temporal mean, internal

variability, and trend consisted of 100 values that

formed a distribution, we investigated how two distri-

butions corresponding to the control and future periods

differed from each other. Tests of significance with a

significance level of 0.05 were implemented with the

ensemble. A t-test of testing the mean difference of two

independent samples was applied to the ensemble of

the mean and IV (Von Storch and Zwiers 2001). The

null hypothesis was that there is no change in the mean

of the distributions, and the alternative hypothesis was

that there is a certain difference.

3 Results and discussions

3.1 Comparison of CIV and noise estimations

The methodologies of CIV and noise calculations pre-

sented in the previous section measure inter- and intra-

ensemble member spreads. Although details for the cal-

culations are not unique, the correlation between these

values was expected to be high. Figure 2 compares the

results of CIV estimates computed by the detrended

method and those of noise estimates computed by the two

approaches. For the index of totPr computed monthly and
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annually over 40 locations, the coefficient of determination

(R2) ranged from 0.97 to 0.98 for the first approach of noise

(noise1) and was approximately 0.99 for the second

approach of noise (noise2) over future periods. These high

R2 values confirmed a high correlation between the values

of CIV and noise, and that the methodologies presented for

quantifying the variability are seamless. The same con-

clusions can be drawn for other indices (see Figs. S1–S3).

Although the correlation between CIV and noise was

high in the above figures, the results in all time series that

do not eliminate the effects of external forcing were not

always correlated. The reason for a high correlation is that

the ensemble of the precipitation time series used was

generated under a stochastically stationary climate condi-

tion in which the external components were removed. If

such a calculation was applied to natural time series, there

would be a correlation between climate total variability and

noise calculations, but a correlation between CIV and noise

cannot be guaranteed.

3.2 Estimation of climatological mean and its
future change

The CM of annual total precipitation ranged from 1011.78

to 1838.49 mm (1307.57 mm in average) for 40 locations

in the CTL period (Fig. 3; Table 1). These values signifi-

cantly increased in the END period for RCP 8.5, with an

average value of up to 1484.98 mm and minimum and

maximum values of 1187.60 and 1955.47 mm, respec-

tively. Similarly, when examining CM values for maxDa

and maxHr, an overall increase for these extreme indicators

can be seen as the period goes on. The difference in CM

values by local location almost doubled. The spatial aver-

age in South Korea for CM values increased in the END85

period compared with CTL by 13.56, 16.75 and 17.85% for

totPr, maxDa, and maxHr, respectively. However, the

overall trend in CM values for nonPr was different. The

number of days of no rain in a year was comparable to the

CTL period in most future cases, regardless of climate

change. CM values vary by location from month to month.

Table 1 provides exact numbers for the mean and extreme

indices.

As well as these nationally averaged statistics, national

distributions and patterns tended to be quite dissimilar

depending on the index. To divide the locations into dis-

tinctive zones, a K-means cluster algorithm was applied to

the CM values, and four clusters (K = 4) were chosen

according to the Elbow method (Kim et al. 2018). For the

indices of totPr and maxDa, regions with higher CM values

(light red and red circles in Fig. 3) were mostly located at

the northern areas and the southern coastal regions of South

Korea, while those with lower CM values (blue circles)

were in the central part. In the case of maxHr, locations

adjacent to the western coast were included as the areas

showing higher CM values, while only the central inland

area corresponded to the areas with lower CM values. For

Fig. 2 Comparison between CIV computed by the ‘‘detrended’’ approach and noise computed by two approaches for totPr with RCP85. Each

subplot includes the data point of 520 = 40 (locations) times 13 (12 months ? year)

1042 Stochastic Environmental Research and Risk Assessment (2020) 34:1037–1058
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Fig. 3 Spatial distribution of CM values over South Korea in the

control and 3 future periods (ERY, MID, END) with the RCP85

scenario for 4 indices computed for the whole year. 40 locations are

divided into 4 clusters (colored circles from blue (the smallest

cluster), light blue, light red to red (the largest one)) by using the K-

means algorithm. The number near white circles are used as legends

to indicate the relative magnitudes of circle size

Stochastic Environmental Research and Risk Assessment (2020) 34:1037–1058 1043
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nonPr, the spatial distribution of the CM values was rela-

tively homogeneous. Almost similar spatial patterns were

observed for all indices in RCP 4.5 (see Fig. S6).

Although locations with high or low CM values could be

identified, it was still difficult to determine how much the

CM values for each location will change in the future. As

our main concern was how CM will change, the FOC were

calculated as the product type and shown in Fig. 4. As a

result of examining the FOC value for totPr, FOC had a

comparable range, from 0.98 to 1.06, for 40 locations in the

nearest future period, but the FOC value in the farthest

future period was much larger, from 1.06 to 1.22 (Table 2).

The latter number means that annual mean precipitation

can increase up to 22% in some locations. The spatial

averages of the 40 FOCs were 1.02, 1.08, and 1.14 for the

ERY85, MID85, and END85 periods, and 1.01, 1.05 and

1.09 for the ERY45, MID45, and END45 periods, respec-

tively. Likewise, when examining the FOC of maxDa and

maxHr, it was predicted that the maximum precipitation

values will also increase in the future, although there was a

difference in their size. The FOC of nonPr showed a value

close to 1.0 throughout all the future periods.

Similarly, spatial distributions and patterns tend to differ

depending on the index. For totPr, a spatial homogeneity

was found for most of the domain for FOC of CM; but

relatively small FOC values were found in the southern

region in the END85 period. Regarding maxDa and maxHr,

the FOC values of the middle region were relatively large,

but the overall tendency was not remarkable. For nonPr,

large circles were mostly located in the central inland

regions of South Korea, while small circles were dis-

tributed in the southern coastal regions. Spatial similarities

were also observed for FOCs of RCP 4.5 with changes in

circle size (see Fig. S7).

We attempted to calculate FOCs for each location, but

needed to perform a t-test to investigate if two distributions

of the temporal mean values and the future changes in two

ensemble mean values (i.e., CM) were statistically signif-

icant. It was straightforward to judge whether a future

change in CM is significant because was colored red, as in

Fig. 4 and Fig. S7. Although there was no significance at

few locations, future CM values changed significantly at

most locations.

3.3 Estimation of CIV and its future change

Various properties of CIV are illustrated in this section: (1)

spatial estimates of CIVs over South Korea, (2) spatial

distribution of FOCs of the CIV values for 40 locations in

the future periods compared with the control period, and

(3) effects of two representative concentration pathways

(RCP 4.5 and RCP 8.5). First, spatial patterns of CIV over

South Korea are displayed with varying CIV values,

depending on many factors (i.e., indices, emission scenar-

ios, and seasons). The CIV of totPr ranged from 239.77 to

497.46 mm (300.52 mm on average) over 40 locations in

the CTL period. These values decreased slightly in the

ERY85 period, with an average value of 271.31 mm before

increasing in the MID85 and END85 periods to 305.91 and

319.28 mm, respectively (Fig. 5; Table 3). When investi-

gating the CIV values for maxDa and maxHr, an overall

Table 1 The minimum,

maximum of CM values over

the 40 locations, which are

computed for the whole year

totPr (mm) maxDa (mm) maxHr (mm) nonPr (day)

CTL 1011.78–1838.49 94.79–185.70 25.76–49.98 270.8–295.57

ERY45 1051.09–1868.02 100.04–196.01 28.67–63.22 275.87–299.74

MID45 1095.19–1858.34 100.65–201.77 26.9–53.63 269.51–302.10

END45 1131.64–1974.60 111.00–191.75 30.56–61.08 270.98–299.49

ERY85 1066.08–1874.08 101.15–192.31 27.68–51.19 270.52–295.87

MID85 1114.43–1905.17 112.81–200.40 30.42–58.97 271.39–302.20

END85 1187.6–1955.47 115.04–207.14 31.47–55.37 271.77–301.13

cFig. 4 Spatial distribution of FOCs of the CM values for the whole

year with RCP85. The FOC is computed as the ratio, by dividing

future CM values by control CM values for each station for 4 indices.

The size of circles represents the magnitude of FOCs. A significant t-

test is applied to 2 distributions of IV in the future and control periods

for each location. The green color means that there is no difference

between 2 distributions; while red color refers that those are

significantly different

Table 2 The minimum, maximum of FOCs of CM values over the 40

locations, which are computed for the whole year

totPr ( -) maxDa ( -) maxHr ( -) nonPr ( -)

ERY45/CTL 0.98–1.04 0.97–1.32 0.88–1.50 1.00–1.04

MID45/CTL 1.01–1.08 0.98–1.22 0.90–1.26 0.98–1.03

END45/CTL 1.03–1.13 1.00–1.41 0.89–1.45 0.98–1.02

ERY85/CTL 0.98–1.06 0.96–1.16 0.90–1.41 0.98–1.03

MID85/CTL 1.04–1.13 1.04–1.33 0.98–1.38 0.98–1.04

END85/CTL 1.06–1.22 0.98–1.22 0.95–1.37 0.98–1.04
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Fig. 5 Spatial distribution of CIV values over South Korea in the

control and 3 future periods (ERY, MID, END) with the RCP85

scenario for 4 indices computed for the whole year. 40 locations are

divided into 4 clusters (colored circles from blue (the smallest

cluster), light blue, light red to red (the largest one)) by using the K-

means algorithm. The number near white circles are used as legends

to indicate the relative magnitudes of circle size

1046 Stochastic Environmental Research and Risk Assessment (2020) 34:1037–1058

123



increase was evident for the future periods. The spatially

averaged CIV values in the END85 period increased by

approximately 6.2, 13.7 and 16.8% for totPr, maxDa, and

maxHr, respectively, compared with the values in the CTL

period. For nonPr, there was little change in CIV values in

all periods and locations. The spatially averaged CIV val-

ues in the END85 period decreased by 3.15%. More details

are provided in Table 3 for CIVs computed annually, and

the numbers for RCP 8.5 correspond to the 16 sub-plots of

Fig. 5. Although no increasing or decreasing trends were

evident for the minimum and maximum values among

periods, the spatially averaged values for totPr, maxDa, and

maxHr exhibited an increasing trend, with a decreasing

trend for nonPr.

The spatial distribution of CIV was not identical to that

of CM. For totPr, higher CIV values were found in the

southern coastal region of the country. For maxDa and

maxHr, large CIV values were concentrated on three

coasts, i.e., west, south, and east, while relatively small

CIV values were located in the central inland region. For

nonPr, higher CIV values were found in northern and

western areas. For RCP 4.5, Fig. S8 shows no significant

differences compared with spatial distributions in Fig. 5.

Some locations that are close to each other shared

similar CM values but had different CIV values. For

example, in August of END85, the CM values for totPr in

Pohang (No. 30) and Youngcheon (No. 38), which are

approximately 40 km apart, were nearly similar (257.24

and 257.51 mm), but the CIV values were different (136.21

and 107.47 mm). Therefore, even if the climate informa-

tion of one location is perfectly known, it is risky to

regionalize it to a nearby location.

The ratio of CIVs for totPr between the control and

future periods ranged from 0.77 to 1.03 (0.9 on average) for

40 locations in the ERY period with RCP 8.5 (Fig. 6;

Table 4). These values increased in the END85 period with

an average of up to 1.06 with minimum and maximum

values of 0.96 and 1.22, respectively. For maxDa and

maxHr, the same increasing pattern over periods can be

observed for the spatial averages. For example, from 1.02

to 1.15 at ERY85 and END85 periods for maxDa, and from

1.05 to 1.18 for maxHr. Regarding nonPr, they were not

significantly different for locations and periods, respec-

tively, which is consistent with the other results presented

above the figures. The outcomes of the t-test are somewhat

different from the future changes in CM, for which there

was a clear message for almost all locations and periods.

The significance of future changes in CIV was not con-

firmed at many locations, and this was more prominent in

RCP 4.5 (see Fig. S9).

Because Figs. 4 and 6 show the results of indices

calculated over the whole year, the seasonal variability of

CM and CIV was not represented. It is possible to

quantify how CM and CIV values will change considering

seasonality in the future and how large the changes will

be. Figures 7 and 8 illustrate nonparametric kernel dis-

tributions for the FOCs of CM and CIV values calculated

monthly and annually. The number of samples is 520, and

consists of 40 locations and 13 cases (12 months plus the

whole year). If the ratios on the x-axis were greater than

1, the future value was greater than the control value. The

first and second moments of the distributions can be an

aggregated indicator of future changes for all locations

and for all months. It was clearly seen that both CM and

CIV increase in future for totPr, maxDa, and maxHr,

except for nonPr, and this tendency becomes prominent in

the future. For instance, regarding totPr for END85, CM

and CIV values in the future were 14.2 and 16.5% greater

than those in the control period (see Figs. 7 and 8 for

mean and standard deviation). For nonPr, no significant

Table 3 The minimum,

maximum of CIV values over

the 40 locations, which are

computed for the whole year

totPr (mm) maxDa (mm) maxHr (mm) nonPr (day)

CTL 239.77–497.46 41.24–105.00 9.47–24.66 7.59–10.02

ERY45 183.82–464.34 40.92–115.34 9.89–28.14 6.68–9.73

MID45 229.75–466.87 43.23–119.80 9.03–29.72 7.55–9.86

END45 216.41–629.85 48.30–105.37 10.14–28.67 7.36–9.70

ERY85 206.68–487.79 43.24–115.28 9.51–29.71 7.50–9.55

MID85 205.84–558.75 48.07–110.47 11.35–26.48 7.16–9.52

END85 238.10–544.28 48.61–110.10 10.80–25.83 7.47–10.10
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change was seen among periods, e.g., for END85, a 1.0%

increase for CM and a 1.8% decrease for CIV. As

expected, these first and second moments (summarized in

Tables S1 and S2) were smaller for RCP 4.5 (see

Figs. S10 and S11).

The impact of different RCPs (4.5 and 8.5) on CM and

CIV values was investigated. A similar analysis of the

probabilistic distributions for the RCP comparison pre-

sented made in Fig. 9 and Table S3, with the same sample

size of 520. The CIV values of RCP 8.5 were sometimes

larger or smaller than those in RCP 4.5. The relative dif-

ference between the two emission scenarios reached 10%

for totPr, maxDa, and maxHr, while for nonPr, there was

almost no difference between the scenarios (approximately

1%). Among these distributions, not only the mean but also

the standard deviation were shown to be the greatest for

maxHr among indices. Regarding CM, a similar pattern

can be seen overall, although the RCP difference is smaller

than that in CIV (see Fig. S12 and Table S4). For example,

the RCP difference is indicated as 8.1% for maxHr.

Some studies show that the intrinsic variability of

extreme precipitation is larger than that of mean precipi-

tation (Fischer and Knutti 2014; Fischer et al. 2014).

Consistent with previous studies, the degree of perturbation

in CIV compared with CM was higher in maxDa and

maxHr than in totPr. These ratios were higher, at 0.48 and

0.40, for maxDa and maxHr than 0.22 for totPr in the

END85 period (see Tables 1 and 3).

3.4 Inference of CIV future change from CM
change

Because extensive efforts in previous studies have been

made regarding the future change of CM, the future

change of CIV can be assessed by exploring how the FOC

of CIV is related to the FOC of CM in future periods.

Once we identified the relationship, we could readily infer

the FOC of CIV even if we only had the information on

CM. Figure 10 shows the results of comparisons between

the FOCs of CM and FOCs of CIV for four indices. The

results using all the data addressed in this study show that

the two comparing variables are positively correlated to

the three precipitation ‘quantity’ indices of totPr, maxDa,

and maxHr while negatively (or not) correlated to the

precipitation ‘occurrence’ index of nonPr. This implies

that if the future CM is expected to increase, it can be

inferred that the future CIV will also increase—this ten-

dency is even more pronounced for the two extreme

indices of maxDa and maxHr (see the high values of the

coefficient of determination). In contrast, regarding the

nonPr which behaves differently with the tendency of

other precipitation ‘quantity’ indices, we infer that the

climate internal variability in the total number of dry days

would be unlikely influenced by whether its magnitude

increases or decreases in the future. Even if there is no

increase or decrease in future CM values, the change in

future CIV values is significant. That is, even if the values

of the FOC of CM are near 1 (the total number of dry

days would be likely unchanged in the future), the FOC of

CIV values vary from 0.5 to 2.5 (the significant variation

of dry days would have occurred in some months and

locations). The same conclusions can be also drawn for

the six different periods considered (not shown).

3.5 Inference of future extremes from future
total precipitation

It is meaningful to infer the magnitude (CM) and vari-

ability (CIV) of future extreme precipitation from those of

future total precipitation. Figure 11a–d show pairwise

comparisons of FOCs for the pairs of maxDa and totPr

and maxHr and totPr for CM and CIV in the END period

of RCP85. Samples for 40 locations and 13 cases

(12 months and the whole year) are illustrated. First,

bFig. 6 Spatial distribution of FOCs of the CIV values for the whole

year with RCP85. The FOC is computed as the ratio, by dividing

future CIV values by control CIV values for each station for 4 indices.

The size of circles represents the magnitude of FOCs. A significant t-

test is applied to 2 distributions of IV in the future and control periods

for each location. The green color means that there is no difference

between 2 distributions; while red color refers that those are

significantly different

Table 4 The minimum, maximum of FOCs of CIV values over the 40

locations, which are computed for the whole year

totPr ( -) maxDa ( -) maxHr ( -) nonPr ( -)

ERY45/CTL 0.73–1.01 0.87–1.32 0.70–1.53 0.86–1.05

MID45/CTL 0.91–1.12 0.92–1.29 0.78–1.47 0.92–1.05

END45/CTL 0.86–1.27 0.90–1.39 0.82–1.64 0.92–1.14

ERY85/CTL 0.77–1.03 0.81–1.19 0.71–1.53 0.89–1.05

MID85/CTL 0.81–1.15 0.93–1.49 0.89–1.43 0.87–1.13

END85/CTL 0.96–1.22 0.93–1.29 0.91–1.49 0.88–1.06
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looking at the range of FOC values in these subplots, the

range of FOCs of CIVs is greater than that of FOCs of

CMs; the range corresponding to the maximum precipi-

tation indices (i.e., maxDa and maxHr) is greater than that

corresponding to the total precipitation index (i.e., totPr);

and the range of hourly maximum precipitation (i.e.,

maxHr) is greater than that of daily maximum (i.e.,

maxDa). It is also noteworthy that the minimum of their

ranges is similar in all the cases, but the maximum is

different. That is, the extent to which the future index is

larger (or smaller) than the present index is more pro-

nounced at the precipitation extreme than the volume, and

the extreme at the finer temporal scale may be more

pronounced among the extremes.

This tendency can easily be seen by calculating the FOC

ratios of the maximum indices to the total index. Proba-

bilistic distributions made from the 520 samples of the

comparisons using a nonparametric kernel distribution are

also shown in Fig. 11e. Most of the sample data are located

in the center of these distributions, and the first moments of

these distributions are slightly greater than 1—it ranges

from 1.03 to 1.05. The statement that these ratios are close

to 1 means that the pairs of FOCs are located close to the

1:1 line in Fig. 11a–d. In contrast, the large quantities of

sample data also remain in both tails of the distributions.

The minimum and maximum ranges of the ratios are

[0.54–1.37], [0.36–1.85], [0.67–1.36], and [0.40–2.08] for

blue, red, green, and magenta lines, respectively. The

presence of ratio values on both tails means that the pairs of

FOCs are significantly off the 1:1 line. For example, the

following question can be answered: if interannual vari-

ability (or mean, i.e., CIV or CM) in total precipitation

increases by 20% in the future, will the variability in

extreme rainfall increase by 20% in the future? Yes, if the

ratio corresponding to some months and locations to be

examined is close to 1:1 line; No, if it is far from the line.

The information of tails ultimately indicates that future

changes in total and extreme precipitation are likely to be

decoupled for some months or at some locations. More-

over, the tail for the distributions of the ratio between

FOCs of maxHr and totPr is longer and heavier than for

those of maxDa and totPr. In other words, this heavy-tailed

tendency is more noticeable on the hourly scale than the

daily scale. It is therefore important to investigate the

characteristics of sample distributions at different temporal

scales, i.e., higher moments (tails) as well as the first

moment of distribution (Kim et al. 2016a, c).

3.6 Inference of CIV spatial variability
from season

While the land is very small, the climate of the Korean

peninsula is characterized by severe climate differences,

and significant seasonal patterns are annually repeated.

Noticeable seasonal variations of (monthly and annual)

CIV values of 40 locations for all indices are well observed

(see Fig. S13). It can be seen that the CIVs of 40 locations

were high during the summer season (from July to

September) and low during the winter (from December to

February). How then do regional deviations of CIV appear?

Is the spatial deviation of CIV larger during summer when

CIVs are spatially larger? The coefficient of determination

(R2) in Fig. 12 provide a possible answer to this question.

If data points fit perfectly on a linear line (i.e., R2 = 1.0),

spatial mean and the spatial variability are completely

correlated. The totPr and maxDa result meet this descrip-

tion. If the CIVs are spatially is small in winter (i.e.,

smaller mean), the spatial variability of CIVs will also be

small (i.e., homogeneous), whereas in summer when the

CIVs are large (i.e., lager mean), the spatial distribution of

CIVs will be heterogeneous as well. However, in the

indices of maxHr and nonPr, this tendency cannot be

guaranteed: even in summer, its spatial distribution may be

homogeneous or heterogeneous.

Another interesting feature in the rainy monsoon season

from July to September in South Korea is that the spatial

pattern showing higher CIVs differed according to the

indices (see Fig. S14–S16). In terms of rainfall amount-

related indexes, July to September all belong to the rainy

season, but the spatial distribution of CIV is locally dif-

ferent. For example, in July, the CIV of the central region

is large due to the longitudinal movement of the Jangma

front, while in September, the southern and east coasts,

bFig. 7 Non-parametric kernel distributions for the FOCs of CM

values between the control and 3 future periods for RCP85: a ERY,

b MID and c END. Each row plots correspond to indices of totPr,

maxDa, maxHr, and nonPr, respectively. The number of samples used

for making distributions is 520, i.e., 40 (locations) times 13

(12 months ? year)
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located on the path of typhoons, have relatively large CIVs.

On the other hand, during that season, it is a nationwide

phenomenon that the Jangma front and typhoons affect, so

the variation of CIV in dry days across the country is small.

4 Summary and conclusion

This study aimed to quantify and assess CIV as well as CM

in future periods using the RCP 4.5 and RCP 8.5 emission

scenarios over South Korea. The AWE-GEN was

employed to generate 100 ensembles of 30-year hourly

time series from 40 meteorological stations. These 100

precipitation series were built under a stochastically sta-

tionary climate condition from which external components

have been removed. CIV was estimated from the detrended

method and compared with the noise computed by two

approaches. The number of CIVs (and CMs) addressed in

this study is 14,560, i.e., 4 (indices) 9 13 (months) 9 40

(locations) 9 7 (periods). The extremely high value of the

coefficient of determination between the values of CIV and

noise for all indices indicates that the methodologies

adopted to estimate the variability are seamless (Fig. 2 and

Figs. S3–S5).

For estimates of CM and CIV, the K-means algorithm

was applied to classify 40 locations into four groups, and

the t-test was employed to identify whether their estimates

for the control and future periods were statistically differ-

ent. Spatial distribution of locations indicating higher CM

and CIV was found to vary (Figs. 3 and 5), depending on

index, periods, emission scenarios, locations, and months.

It is widely understood that the national average of CM and

CIV will increase in the future, and that the increase will be

greater in the RCP 8.5 and END periods. However, the

results of t-test show that future change of CM is observed

for almost all the locations of South Korea, while future

change of CIV was not confirmed at many locations

(Figs. 4 and 6).

The nature of future changes in CM and CIV according

to the indices of interest is notable. The characteristics of

the three precipitation-quantity indices (totPr, maxDa, and

maxHr), and the precipitation-occurrence index (nonPr) are

largely distinct. Future increases in CM and CIV have been

well observed and their spatial distributions are heteroge-

neous, but in nonPr, future changes are not noticeable and

spatial distribution is relatively homogeneous. Non-para-

metric kernel distributions made from 520 samples corre-

sponding to 40 locations and 13 cases (12 months plus the

whole year) illustrate the overall future change of CM and

CIV (Figs. 7 and 8). Specifically, CM was observed to

increase by 14.2, 17.9 and 20.0% for totPr, max Da, and

maxHr, respectively in the END85 period as compared

with the CTL period (Table S1), and CIV increases by

14.0, 17.0, and 18.0% (Table 2).

The influence of RCP 4.5 and RCP 8.5 on CM and CIV

was also examined for all indices using a nonparametric

kernel distribution. The relative difference between two

emission scenarios reached 10.0% for CIV and 8.1% for

CM in the first three indices, while there was no difference

for nonPr (Fig. 9 and Table S3).

If access is available only to CM, it is valuable to infer

CIV future change from the CM change. The relationship

between FOCs of CIV and CM can help infer the CIV

change. The results in Fig. 10 show that the two comparing

variables are positively correlated to the three precipitation

‘quantity’ indices of totPr, maxDa, and maxHr while

negatively (or not) correlated to the precipitation ‘occur-

rence’ index of nonPr. This implies that if the future CM is

expected to increase, it can be inferred that the future CIV

will also increase—this tendency is even more pronounced

for the two extreme indices of maxDa and maxHr. In

contrast, regarding the nonPr, we infer that the climate

internal variability in the total number of dry days would be

unlikely influenced by whether its magnitude increases or

decreases in the future.

It is meaningful to infer the magnitude (CM) and vari-

ability (CIV) of future extreme precipitation from those of

future total precipitation. The extent to which the future

index is larger (or smaller) than the present index is more

pronounced at the precipitation extreme than the volume,

and the extreme at the finer temporal scale may be more

pronounced among the extremes. The presence of ratio

values on both tails in Fig. 11e indicates that the pairs of

FOCs are significantly off the 1:1 line. The information of

tails ultimately implies that future changes in total and

extreme precipitation are likely to be decoupled for some

months or at some locations. The degree of decoupling

bFig. 8 Non-parametric kernel distributions for the FOCs of CIV

values between the control and 3 future periods for RCP85: a ERY,

b MID and c END. Each row plots correspond to indices of totPr,

maxDa, maxHr, and nonPr, respectively. The number of samples used

for making distributions is 520, i.e., 40 (locations) times 13

(12 months ? year)
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(i.e., heavy-tailed tendency in Fig. 11e) is more noticeable

on the hourly than the daily scale. It is therefore important

to investigate the characteristics of sample distribution at

different temporal scales, i.e., higher moments (tails) as

well as the first moment of distribution.

CIV values depend on season (Fig. S13): they were high

during the summer (from July to September) and low

during the winter (December–February). The question then

arises of whether the spatial deviation of CIV is also larger

during the summer. High values of the coefficient of

determination (R2) in Fig. 12 could imply that the spatial

mean and the spatial variability are largely correlated for

totPr and maxDa. If CIV values are small in winter, the

spatial variability of CIV will also be small (i.e., homo-

geneous), whereas in summer when CIV values are large,

the spatial distribution of CIV will be heterogeneous as

well. However, in the indices of maxHr and nonPr, this

bFig. 9 Non-parametric kernel distributions for the ratio of CIV values

between the emission scenarios of RCP45 and RCP85: a ERY, bMID

and c END. Each row plots correspond to indices of totPr, maxDa,

maxHr, and nonPr, respectively. The number of samples used for

making distributions is 520, i.e., 40 (locations) times 13

(12 months ? year)

Fig. 10 Comparisons between FOCs of CM and FOCs of CIV for 4 indices. The number of data points is 3,120 for the subplots (40

locations 9 13 (12 months ? year) 9 6 comparing periods). The R2 values are computed for the fitted linear line (i.e., black solid lines)

Fig. 11 Pairwise comparisons of FOCs for the pairs of maxDa and

totPr, and maxHr and totPr for CM and CIV at END period of RCP85.

For each subplot on the left side, 520 data points (40 (locations) times

13 (12 months ? year)) are used. The subplot on the right side

illustrates the non-parametric kernel distributions for the FOC ratios

of the maximum indices to the total index

Stochastic Environmental Research and Risk Assessment (2020) 34:1037–1058 1055

123



correlation cannot be guaranteed: even in summer, its

spatial distribution may be homogeneous or heterogeneous.

Future climate change is likely to involve more shifting

trends than seen in the past, and predictions can contain

large amounts of uncertainty. Among many uncertainties,

we estimated and investigated CIV and CM in future

periods at fine temporal scales at a station level. Indeed,

some nearby locations shared similar CM values but had

diverse CIV values. Because distances between locations

can be significant, future research should consider spatial

coherence among stations when generating spatiotemporal

rainfall time series and computing spatially-varying CM

and CIV values. Spatial averages lost locality, and extreme

information on various temporal scales could be different.

Applying our methodologies to finer scales will help assess

Fig. 12 Spatial mean versus spatial variability (i.e., standard devia-

tion) of FOCs over 40 locations for a totPr, b maxDa, c maxHr and

d nonPr. The number of samples in each plot is 91, i.e., 7 (periods)

times 13 (12 months ? year). The coefficient of determination (R2) is

computed over the fitted black line
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the impact of climate change on uncertainties and develop

appropriate adaptation and response strategies.
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