
ORIGINAL PAPER

Dissecting innovative trend analysis

Francesco Serinaldi1,2 • Fateh Chebana3 • Chris G. Kilsby1,2

Published online: 4 May 2020
� The Author(s) 2020

Abstract
Investigating the nature of trends in time series is one of the most common analyses performed in hydro-climate research.

However, trend analysis is also widely abused and misused, often overlooking its underlying assumptions, which prevent

its application to certain types of data. A mechanistic application of graphical diagnostics and statistical hypothesis tests for

deterministic trends available in ready-to-use software can result in misleading conclusions. This problem is exacerbated

by the existence of questionable methodologies that lack a sound theoretical basis. As a paradigmatic example, we consider

the so-called Şen’s ‘innovative’ trend analysis (ITA) and the corresponding formal trend tests. Reviewing each element of

ITA, we show that (1) ITA diagrams are equivalent to well-known two-sample quantile-quantile (q–q) plots; (2) when

applied to finite-size samples, ITA diagrams do not enable the type of trend analysis that it is supposed to do; (3) the

expression of ITA confidence intervals quantifying the uncertainty of ITA diagrams is mathematically incorrect; and (4)

the formulation of the formal tests is also incorrect and their correct version is equivalent to a standard parametric test for

the difference between two means. Overall, we show that ITA methodology is affected by sample size, distribution shape,

and serial correlation as any parametric technique devised for trend analysis. Therefore, our results call into question the

ITA method and the interpretation of the corresponding empirical results reported in the literature.

Keywords ‘Innovative’ trend analysis (ITA) � Şen ‘test’ � Quantile-quantile plots � Linear regression � Uncertainty �
Temporal dependence � Methodological inconsistencies � Neutral validation

1 Introduction

Testing trend hypothesis on observed time series is one of

the most common exercises reported in the hydro-meteo-

rological literature mainly owing to the interest in detecting

possible consequences of human activities on the dynamics

of climate and hydrological cycle. Referring to Khaliq

et al. (2009) and Bayazit (2015) for an overview of

methods, trend analysis usually relies on the application of

some statistical hypothesis tests for slowly-varying and/or

abrupt changes (e.g. Mann–Kendall (MK), Pettitt, or sim-

ilar) to summary statistics of hydrological time series (e.g.

annual averages, maxima and minima).

However, trend analysis is often performed in a mech-

anistic way with little attention to the underlying assump-

tions and the limits of Significance Tests (STs; Cox and

Hinkley 1974) for trends. Referring to Wasserstein and

Lazar (2016), Wasserstein et al. (2019) and references

therein for a thorough discussion on misuse and logical

flaws of STs, Serinaldi et al. (2018) attempted to warn

practicing hydrologists against a mechanistic use of clas-

sical trend tests in the analysis of hydro-climatic time

series.

Focusing on practical standpoint, it should be noted that

some trend STs suggested in the literature are technically

incorrect. An example of these methods is the (still) widely

used trend-free prewhitening (TFPW) technique (Yue et al.

2002), whose formal flaws are discussed by Serinaldi and

Kilsby (2016a). TFPW technical inconsistencies resulted in

contrasting empirical results that led to various but incor-

rect interpretations about the origin/cause of the detected
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trends (e.g. Khaliq et al. 2009; Kumar et al. 2009; Sagarika

et al. 2014; Basarin et al. 2016; Pathak et al. 2016; Tana-

naev et al. 2016; Xiao et al. 2017). Therefore, the problem

of technical flaws is particularly important in this context,

as trend analysis is often used to support conclusions

concerning the evidence of anthropogenic activity on

hydro-climatic processes, and their extensive application

(due to their relative simplicity) resulted in a large body of

literature supporting this hypothesis, irrespective of the fact

that STs are not devised to analyze non-randomized sam-

ples coming from non-repeatable experiments such as the

majority of hydro-climatic records (Flueck and Brown

1993; von Storch 1999; Greenland et al. 2016; Serinaldi

et al. 2018).

Şen’s innovative trend analysis (ITA) (Şen 2012) is one

of many techniques proposed to detect deterministic trends

in observed time series. This method attracted the attention

of analysts as it was introduced with the appealing (but

questionable) claim that this technique ‘‘does not require

restrictive assumptions because now classical approaches

including most frequently used Mann–Kendall trend test

and Sepeard’s [Spearman’s] rho test. The new methodology

is valid whatever the sample size, serial correlation

structure of the time series, and non-normal probability

distribution functions (PDFs). Although the classical

methods require prewhitening prior to their applications,

such a procedure is not necessary in the proposed

methodology in this paper. The validity of the methodology

is presented first through extensive Monte Carlo simulation

methods’’ (Şen 2012). A method that is not affected by

sample size, serial correlation and type of distribution

surely appears a sort of panacea for trend analysis. How-

ever, every statistical method (1) deals with sampling

uncertainty and must be sensitive to it, otherwise it would

be deterministic, and (2) every statistical analysis relies on

weak or strong assumptions (see ‘‘Appendix 1’’). By the

way, Şen (2012) does not report any Monte Carlo simu-

lation despite what is stated in the conclusions of that paper

(some Monte Carlo simulations were reported two years

later by Şen (2014), and they are discussed below).

Since we were attracted by the apparently amazing

properties of ITA and its presentation and justification, we

reviewed all the elements and principles of this method,

thus performing a so-called neutral (independent) valida-

tion/falsification analysis (see e.g. Boulesteix et al. 2018,

and references therein). This study reports the results of

such a review, showing that ITA diagrams are equivalent to

two-sample quantile-quantile (q–q) plots, while ITA formal

tests, once corrected for mathematical inconsistencies,

reduce to standard parametric tests for the difference

between two means, and therefore ITA diagnostics are

affected by sample size, serial correlation and type of

distribution.

This work is structured as follows. Section 2 introduces

the rationale of ITA diagnostic plots and explains that they

are simple two-sample q–q plots. We also recall the correct

interpretation of these diagrams and show that they are

affected by sample size, serial correlation and type of

distribution. Section 3 further investigates the effect of

serial correlation on ITA, showing that several contra-

dicting statements reported in the literature (Şen

2012, 2014, 2017b) depend on the model used to combine

deterministic trends and serial correlation, thus stressing

that ITA relies on strong assumptions. In Sect. 4, we revise

the formal ST proposed within the ITA framework, and

show that it is a standard parametric test for the difference

between two means, once the mathematical inconsistencies

of the ITA formulas are corrected. Section 5 explains why

the ITA confidence intervals (CIs) are incorrect and recalls

how to build correct CIs. In Sect. 6, we discuss how the

above mentioned inconsistencies affect also some methods

and analyses derived from ITA. Conclusions and recom-

mendations are summarized in Sect. 7.

2 Setting the stage: overview of ITA
and two-sample quantile-quantile plots

Şen’s ITA comprises a graphical tool and a formal

hypothesis test (Şen 2012, 2014, 2017c). The same mate-

rial with minor changes has then been collected in a book

(Şen 2017b), and directly applied by other authors without

any independent assessment of its rationale and mathe-

matical formulation (e.g., Cui et al. 2017; Tosunoglu and

Kisi 2017; Wu and Qian 2017; Alashan 2018; Caloiero

2018; Caloiero et al. 2018; Güçlü 2018a; Morbidelli et al.

2018; Zhou et al. 2018; Li et al. 2019).

ITA consists of splitting a time series of (even) size n,

xif gn
i¼1, in two halves of size n0 ¼ n00 ¼ n=2, x0 ¼ xif gn=2

i¼1

and x00 ¼ xif gn
i¼n=2þ1, sorting them in ascending order (i.e.

computing the order statistics x0ðiÞ and x00ðiÞ, i ¼ 1; . . .; n=2),

and then plotting the pairs of sorted values, ðx0ðiÞ; x00ðiÞÞ,
i ¼ 1; . . .; n=2, against each other. The foregoing procedure

is the same used to draw two-sample q–q plots widely

applied to check whether two samples (with the same size)

have the same distribution (Wilk and Gnanadesikan 1968).

In our case, the two samples are the first and second halves

of a time series. Even though the interpretation of two-

sample q–q plots is well-known and reported in introduc-

tory handbooks of applied statistics, it is worth recalling

basic properties to support the subsequent discussion.

Referring to Fig. 1 and assuming that x0 follows a standard

Gaussian distribution, (1) a shift with respect to the 1:1 line

corresponds to a shift in the first moment, Dl ¼ l00 � l0 (or

location parameter of the underlying theoretical
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distribution), where l0 and l00 are the first moments of x0

and x00, respectively; (2) q–q plots showing approximately

linear patterns with slopes different from 1:1 denote dis-

crepancies in the second moment (or scale parameter); (3)

J-shaped q–q plots denote differences in the skewness; and

(4) S-shape configurations correspond to discrepancies in

terms of kurtosis (e.g. Bennett et al. 2013). Of course, there

are also other possible patterns depending on the nature of

the distribution support (e.g. upper/lower bounded), and the

presence of outliers or mixtures of distributions (see e.g.,

D’Agostino and Stephens 1986, pp. 24–57). Despite this

variety of possible cases, in Şen’s interpretation, whatever

departure from the 1:1 line is considered as an exclusive

sign of the presence of a deterministic trend. We stress

again that both ITA and two-sample q–q plots take two

time series (in this specific case the two halves of a single

time series), arrange them in ascending order and plot one

of these ordered series versus the other one. Therefore,

two-sample q–q plots compare the empirical distributions

of two series and do not involve any theoretical distribu-

tion. In this respect, it is important to distinguish the gen-

eral rationale of q–q plots, i.e. comparing two generic

distributions, with their standard use for assessing the

agreement between the empirical distribution and a theo-

retical distribution.

Obviously, two-sample q–q plots and therefore ITA

diagrams are influenced by the shape of the distribution,

serial dependence, and sample size, as these factors influ-

ence the uncertainty of the scatter plots of x00 versus x0. A

simple Monte Carlo simulation can help visualizing these

issues. We consider two distributions, standard Gaussian

(Nð0; 1Þ) and standard exponential (Eð1Þ), different sam-

ples sizes n ¼ 50; 100; 500; 1000f g, and different depen-

dence structures corresponding to first-order autoregressive

(AR(1)) processes with parameter q1 ¼ 0; 0:5; 0:7; 0:9f g.

For each combination of parameters, 1000 samples are

simulated and ITA diagrams (i.e. two-sample q–q plots) are

drawn. For Nð0; 1Þ, Fig. 2 shows that (1) the scattering of

ITA patterns around the 1:1 line decreases as the sample

size increases, (2) the scattering and the range of simulated

values increase as the serial dependence increases because

of variance-inflation effect and reduction of effective size,

and (3) the scattering is larger around the tails because of

the larger uncertainty of extreme values. Figure 3 shows

how the shape of the ensemble of ITA plots changes when

the distribution is no longer bell-shaped and symmetric

(e.g. Gaussian) but right skewed (e.g. exponential). In

particular, as Eð1Þ is lower bounded, the variability in the

lower tail becomes null (Fig. 3). The same remarks hold

for the upper tail when the distribution is left skewed and/

or upper bounded, mutatis mutandis.

These examples highlight that it is rather difficult to

obtain ITA plots laying on the 1:1 line even if the two

halves of time series, x0 and x00, are drawn from the same

distribution without introducing any deterministic trend.

Although these properties are well known, according to

Şen (2014), ITA diagnostic plot (i.e. the two-sample q–q

plot) ‘‘does not require any assumption, and it can be

applied in cases of serial dependence, non-normal data

distribution, and small sample lengths’’. The following

arguments support this statement (Şen 2012): ‘‘the basis of

the approach rests on the fact that if two time series are
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Fig. 1 Examples of time series and corresponding two-sample q–q

plots where the distributions of x0 and x00 have different properties. a,

b Nð0; 1Þ versus Nð1; 1Þ (shift in the mean value but same variance).

c, d Nð0; 1Þ versus Nð0; 1:4Þ (same mean but different variance). e, f

Nð0; 1Þ versus Gð0; 0:78Þ, where G is the Gumbel distribution (same

mode and variance but different skewness). g, h Nð0; 1Þ versus

PEð0; 1; 0:9Þ, where PE is the power-exponential distribution (same

mean, variance, and skewness but different kurtosis)
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identical to each other, their plot against each other shows

scatter of points along 1:1 (45�) line on the Cartesian

coordinate system... Whatever the time series are whether

trend free or with monotonic trends, all fall on the 1:1 line

when plotted. There is no distinction whether the time

series are non-normally distributed, having small sample

lengths, or possess serial correlations’’. This statement,

which is true for two identical finite-size time series (i.e.

perfectly correlated data) or infinite-size sequences (i.e.

when dealing with population properties), is then trans-

posed tout court to the case of the two halves of the same

finite-size time series, overlooking that x0 and x00 are never

identical, and their fluctuations and the corresponding ITA

plot patterns depend on sample size, serial correlation, and

shape of the parent distribution, as shown in Figs. 2 and 3.

The above remarks strongly influence the interpretation

of ITA plots. According to Şen (2012), if the patterns fall

above (below) the 1:1 line they denote the presence of

monotonic increasing (decreasing) deterministic trend,

while mixed patterns (i.e., part of the points laying above

the 1:1 line and part below) can be related to non-mono-

tonic trends. However, for finite-size samples, the location

of the ITA plot with respect to the 1:1 line is neither

necessary nor sufficient condition to make conclusions

about the presence of deterministic trends. In fact, depar-

tures from the 1:1 line can be related to sampling fluctua-

tions, autocorrelation, and shape of distribution without

Fig. 2 ITA plots (two-sample q–q plots) for samples drawn from an

AR(1) process with parameter q1 2 0; 0:5; 0:7; 0:9f g, Nð0; 1Þ mar-

ginal distribution, and sample size n 2 50; 100; 500; 1000f g. The

diagrams show the dependence of sampling uncertainty of ITA plots

on q1 and n. The case q1 ¼ 0 corresponds to the i/id process
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any deterministic trends. On the other hand, the ITA plot

can lie on the 1:1 line when there is a deterministic trend

resulting in identical distributions of x0 and x00. Figure 4a–d

shows that the ITA plots of x0 and x00 can depart from the

1:1 line for samples drawn from a stationary AR(1) process

(with q1 ¼ 0:95) or a sequence resulting from independent

and identically distributed (i/id) random variables with

standard Gumbel distribution (Gð0; 1Þ). Conversely, an

increasing linear trend in x0 followed by a decreasing linear

trend in x00 can yield indistinguishable sorted samples

(Fig. 4e–f). The same can hold true for combinations of

linear and nonlinear trends (Fig. 4g–h). The comparison of

Fig. 4b and j highlights that almost indistinguishable ITA

plot patterns can result from finite-size time series char-

acterized by true deterministic linear trends and sequences

from a serially correlated stationary process, thus pre-

venting any discrimination based on this type of diagrams.

The diagrams discussed above suggest another remark.

Şen (2012) suggests splitting the ITA plot in three areas

corresponding to low, medium, and high values, and

therefore studying each subset, interpreting departures

from the 1:1 line as possible trends in each class of values.

This procedure has three problems, at least: (1) the iden-

tification of the three areas in the ITA plot is arbitrary; (2)

splitting the samples generally means performing the

analysis on very few data points (Figure 4 in Şen (2012)

shows examples where the clusters of high quantiles

include 3–7 data points); and more importantly (3) Figs. 2,

3, and 4d show that different classes of values (i.e. low,

medium and high) exhibit very different departures from

the 1:1 line even in cases where there is no ‘trend’, and the

Fig. 3 As for Fig. 2 but with Eð1Þ marginal distribution
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magnitude of these discrepancies depends to the shape of

the generating distribution and further increases as the

(possible) serial correlation increases and the sample size

decreases. Therefore, interpreting departures of few points

from the 1:1 line without considering that such a type of

diagrams are affected by serial dependence, shape of the

distribution and sample size, is generally misleading. We

further discuss the role of the sampling uncertainty and its

proper quantification in Sect. 5.

3 Effects of autocorrelation: challenging
the principle of non-contradiction

According to Şen (2012), ITA should be unaffected by

serial correlation. However, Şen (2017b, pp. 194–196)

shows that the shift of the ITA patterns from the 1:1 line

increases as the correlation increases for fixed (linear) trend

values. Şen (2017b, p. 196) also provides a table showing

the values of the shift corresponding to a set of linear trend

slopes b and lag-1 autocorrelation q1, claiming that such a

‘‘table can be used to determine the magnitude of mono-

tonic trend in any time series provided that the serial

correlation coefficient and the slope on the square area

template are determined’’. In order to better understand the

apparently contradictory statements about dependence or

independence of ITA from serial dependence, we repeat the

Monte Carlo experiments presented in Şen’s original works

with the same setting.

In this section, we show that some of the statements

about sensitivity of ITA to autocorrelation refer to two

different models, one of which is not mentioned in the ITA

literature, while conclusions about the ability of ITA to

recognize the sign of serial correlation result from incorrect

diagrams. We further stress that ITA results are strongly

dependent on the model used to merge deterministic trends

and serial correlation.

3.1 Are ITA diagrams independent
of autocorrelation? Distinguishing
population and finite-size sample properties

According to Şen (2017b, pp. 192–193), the effect of serial

correlation is studied by superimposing a sequence drawn

from a (discrete in time) trend-free stationary first-order

autoregressive process with parameter q1 to a linear trend

with slope parameter b. This model (hereinafter, M1) is

widely used in the literature on trends (Zhang et al. 2000;

Wang and Swail 2001; Yue and Wang 2002; Zhang and

Zwiers 2004) and reads as follows:

yt ¼ xt þ bt

xt ¼ q1xt�1 þ et;

�
ð1Þ

where et is an i/id standard Gaussian process. Following

Şen (2017b), we simulated single time series of size n ¼
10; 000 for various combinations of values of b and q1.

Comparing the simulations for q1 equal to zero (indepen-

dence) and 0.9 [Figures 5.15 and 5.16 in Şen (2017b)], Şen

(2017b) concluded that ‘‘Comparison of Figs. 5.15 and
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Fig. 4 Counter examples showing how ITA plots (two-sample q–q

plots) can be misleading in drawing conclusions about the presence of

deterministic trends. a, b Time series and ITA plots of a time series of

size n ¼ 1000 simulated from an AR(1) process with q1 ¼ 0:95. c, d
Similar to panels (a) and (b) but for an i/id process with Gð0; 1Þ
marginal distribution. e, f Time series and ITA plots of a sequence

resulting from the superposition of an i/id process with Nð0; 1Þ
marginal distribution and a non-monotonic deterministic trend

linearly increasing (decreasing) in the first (second) half of the time

series. g, h Similar to panels (e) and (f) but with a S-shaped nonlinear

increasing trend in the first half of the time series. i, j Similar to

panels (e) and (f) but with a linear decreasing trend spanning the

entire time series. Panels (b) and (d) show cases where ITA plots

(seem to) indicate departures from the expected 1:1 line even if no

deterministic trend is in place. Panels (f) and (h) show that (almost)

perfect alignment along the 1:1 line is possible when non-monotonic

trends are in place. Panel (j) shows that true deterministic linear

trends can yield ITA plots almost indistinguishable from those

corresponding to serially correlated time series from a stationary

process reported in panel (b). See text for further discussion
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5.16 indicate that whether the time series is independent or

dependent, there is no difference in the square area pro-

cedure and as long as the basic time series has a mono-

tonic trend, the appearance of the two-halves sorted

magnitude plots will appear along 45� straight-lines

without any distinction. This statement alleviates the

drawback of the MK trend test, which requires independent

data’’.

Figure 5j and t reproduce the original ITA plot of fig-

ures 5.15 and 5.16 in Şen (2017b) [note that the figure 5.15

is identical to figure 3 in Şen (2014)]. Time series corre-

sponding to each ITA plot are reported in panels 5a–i and

k–s. Figure 5t shows that the ITA plots corresponding to

q1 ¼ 0:9 cover a wider range of values (especially for low

b values) and are less aligned along the 1:1 line, thus

showing some irregular fluctuations when compared with

the ITA plots in Fig. 5j (with q1 ¼ 0). These differences

can appear small and negligible; however, they are the

effect of the variance inflation due to the serial correlation

and seem to be small only because the analysis refers to

relatively long time series. In fact, for n ¼ 10; 000 and

b ¼ 0:003, the signal-to-noise ratio, here defined as the

ratio between the variance of the signal (i.e. the linear trend

line) and that of the autoregressive noise, rSN ¼ r2
S=r

2
N, is

75 for q1 ¼ 0 and ffi 14 for q1 ¼ 0:9. Although rSN dra-

matically decreases as q1 increases, it is still high because

the amplitude of the deterministic trend dominates the

amplitude of the stochastic component. For n ¼ 10; 000,

even though values of b equal to e.g. 0.003 seem small in

terms of absolute value, they correspond to a shift of 30

units between the beginning and the end of the time series,

while the range of the superposed noise is one order of

magnitude smaller. Therefore, from a theoretical point of

view, serial correlation does not change the magnitude of b
under M1.

However, in real world analysis, where rSN is usually

much smaller, serial correlation affects the ITA plot pat-

terns, and therefore the estimation of the true values of b.

Let us consider shorter time series of size n ¼ 1000

(Fig. 5u–ad). For n ¼ 1000 and q1 ¼ 0:9, the fluctuations

related to the deterministic trend and stochastic component

have the same order of magnitude, thus concealing the

linear trend. The lack of alignment of the ITA plots and

their mutual overlapping in Fig. 5ad are the affect of the

variance inflation due to the serial correlation. In other

words, serial correlation increases the variance of the

stochastic part, thus concealing the linear pattern of the

deterministic component. The latter becomes evident only

if the length of the time series is long enough, so that the

deterministic shift is much larger than the range of the

stochastic fluctuations.

To summarize, from a theoretical point of view (i.e.

looking at the population properties), the structure of M1

implies that b does not change with q1; however, from an
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Fig. 5 Simulations from model M1 with varying trend slope b. The diagrams highlight the effect of serial correlation and sample size on the

uncertainty of ITA plots (two-sample q–q plots)
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operational standpoint (i.e. considering finite-size sample

properties), for combinations of b, q1 and n yielding

sequences with small rSN, the empirical ITA plots fluctuate,

introducing departures from the expected patterns that can

be incorrectly interpreted as systematic trends.

3.2 Do ITA diagrams depend on autocorrelation?
The role of model assumptions

As discussed above, the theoretical ITA plot patterns (say,

for n ! 1) are invariant to serial correlation for the model

M1. However, in a further discussion, Şen (2017b) [pp.

194–198 and figures 5.19, 5.20 and 5.21, which are iden-

tical to figures 4, 5 and 6 in Şen (2014)] concludes that ‘‘as

the absolute value of the serial correlation coefficient

increases the trend representing lines get away from 1:1

(45�) straight-line basic line’’. Therefore, does the slope of

the trend line, and thus the shift in the ITA plot, depend or

not on serial correlation from a theoretical point of view?

To answer this question, we reproduced Figures 5.19 and

5.20 reported by Şen (2017b, p. 197) in Fig. 6a–b. The

patterns of time series and ITA plots shown in Fig. 6a–b

cannot be produced by model M1 (Eq. 1) as they corre-

spond to the following one (hereinafter, M2):

yt ¼ q1yt�1 þ bt þ et: ð2Þ

Figure 6c–d shows results for M1 (with fixed b and varying

q1) for the sake of comparison. Model M2 is not mentioned

in any Şen’s works, which exclusively refer to M1. The

fundamental missing information in Şen (2014, 2017b) is

that the results concerning the (theoretical) dependence of

trend slope on serial correlation (actually q1), are not

general but model-dependent, and cannot be mechanisti-

cally applied to real-world data for at least two reasons: (1)

observed data do not come for sure from such models,

which are only approximations, and (2) the interpretation

of ITA diagrams depends on the assumed model. There-

fore, b is theoretically dependent of q1 only under model

M2.

Using Monte Carlo simulations, Şen (2017b) studied the

relationship between b, q1 and the shift of the ITA plots

from the 1:1 line [Figure 5.18 and table 5.1 in Şen

200 400 600 800 1000
−100

−50

0

50

100

Time step

X

yt = ρ1yt−1 + βt + εt

(a)

−100 −50 0 50 100
−100

−50

0

50

100

X’

X
’’

(b)

ρ1 = 0.9; β = − 0.009
ρ1 = 0.7; β = − 0.009
ρ1 = 0.5; β = − 0.009
ρ1 = 0.3; β = − 0.009
ρ1 = 0.3; β = 0.009
ρ1 = 0.5; β = 0.009
ρ1 = 0.7; β = 0.009
ρ1 = 0.9; β = 0.009

200 400 600 800 1000
−20

−10

0

10

20

Time step

X

yt = xt + βt  with  xt = ρ1xt−1 + εt

(c)

−20 −10 0 10 20
−20

−10

0

10

20

X’

X
’’

(d)

Fig. 6 a, b Time series and ITA plots (two-sample q–q plots) of time series simulated from model M2 with fixed b and varying q1. c, d Similar to

panels (a) and (b) but for time series drawn from model M1
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(2017b)], concluding that ‘‘This table [5.1] can be used to

determine the magnitude of monotonic trend in any time

series provided that the serial correlation coefficient and

the slope on the square area template are determined’’.

However, this statement holds true only for time series

coming from model M2 (which is not mentioned in any

Şen’s work), while it does not if we assume M1 or other

models combining linear trends and correlated process in

different ways.

Moreover, the properties of model M2 are well known

(van Giersbergen 2005; Hamed 2009). In particular,

recalling that n0 ¼ n=2, under M2, the theoretical rela-

tionships between b, q1 and the shift of the ITA plots from

the 1:1 line is (see ‘‘Appendix 2’’)

Dl ffi bn0

1 � q1

: ð3Þ

Equation (3) yields the exact values corresponding to the

approximate Monte Carlo Dl reported in table 5.1 of Şen

(2017b) for n ¼ 1000 (see Table 1 for a comparison) and

shows that Dl depends on n. Therefore, Şen’s numerical

results are already known from theoretical standpoint and

are not general, as they strictly depend on sample size and

the specific model assumed to describe the observed time

series. Neglecting these issues and claiming that those

results are valid with no assumptions or restrictions can

lead to incorrect conclusions.

3.3 Can ITA diagrams reveal the sign
of autocorrelation? A matter of incorrect
labeling

Another apparent property of ITA diagrams should be their

capability to distinguish between positive and negative

correlation (Şen 2017b, p. 194). This conclusion is based

on Şen’s interpretation of Figure 5.17 of Şen (2017b),

which is reproduced in Fig. 7a to support our discussion.

The ITA plots in Fig. 7a can be obtained only if the cor-

responding time series look like those shown in Fig. 7b.

This would mean that negative values of q1 should be able

to invert the sign of the observed trend, which is not pos-

sible. In fact, for model M2, the mean depends on time

according to the relationship lt ffi bt
1�q1

(Eq. 14 in ‘‘Ap-

pendix 2’’). Therefore, the effective trend of the process is

greater (smaller) than b for positive (negative) values of q1,

but it is always positive with a minimum equal to b=2 for

q1 ¼ �1. For model M1, b does not depend on q1. Fig-

ure 7c–f shows correct ITA plots and time series corre-

sponding to models M1 and M2 for fixed b and varying q1,

and confirms the foregoing theoretical remarks.

Figure 5.17 in Şen (2017b) (here, Fig. 7a), which is the

support of Şen’s conclusions, does not report results for

fixed b and varying q1. Actually, it refers to model M2 with

positive q1 values and b 2 �0:09; 0:09f g, which is indeed

similar to Fig. 6a for b 2 �0:009; 0:009f g. Therefore, the

supposed ability of ITA plots to highlight positive and

negative correlation results from a speculation around a

diagram with incorrect labels [Figure 5.17 in Şen (2017b)]

that does not show what is supposed to do.

4 ITA test for trends: mathematical
inconsistencies and equivalence
to standard parametric test
for the difference between two means

The ITA plots come with a formal ST (Şen 2017c). Similar

to ITA diagrams, this ST is introduced claiming that it ‘‘has

non-parametric basis without any restrictive assumption,

Table 1 Effective trend slope of time series drawn from model M2 for n ¼ 1000

Trend slope b AR(1) q1

0y 0.1 0.3 0.5 0.7 0.9

- 0.09 - 45 (- 45) - 50.048 (- 50) - 64.343 (- 64.286) - 90.08 (- 90) - 150.133 (- 150) - 450 (- 450)

- 0.07 - 35 (- 35) - 38.934 (- 38.889) - 50.058 (- 50) - 70.08 (- 70) - 116.8 (- 116.667) - 350 (- 350)

- 0.05 - 25 (- 25) - 27.824 (- 27.778) - 35.772 (- 35.714) - 50.08 (- 50) - 83.465 (- 83.333) - 250 (- 250)

- 0.03 - 15 (- 15) - 16.713 (- 16.667) - 21.486 (- 21.429) - 30.078 (- 30) - 50.131 (- 50) - 150 (- 150)

0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

0.03 15 (15) 16.624 (16.667) 21.372 (21.429) 29.92 (30) 49.871 (50) 150 (150)

0.05 25 (25) 27.736 (27.778) 35.658 (35.714) 49.921 (50) 83.205 (83.333) 250 (250)

0.07 35 (35) 38.846 (38.889) 49.944 (50) 69.922 (70) 116.538 (116.667) 350 (350)

0.09 45 (45) 49.957 (50) 64.223 (64.286) 89.922 (90) 149.872 (150) 450 (450)

Şen’s values obtained by simulation (Şen 2017b, table 5.1) are compared with those resulting from Eq. (3) (in parentheses)

yq1 ¼ 0 corresponds to the i/id case
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and its application is rather simple with the concept of sub-

series comparisons that are extracted from the main time

series... The suggested methodology is valid even for time

series with serial correlation structure’’ (Şen 2017c). In

this section, we double check Şen’s test formalism and

verify if this test is really assumption-free.

The first (rather strong) assumption is that this formal

test only deals with linear trends, while true rank-based

(‘non-parametric’) tests, such as MK, deal with more

general monotonic trends. In fact, Şen’s test aims at

establishing the statistical significance of the slope

parameter b of a linear trend x ¼ aþ bt (Şen 2017b, p.

200), where b is estimated by the sampling averages, m0

and m00, of x0 and x00, respectively (Şen 2017b, p. 201)

b̂ ¼ 2ðm00 � m0Þ
n

¼ m00 � m0

3n

4
� n

4

¼ m00 � m0

s00 � s0
; ð4Þ

where s0 ¼ n

4
and s00 ¼ 3n

4
are the averages of the sequences

of time steps 1; 2; . . .; n=2f g and n=2 þ 1; n=2 þ 2; . . .; nf g
in the first and second half of the time series x1; . . .; xnf g.

Generally, there is neither empirical nor theoretical

argument justifying the supposed evolution of natural

processes according to straight lines (see Serinaldi et al.

2018, for a discussion). Moreover, systematic deviations of

ITA diagrams from the 1:1 line do not necessarily corre-

spond to linear trends. In fact, sequences of observations

exhibiting a monotonic trend in the mean (or whatever

central tendency index) yield a shift in ITA plots, which

therefore do not allow for distinguishing linear or nonlinear

trends in the original time series. Figure 8 shows that time

series with linear trend, abrupt change or S-shaped trend

can yield indistinguishable ITA plots. Since ITA plots

cannot provide any evidence about the existence of a linear

trend, testing the statistical significance of b is arbitrary.

Let l0 and l00 be the population means corresponding to

the sample means m0 and m00. Testing b ¼ 2ðl00�l0Þ
n means

testing the difference between two means, and ITA plots do

not play any role in this formulation. In fact, Şen test is

only the most common test for the difference between two

means for two samples of the same size n/2, where the two

populations are Gaussian with known and identical stan-

dard deviation r0 ¼ r00 ¼ r. This test is reported in every

statistical handbook as one of the simplest examples of ST,
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Fig. 7 Effect of negative serial correlation. Panel (a) reproduces ITA

plots (two-sample q–q plots) of figure 5.17 in Şen (2017b), while

panel (b) shows the corresponding time series (note that variability

around the trend lines appears very small because of the high signal-

to-noise ratio). Panels (c) and (d) depict the correct results for the

model M2. e, d Similar to panels (c) and (d) but for the model M1
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and it is also fully parametric and (obviously) affected from

serial dependence.

Under the null hypothesis, H0 : b ¼ 0, Şen’s test

assumes that the following test statistic has standard

Gaussian distribution

tITA ¼ b̂� b
rb̂

¼ 2

n

ðm00 � m0Þ � ðl0 � l00Þ
rm00�m0

¼ 2

n

Dm � Dl
rDm

¼ 2

n
tstandard;

ð5Þ

in which E½b̂� ¼ b ¼ 0 and

r2

b̂
¼ Var½b̂� ¼ 8

n2

r2

n
ð1 � qm0m00 Þ; ð6Þ

where qm0m00 is the cross-correlation coefficient of the

sample means m0 and m00, while tstandard is discussed later.

Despite the claims about the lack of assumptions of this

test, it actually implies a number of strong assumptions:

1. The test statistic in Eq. (5) is normally distributed if the

sampling distribution of m0 and m00 is Gaussian. For

small samples, this property requires that x0 and x00 are

normally distributed as well. This assumption can be

relaxed for large samples sizes (n ! 1) according to

the central limit theorem (Mood et al. 1974, p. 234-

236), bearing in mind that the convergence of the

sampling distribution of m0 and m00 to Gaussian can be

very slow when the distribution of the parent process

X is skewed and/or heavy tailed.

2. The derivation of the variance in Eq. (6) requires that

the two samples x0 and x00 are homoscedastic (Şen

2017b, p. 205), and the variance of the parent process,

r2, is known. In fact, if r2 is unknown and estimated

from the sample standard deviations s0 and s00, the test

statistic is no longer normally distributed but follows a

Student distribution with n � 2 degrees of freedom

(Mood et al. 1974, p. 432-435).

These assumptions are the same characterizing the standard

test for differences between two means (using known

variances) relying on the test statistic tstandard (Kottegoda

and Rosso 2008, pp. 252), which is identical to Şen’s tITA

up to the factor 2/n (Eq. 5). Note that the expression of tITA

also neglects that the variances are actually unknown and

estimated on the data. The direct comparison of the two

methods also reveals that Eq. (5) is incorrect, as it assumes

that rm0 ¼ rm00 ¼ r=
ffiffiffi
n

p
(see Şen (2017b) p. 205 and Şen

(2017c) p. 946), while the variances of the sample means

over samples of size n/2 are equal to r=
ffiffiffiffiffiffiffiffi
n=2

p
, resulting in

the corrected expression

r2

b̂
¼ 16

n2

r2

n
ð1 � qm0m00 Þ; ð7Þ

which returns indeed the variance of tstandard, 4r2=n, when

we remove the nuisance factor 2/n in Eq. (5) and set
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Fig. 8 Time series and ITA plots (two-sample q–q plots) for three different types of monotonic deterministic trends (linear (a), step-wise (c), and

nonlinear S-shaped (e)). Panels (b), (d) and (f) show that different trends can correspond to similar ITA plots
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qm0m00 ¼ 0. Therefore, Şen’s expression in Eq. (6) under-

estimates the actual variance of tITA of a factor two.

However, the main theoretical inconsistency in Şen’s

formulation is not the foregoing multiplicative factor but

the interpretation and estimation of qm0m00 . At its first

appearance in the derivation of r2

b̂
, qm0m00 is correctly

introduced as the ‘‘cross-correlation coefficient between

the ascendingly sorted two-halves–arithmetic averages’’

(Şen 2017b, p. 205). However, in the subsequent para-

graph, Şen (2017b, p. 205) states that ‘‘the most significant

point in the application of this formulation is that the cross-

correlation is between the two-sorted half time series’’.

This statement is also repeated by Şen (2017c, p. 246), and

this definition is used in the applications, resulting in very

high correlation values (reflecting the alignment of the

points in the ITA diagram), and thus very low values of r2

b̂

[see lines 6 and 7 in table 5.3 of Şen (2017b)]. Şen (2017b)

describes these values saying that ‘‘one of the important

points in this table is high cross-correlation values in row 6

[of Table 5.3], because they are calculated depending on

the ordered sequence in each half series’’.

Firstly, it is (or should be) obvious that the sample

means of the two sub-series x0 and x00 do not change if the

two samples are sorted or not, and thus Şen’s test statistic is

not related in any way to ITA plots. Moreover, if the data

are uncorrelated, the sample means m0 and m00 are uncor-

related as well, i.e. qm0m00 ¼ 0. Secondly, the correlation

qm0m00 between the sample means m0 and m00 of the two

samples x0 and x00 is not the correlation qx0ðiÞx00ðiÞ between the

pairs of sorted values, ðx0ðiÞ; x00ðiÞÞ, i ¼ 1; . . .; n=2, reported in

ITA plots. A reductio ad absurdum argument can prove the

theoretical inconsistency of switching qm0m00 with qx0ðiÞx00ðiÞ .

Under i/id conditions (i.e. lack of trend and persistence),

for large n and neglecting the sampling uncertainty, the

points of the ITA plot are approximately well aligned along

the 1:1 line and qx0ðiÞx00ðiÞ ffi 1. Replacing qm0m00 with qx0ðiÞx00ðiÞ
into Eq. (7), it follows that r2

b̂
ffi 0 as ð1 � qx0ðiÞx00ðiÞ Þ ffi 0. In

this case, every empirical estimate of tITA that is not almost

exactly equal to zero indicates a significant trend. In other

words, r2

b̂
ffi 0 with or without the presence of trends. On

the other hand, under i/id, the estimates of the sample

means from two samples are uncorrelated with qm0m00 ffi 0

(the values of qm0m00 under i/id and serial correlation are

further investigated by Monte Carlo simulations in ‘‘Ap-

pendix 3’’). Therefore, qm0m00 ffi 0 6¼ 1 ffi qx0ðiÞx00ðiÞ . The

unjustified (and theoretically unjustifiable) replacement of

qm0m00 with qx0ðiÞx00ðiÞ strongly deflates the variance of the test

statistics, thus leading to an incorrect and dramatically high

rate of rejection of the null hypothesis when it is true, i.e.

an effective level of significance much higher than the

desired target level (see Monte Carlo simulations and

additional discussion in ‘‘Appendix 4’’).

5 Theoretical inconsistency of confidence
intervals of ITA plots and corresponding
significance test

Even though ITA plots are introduced as diagnostic tools

that are not affected by sample size, serial correlation, and

distributional assumptions, Şen (2017b, pp. 314–317)

suggests quantifying their sampling uncertainty by confi-

dence intervals (CIs) describing the expected fluctuations

of the pairs of order statistics ðx0ðiÞ; x00ðiÞÞ around the 1:1 line

in the ITA plots under the assumption of no trend. As

usual, the distribution used to build CIs is also used to

introduce a formal ST on the significance of the departures

of ITA plots from the 1:1 line (Şen 2017b, pp. 297–304).

We note some logical contradiction of suggesting statistical

tests (as those in Sect. 4) and CIs to complement a method

that is supposed to be inherently free from sample size

effects. However, this contradiction can be due to the lack

of distinction between population and sample properties in

the original description of these methods. Nonetheless, Şen

(2017b, pp. 297–304) introduced such a test and CIs as

follows.

5.1 Reviewing ITA test for departures
from the 1:1 line

Under the assumption of no trend (in the central tendency

measures such as the mean), we expect that the difference

between the sample means of x0 and x00 has expected value

E½l00 � l0� ¼ 0. We also expect that the pairs of order

statistics ðx0ðiÞ; x00ðiÞÞ in the ITA plots are aligned along the

1:1 line with small departures. Even though we have shown

in Sect. 2 that the latter condition is neither necessary nor

sufficient in empirical analysis of finite-size samples, such

departures are quantified by the ‘‘square root of square

deviation summation (SRSDS), sd, between the two half

series scatter points from the 1:1 line as’’

sd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn=2

i¼1

ðXi � Xn=2þ1Þ2

vuut : ð8Þ

Therefore, according to Şen (2017b, p. 303), ‘‘in order to

convert this information into an objective form the division

of the mean difference, (m2 � m1) [i.e., ðm00 � m0Þ in the

present notation] , by the SRSDS in Eq. 7.16 [i.e. Eq. (8) in

this paper], leads to the definition of trend test statistic, ts,

as’’
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ts ¼
m00 � m0

sd

: ð9Þ

Finally, Şen (2017b, p. 303) provides the following inter-

pretation: ‘‘The small values of this test statistics, ts, imply

that there is trend and variability, which is regarded as the

null hypothesis, Ho. On the contrary, the big values cor-

responds to the alternative hypothesis, Ha, where there is

no trend or variability. Theoretically, ts has zero mean and

unit variance, and hence, the standard normal pdf can be

used for the significance test’’.

Focusing on the analytical and conceptual inconsisten-

cies, firstly but least, (1) Xn=2þ1 should be Xn=2þi; (2) using

this correction, Xi and Xn=2þi should be xðiÞ and xðn=2þiÞ as

Eq. (8) refers to differences between corresponding order

statistics; (3) the factor 1/n should be 2/n because the sum

is taken over n/2 terms; and (4) the suggested interpretation

is incorrect, as the null hypothesis of ‘no trend’ corre-

sponds to ts ! 0; in fact, if the test statistic in Eq. (9) is

standard normal under the null, it means that

ðm00 � m0Þ ! 0, and this can happen only if m00 ffi m0, i.e. if

the null hypothesis is ‘no trend’, as usual in standard sta-

tistical testing.

Secondly and most important, the statistic ts has neither

unit variance nor Gaussian distribution because the

expression of the sample variance s2
d is not consistent with

the numerator in Eq. (9) and does not provide a valid

standardization factor. In fact, generally speaking, formulas

yielding standardized statistics with zero mean and unit

variance require subtraction of the expected value (here,

E½l00 � l0� ¼ E½Dl� ¼ 0) and division by the standard

deviation of the variable of interest, which is Dm ¼
ðm00 � m0Þ in the present case. However, the standard

deviation of Dm is not sd but rDm in Eq. (5). Using rDm, ts

becomes identical to the statistic toriginal in Eq. (5), which is

actually distributed as Nð0; 1Þ, thus revealing that also this

test is once again nothing but the standard test for the

difference between two means reported in every and

handbook of applied statistics (see e.g. Kottegoda and

Rosso 2008, pp. 252–253). The corrected statistic ts is also

identical to tITA up to the factor 2/n. Moreover, such tests

rely on several assumptions and depend on the preliminary

knowledge (or lack of knowledge) of the population vari-

ances and serial dependence. In fact, the expression of rDm

assumes different forms according to the specific case at

hand. For example, under serial independence,

homoscedasticity (i.e. r0 ¼ r00 ¼ r), and same sample size

n0 ¼ n00 ¼ n=2, if r is known (not estimated from the same

sample), we have (see e.g. Kottegoda and Rosso 2008, pp.

252) rDm ¼ 2ffiffi
n

p r, while

rDm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

n
ðs02 þ s002Þ

r
ð10Þ

if the population standard deviations r0 and r00 are

unknown but equal, and s0 and s00 are their sample version.

Under serial dependence, rDm should be multiplied by a

correction factor, fcorr, to account for the variance inflation

effects yielding

r�Dm ¼ rDm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ n

2
� 1

� �
�q

r
¼ rDm fcorr

�q ¼
PP

j 6¼l qij

n

2

n

2
� 1

� �

8>>>><
>>>>:

ð11Þ

where �q is the average of the off-diagonal elements of the

correlation matrix of n/2 variables, and qij ¼ Corr ½Xi;Xj�
denotes the pairwise correlation of Xi and Xj (Matalas and

Langbein 1962).

Some Monte Carlo experiments further clarify the above

criticisms. We simulated 1000 time series of size n ¼ 100

from the i/id model and an AR(1) process with q1 ¼ 0:9.

For each series, we computed ts according to Eqs. (8) and

(9) (corresponding to Eqs. 7.16 and 7.17 in Şen (2017b,

p. 303)), and tstandard using the variances in Eq. (10) for the

i/id case and Eq. (11) for the AR(1) process. Figure 9

shows that the distribution of ts is far from being Nð0; 1Þ
and its shape depends on the serial correlation as expected,

while the empirical probability density function of toriginal is

close to Nð0; 1Þ for both processes, thus confirming the

effectiveness of the correction factor fcorr. Note that dif-

ferent values of n and q1 yield similar results (not shown).

Since Şen’s ts is not Gaussian and depends on serial cor-

relation, it follows that Nð0; 1Þ cannot be used to compute

valid critical values to perform a statistical test.

5.2 Reviewing the CIs of ITA diagrams

Even though sd cannot be used to describe the variance of

Dm, thus making the test based on ts invalid, one can think

that sd can be applied at least to build CIs around the 1:1

line. Indeed, in principle sd should describe the variance of

the fluctuations of the order statistics of x00 with respect to

those of x0 (after correcting the expression in Eq. (8) for the

formal errors mentioned above). Therefore, if such fluctu-

ations are approximately Gaussian, we can define confi-

dence limits from the distribution Nð0; s2
dÞ. However, this

is not correct either, because each order statistic appearing

in the ITA plot has its own distribution, which is a beta of

the form FXðiÞ ¼ BðFXðxðiÞÞ; mp; mð1 � pÞÞ, where FX is the

parent distribution of X, m ¼ n0 þ 1, and p 2 ½1=m; n0=m�
(Stigler 1977; Hutson 1999; Nadarajah and Gupta 2004;

Serinaldi 2009). Therefore, the ensemble of fluctuations of
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a set of order statistics does not necessarily converge to a

Gaussian distribution and this hypothetical distribution

does not describe the uncertainty of each order statistic,

meaning that we cannot define a unique CI with constant

width for all data points reported in ITA plots. A proper

Monte Carlo simulation reported in ‘‘Appendix 5’’ can

provide a visual assessment of these remarks.

This behavior is further illustrated in Fig. 10 where

constant-width ITA CIs (at the 95% confidence level) are

reported along with true point-wise CIs for order statistics

computed by two different methods: (1) from simulated

samples, and (2) by using the theoretical distribution FXðiÞ .

Both methods yield almost identical CIs summarizing the

different degree of uncertainty characterizing extreme and

non-extreme order statistics. Especially for skewed distri-

butions (i.e. exponential and Gumbel), the upper tails of the

ITA plots might substantially depart from the expected 1:1

line and fall outside Şen’s (supposed) CIs. Therefore,

splitting the ITA plot in three areas corresponding to low,

medium, and high values, and thus studying their align-

ment with 1:1 line separately, as suggested by Şen (2012),

is generally misleading as this suggestion overlooks the

different uncertainty affecting central and extreme order

statistics related to sample size and shape of the parent

distribution.

6 Building on the sand: ITA follow-ups

Taking the correctness of ITA for granted without any

independent preliminary check led not only to mechanistic

applications of ITA diagnostics but also to attempts of

improvement whose outcome should be interpreted

according to the foregoing discussion. For example, Güçlü

(2018b) suggested the so-called multiple ITA, consisting of

splitting the time series of size n in k (= 3,4,...) non-over-

lapping sub-sets of size n=kb c, and then applying ITA to

subsequent pairs of sub-sets, thus obtaining k � 1 ITA

diagrams (e.g., for k ¼ 3, there are two diagrams of the

pairs of sorted values ðx0ðiÞ; x00ðiÞÞ and ðx00ðiÞ; x000ðiÞÞ,
i ¼ 1; . . .; n=3b c). Such a procedure increases the uncer-

tainty of each ITA plot, as the diagrams rely on smaller

(a) (b)

(c) (d)

Fig. 9 Sampling distributions of

the test statistics ts and tstandard

for the i/id process and AR(1)

process with q1 ¼ 0:9.

KR[2008] = Kottegoda and

Rosso (2008)
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samples. Moreover, this segmentation has a two-fold neg-

ative effect: (1) it can conceal possible serial correlation,

which is already under-represented for instance in the

usually short hydro-climate time series (Serinaldi and

Kilsby 2016b; Iliopoulou and Koutsoyiannis 2019); and (2)

it emphasizes spurious trends resulting from (concealed)

serial correlation, thus leading to incorrect conclusions

about the presence of deterministic trends. Generally

speaking, focusing on small subsets always reveals some

trend since the straight lines usually fitted to time series

have never zero slope; however, such trends are statisti-

cally and physically less and less significant because they

rely on a smaller and smaller amount of information.

McCuen (2018) explored the problem of statistical sig-

nificance investigating how much deviation from the 1:1

line can be expected because of sampling uncertainty.

McCuen’s approach consists of testing the slope of the

zero-intercept regression line fitted to the ITA plot, i.e.

x00ð�Þ ¼ bMx0ð�Þ, where x0ð�Þ ¼ fx0ðiÞg
n=2
i¼1 and x00ð�Þ ¼ fx00ðiÞg

n=2
i¼1.

Using Monte Carlo simulations, McCuen (2018) computed

the critical values of bM under the null hypothesis H0 :

bM ¼ 1 (and i/id and X 	Nð0; 1Þ), and concluded that

these critical values (obtained for a Gaussian distribution)

hold approximately true for uniformly distributed data but

not for data following an exponential distribution. These

results are expected if we recognize the identity of ITA

plots and two-sample q–q plots, and recall their properties

discussed in Sect. 2. Firstly, bM?1 does not necessarily

correspond to changes/trends but can be related to fluctu-

ations in the second moment (or scale parameter), i.e.

possible heteroskedasticity [see Sect. 2, Fig. 1, and exam-

ples in D’Agostino and Stephens (1986, pp. 24–57)].

Secondly, McCuen’s critical values do not hold for the

exponential distribution because this distribution is right

skewed and lower bounded to zero. Therefore, under i/id

(no trends), the lower part of the ITA plots always con-

verges to zero (see Fig. 3), the bundle of ITA plots

resulting from sampling uncertainty has a fan shape, and

each ITA plot is generally well fitted by zero-intercept

regression line with bM 6¼ 1. In other words, for the

exponential distribution, bM estimates are almost always

different from the unity even if data are i/id, and this does

not depend on trends but on the shape of the distribution.

Similar remarks hold for other skewed families. Parallelism

with the 1:1 line under sampling uncertainty holds

approximately only for symmetric distributions such as the

uniform or Gaussian (see e.g. Fig. 2) mentioned by

McCuen (2018). Therefore, a closer preliminary consider-

ation of the nature and meaning of ITA plots reveals that

testing the slope of a zero-intercept regression line is not an

optimal strategy to obtain a general purpose test identifying

deviations from i/id (in terms of step changes and/or trend

in the mean levels) via ITA plots.

Similar remarks hold for other works as well. For

example, Şen (2017a) used ITA to analyze time series pre-

processed by the so-called over-whitening procedure,

without accounting for the effect of sample size and dis-

tribution shape on ITA diagrams. In other cases, the term

ITA was used even if the methodology is weakly if not

related to ITA construction. For example, Şen et al. (2019)

proposed the so-called ‘Innovative Polygon Trend Analy-

sis’ (IPTA) that is based on a diagram plotting the sum-

mary statistics of the two halves of the twelve monthly

series xj;i

� �
, j ¼ 1; . . .; 12 and i ¼ 1; . . .; n. For instance,

focusing on the mean values m, IPTA diagrams report the

twelve points m0
j versus m00

j , where m0
j and m00

j denote the

average values of the first and second half of the observed

monthly series. In this case, according to Şen et al. (2019),

the presence of a possible trend for a specific month should

be based on a single point in IPTA diagrams, which
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Fig. 10 Comparison of Şen’s CIs and true point-wise CIs of order statistics for the three models Nð0; 1Þ, Eð1Þ, and Gð0; 1Þ. True CIs are

computed via Monte Carlo simulation (‘MC CIs’) and theoretical formulas (‘OS CIs’) at the 95% confidence level. CI = confidence interval
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however provide only a visualization of the differences

Dmj ¼ ðm00
j � m0

jÞ and do not add any additional informa-

tion compared with Dmj. On the other hand, as for the

original ITA diagrams, IPTA interpretation overlooks the

effect of sample size, distribution shape, and serial corre-

lation on the sample differences Dmj and their departures

from the expected value zero (under ‘no trend’ assump-

tion). We also stress that Dmj are routinely analyzed by

existing standard tests for the difference between two

means discussed in Sect. 4 and 5.1, accounting for the

above mentioned factors as well as the additional effect of

multiple testing (e.g. Katz and Brown 1991; Wilks 2006).

These studies show the possible negative consequences

of taking the validity of new techniques for granted without

performing a necessary assessment against benchmark and/

or challenging conditions. Especially when new methods

promise paramount results under minimal or no assump-

tions, these techniques should be carefully validated/falsi-

fied against the supposed conditions that they should be

independent of, and these neutral validation studies should

be performed by independent experts (other than the

developers) to avoid biases in favor of the new methods

(Boulesteix et al. 2018). Moreover, the seemingly wide-

spread difficulty to distinguish names and their meaning

(Klemeš 1986), and thus recognizing that different names

refer to the same (often known) concept, exacerbates the

proliferation of questionable methods.

7 Conclusions

When dealing with observations of complex hydro-climatic

processes, whose dynamics are not fully known, statistical

techniques play a key role to retrieve and summarize

information, and enable analysis and prediction (Cramér

1946, pp. 146–148) (see also Shmueli 2010). They are

often the only feasible approach to get insights, and

therefore are often abused and misused as well. Even

though the problem of misusing statistics is not new and is

widely documented in the applied statistical literature, it is

exacerbated when supposed ‘innovative’ techniques are

developed overlooking basic literature, elementary princi-

ples of statistical inference, and necessary careful checks

under a reasonable spectrum of different (and possibly

challenging) controlled conditions.

The lack of independent validation is mainly due to the

fact that the so-called neutral comparison and validation

studies may be time consuming and difficult to both

organize and perform (Boulesteix et al. 2018). They also

require the involvement of authors with enough experience,

and are often more difficult to publish as ‘‘most high-

ranking statistical journals mainly focus on the

development of new methods and on innovative applica-

tions... As a consequence of the lack of comparison studies,

end-users’ decisions for or against application of partic-

ular methods are often consciously or subconsciously dri-

ven by arguments that are to some extent independent of

the performance of the method, such as the charisma and

marketing strategy of its developers, its use in similar

previous studies, the method’s fancy name that is easy to

remember when heard at a conference, or the availability

of user-friendly software’’ (Boulesteix et al. 2018). In this

study, we used Şen’s ITA as a paradigmatic example

(among many others) involving all these concerns, and

performed a neutral validation study to independently

check theoretical basis, methodological aspects, mathe-

matical formulation, and consequent interpretation of ITA

diagnostic diagrams and formal tests for trend detection.

Referring to the main text for the detailed discussion of

the results of our inquiry, we showed that this method

• Cannot discriminate between deterministic trends and

spurious trends resulting for instance from serial

dependence, when it is applied to finite-size samples

(i.e. in real-world applications);

• Overlooks the existing literature, thus neglecting the

equivalence of ITA plots and well-known two-sample

q–q plots and their intepretation;

• Is characterized by extensive mathematical inconsis-

tencies affecting the formulation of ITA statistical tests.

Once these theoretical inconsistencies are corrected,

ITA tests are equivalent to well-known classical

parametric tests for the difference between two means

reported in standard handbooks of applied statistics;

• Contradicts the basic principles of statistical inference,

as it is supposed to be free from any assumption while

its finite-sample properties strongly depend on sample

size and characteristics of the underlying data generat-

ing process, such as the shape of the marginal

distributions and particularly the autocorrelation.

Overall, ITA suffers from a number of theoretical incon-

sistencies affecting its derivation, formulas and interpre-

tation. Thus, this study shows the importance of avoiding

mechanistic application of new methods taking them for

granted, and performing neutral validation/falsification

analysis to recognize possible methodological problems

affecting new methodologies. Therefore, we recommend to

reconsider ITA tools (once corrected for mathematical

inconsistencies) in light of their equivalence to existing

techniques, thus recognizing their actual purpose, correct

interpretation, advantages, disadvantages, and limits. As

for the TFPW method mentioned in the introduction,

empirical results obtained by ITA should be called into

question and double checked.
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As a more general recommendation to end-users, we

suggest bearing in mind the very general principles of

statistical inference and mathematical modeling well syn-

thesized for instance by Cramér (1946), Aitken (1947), von

Storch and Zwiers (2003), Papoulis (1991), Morrison

(2008) and Shmueli (2010) and summarized in ‘‘Appendix

1’’. We also suggest carefully checking every new tech-

nique before using it to study real-world data. Such a

cautionary approach can help avoiding misleading con-

clusions, which are often used as a support decision mak-

ing, thus causing (costly) errors in design and planning.
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Appendix 1

Proposing methodologies that should be model-free,

applicable with no assumptions, and unaffected by the

sample size, and thus uncertainty-free, contradicts the basic

principles of statistical science. Aitken (1947, pp. 2–3) well

summarized such principles recalling that every science

relies on three main stages:

1. Examination of data collected in a particular field of

inquiry to disclose elements of regularity suggesting a

law or laws. This is the stage of inductive synthesis (see

also Cramér 1946, pp. 141–144).

2. Expression of these laws, if possible, in the form of

logical axioms such as those characterizing the

Euclidean geometry or Newtonian mechanics. This is

the stage of deductive synthesis and relies on the

methods of logic and mathematics, which are used to

develop the consequences of the axioms, producing an

ensemble of theorems or propositions. In statistics, this

pure branch consists of the framework provided by

probability and statistical mathematics. When the

discrepancies between theory and facts are too great

to be explained in some way, observations invalidate

the applicability of the axioms, and a new set of axioms

should be found for the description and explanation of

the investigated phenomena. However, ‘‘these axioms

and the deductions based on them would still have an

abstract validity, as a logical structure of propositions

exempt from self-contradiction’’ (see also Cramér

1946, pp. 145–146).

3. Interpretation of the abstract functions, equations,

constants, etc., ‘‘which occur in the pure formulation,

as measures and measurable relations of actual

phenomena. This interpretative stage constitutes the

applied branch of the science’’ (see also Cramér

1946, pp. 146–148).

The foregoing principles are fully general and well-known

in applied disciplines as well. Specializing them in the

statistical context, Papoulis (1991, p. 4) stresses that ‘‘In

the application of probability to real problems, the fol-

lowing steps must be clearly distinguished

1. Step 1 (physical) We determine by an inexact process

the probabilities P½Ai� of certain events Ai...

2. Step 2 (conceptual) We assume that probabilities

satisfy certain axioms, and by deductive reasoning

we determine from the probabilities P½Ai� of certain

events Ai the probabilities P½Bi� of certain events Bi...

3. Step 3 (physical) We make a physical prediction based

on the numbers P½Bi� so obtained’’.

Likewise, in the context of modeling dynamic systems,

Morrison (2008, p. 7) states ‘‘The next hurdle [to get over

in undergraduate mathematics] is the differences among

observed reality, mathematical models, and computational

realizations of mathematical models. Even a lot of

accomplished scientists are not clear on these points...

learning to cope with three things makes up the basics of a

liberal scientific education: facts, abstractions, and the

comparison of facts with abstractions... Understanding and

ultimately research occurs only when facts are reduced to

abstraction, the abstractions manipulated to make predic-

tions, and the prediction compared with new facts’’. The

practical use of a mathematical theory is not restricted to

prediction but includes description and analysis (Shmueli

2010). In particular, concerning the descriptive purposes,

‘‘a large set of empirical data may, with the aid of the

theory, be reduced to a relatively small number of of

characteristics which represent, in a condensed form, the

relevant information supplied by the data’’ (Cramér

1946, p. 147). Therefore, every statistical analysis,

including descriptive statistics, relies on a mathematical

theory with its axioms, assumptions and theorems. For

example, while we can numerically compute the sample

mean for whatever sequence of real numbers, it represents

an estimate of a corresponding population mean only under

the assumption that the observations come from a sequence
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of identically distributed random variables, i.e. for sta-

tionary and ergodic random processes. As every statistical

analysis relies on some assumptions, this explains why

there cannot be diagnostic plots or supposed innovative

methods that are assumption-free. This is also well known

in statistics applied to climatology. von Storch and Zwiers

(2003, p. 69) state:

1. ‘‘A statistical model is adopted that supposedly

describes both the stochastic characteristics of the

observed process and the properties of the method of

observation. It is important to be aware of the models

implicit in the chosen statistical method and the

constraints those models necessarily impose on the

extraction and interpretation of information.’’

2. ‘‘The observations are analysed in the context of the

adopted statistical model.’’

Sometimes, some assumptions can be relaxed. For exam-

ple, ‘‘non-parametric approaches to statistical inference

are distinguished from parametric methods in that the

distributional assumption is replaced by something more

general. For example, instead of assuming that data come

from a distribution having a specific form, such as the

normal distribution, it might be assumed that the distri-

bution is unimodal and symmetric.’’ (von Storch and

Zwiers 2003, p. 76). However, ‘‘While they allow us to

relax the distributional assumption needed for parametric

statistical inference, these procedures rely more heavily

upon the sampling assumptions than do parametric pro-

cedures’’ (von Storch and Zwiers 2003, p. 76). In other

words, statistical inference does not allow for ‘free lun-

ches’ and what we gain in terms of flexibility by relaxing

some assumption is paid in terms of power of discrimi-

nating among different options. It follows that the primary

inherent conceptual flaw of ITA is to present it as some-

thing which is presumed to be valid albeit it clearly con-

tradicts basic scientific principles.

Appendix 2

For the model M2, we have

E½xt� ¼ q1E½xt�1� þ E½bt� þ E½et� ð12Þ

lt ¼ q1lt�1 þ bt þ 0: ð13Þ

Since we can often assume lt�1 ffi lt for b 
 1, it follows

lt ffi
bt

1 � q1

: ð14Þ

Therefore

Dl ¼l00 � l0 ¼ l3n
4
� ln

4
ffi

b
3n

4
� n

4

� 	

1 � q1

¼
b

n

2
1 � q1

¼ bn0

1 � q1

:

ð15Þ

Appendix 3

To show the correlation between the means in two samples,

we simulated 5000 time series with size n ¼ 100 from

three different processes: (1) i/id with standard Gaussian

distribution, i.e. yt ¼ �t with �	Nð0; 1Þ, (2) i/id process

with superimposed linear trend (yt ¼ bt þ �t with b ¼ 0:1

and �	Nð0; 1Þ), and (3) a discrete-time AR(1) process

with parameter q1 ¼ 0:95 (yt ¼ q1yt�1 þ �t with

�	Nð0; 1Þ). We computed the means of the two halves of

each time series, thus obtaining 5000 pairs ðm0;m00Þ and

drew the scatter plots of these estimates (Fig. 11). These

diagrams describe the empirical joint density functions of

m0 and m00 and show that such sample means are uncorre-

lated for the first two models (q ¼ 0:02 and -0.03,

respectively), while relatively weak correlation (q ¼ 0:28)

emerges only for highly correlated AR(1) processes (q
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Fig. 11 Sampling joint distribution of m0 and m00 for the i/id process (a), i/id with superimposed linear trend (b), and AR(1) process with

q1 ¼ 0:95 (c)
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assumes values close to zero for q1 � 0:8, which still

denotes remarkable serial correlation). The marginal dis-

tributions of m0 and m00 are close to Gaussian (not shown)

with standard deviations close to the expected theoretical

values, namely 0:14 ffi
ffiffi
2
n

q
r for the first two models and

2:25 ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
nð1�q2

1
Þ 1 þ ðn

2
� 1Þ�q


 �q
r for the AR(1) model,

where r ¼ 1 and �q is the average of the off-diagonal ele-

ments of the correlation matrix of n/2 variables, i.e.

�q ¼
PP

j6¼l
qij

n
2
ðn

2
�1Þ , in which qij ¼ Corr ½Xi;Xj� denotes the

pairwise correlation of Xi and Xj (Matalas and Langbein

1962).

Appendix 4

In order to show the effect of switching qm0m00 and qx0ðiÞx00ðiÞ on

the significance of the two-mean tests, we simulated 1000

time series of size n 2 20; 40; 60; 80; 100; 150; 200; 250f g
from two processes: (1) an AR(1) process with q1 ranging

between 0 and 0.9 by 0.1 steps, and (2) a fractional

Gaussian noise (fGn) with Hurst parameter

H 2 0:5; 0:55; . . .; 0:95f g. The time series are kept trend-

free to check the effect of the autocorrelation of the parent

processes on the effective rejection rate of the tests (applied

at the 5% nominal significance level). Note that the AR(1)

and fGn processes with q1 ¼ 0 and H ¼ 0:5, respectively,

yield the i/id process, for which the effective significance

level is expected to be equal to the nominal level. We

compared the Şen test with the standard tests for two

means with known or unknown variances. Figure 12 shows

that the Şen test always yields a rejection rate greater than

the 40% for both processes, every degree of serial corre-

lation (including the i/id case), and every sample size. On

the other hand, the two standard tests yield effective sig-

nificance levels that are close the nominal level (5%) under

i/id (as expected) and gradually increase because of the

variance inflation effect of the increasing serial correlation.

These conclusions further stress the importance of per-

forming suitable Monte Carlo analysis and comparisons

with other available tests when a new test is proposed, in

order to check its properties under the null hypothesis and

the effect of assumptions and factors such as serial

dependence and sample size.
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Fig. 12 Effective significance of three formulations of the hypothesis test for the difference between two means (Şen’s version and standard test

with known or unknown standard deviation (SD)). The effect of the serial correlation is shown for AR(1) and fGn processes
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Appendix 5

We simulated samples of size n 2 50; 100; 10; 000f g from

three different distributions (Gaussian, Exponential, and

Gumbel). The smaller sample sizes (n 2 50; 100f g) cover

the typical range of hydro-climatic observations such as

annual means or maxima, while n ¼ 10; 000 was chosen to

check results for relatively large samples. For each sample,

we selected x0 and x00 and then we computed the differences

between the order statistics, di ¼ x00ðiÞ � x0ðiÞ, and their

variance by using Şen’s equation and the standard formula

for the variance (which is corrected for the errors men-

tioned in Sect. 5.1). The variances are used to compute the

Gaussian quantiles, di, corresponding to the empirical

frequencies i=m, under the assumption that di values follow

a Gaussian distribution. This experiment was repeated q ¼
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Fig. 13 Sampling distribution of di ¼ x00ðiÞ � x0ðiÞ and corresponding di

for three different distributions (Nð0; 1Þ, Eð1Þ, and Gð0; 1Þ) and

n 2 50; 100; 10; 000f g. Sampling distributions are obtained by empir-

ical distribution from Monte Carlo simulation and from Gaussian

distributions with zero mean and standard deviation as for Eq. (8) [i.e.

equation 7.16 in Şen (2017b)] and Eq. (10). See text for further

details
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1000 times, and the 1000 sequences of di (di) were merged

obtaining samples of size q � m. Such samples allow for

building and comparing the sampling distributions of di

and di. Figure 13 shows that the distributions of di are

generally different from those of di irrespective of the

formula used to compute the sample variances of di. As

expected, discrepancies depend on the shape of the parent

parent distribution of X and they are smaller when FX is

Gaussian. The main reason of these discrepancies is that

the distribution of di is not unique but depends on the rank

of the order statistics. In fact, as already shown in Fig. 2,

the uncertainty of ITA plots is generally smaller for central

order statistics and larger on the (unbounded) tails.
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