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Abstract
Influent flow of wastewater treatment plants (WWTPs) is a crucial variable for plant operation and management. In this

study, a random forest (RF) model was applied for daily wastewater inflow prediction, and a new probabilistic prediction

approach was, for the first time, applied for quantifying the uncertainties associated with wastewater inflow prediction. The

RF model uses regression trees to capture the nonlinear relationship between wastewater inflow and various influencing

factors, such as weather features and domestic water usage patterns. The proposed model was applied to the daily

wastewater inflow prediction for two WWTPs (i.e., Humber and one confidential plant) in Ontario, Canada. For the

confidential WWTP, the coefficient of determination (R2) values for training and testing were 0.971 and 0.722, respec-

tively. The R2 values at the Humber WWTP were 0.957 and 0.584 for training and testing, respectively. In comparison

with other approaches such as the multilayer perceptron neural networks (MLP) models and autoregressive integrated

moving average models, the results show that the RF model performs well on predicting inflow. In addition, probabilistic

prediction of daily inflow was generated. For the Humber station, 93.56% of the total testing samples fall into its

corresponding predicted interval. For the confidential plant, 78 observed values of the total 89 samples fall into its

corresponding interval, accounting for 87.64% of the total testing samples. The results show that the probabilistic approach

can provide robust decision support for the operation, management, and optimization of WWTPs.
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1 Introduction

It is well acknowledged that the wastewater inflow to a

wastewater treatment plant (WWTP) is an essential vari-

able for plant operation and management. The rate of

wastewater inflow depends on local drainage characteris-

tics, domestic water usage patterns, and meteorological

conditions (Abunama and Othman 2017; El-Din and Smith

2002; Szelag et al. 2017). In recent decades, in order to

implement advanced control strategies, plant-wide moni-

toring networks and controlling systems have been widely

used in WWTPs (Campisano et al. 2013; Dürrenmatt and

Gujer 2012). A large amount of data are collected by these

monitoring networks. The data collected could provide

important information for wastewater inflow prediction and

treatment process control. Therefore, utilizing these data to

predict wastewater inflow is desired.

The accuracy of an influent flow prediction model

depends on how the relationships are described in the

model between inflow and various influencing factors, such

as meteorological conditions, sewer system characteristics,

and human factors (Amatya et al. 1997; Li et al. 2015;

Pagano et al. 2009). However, these relationships are often

nonlinear and complex, which leads to challenges in

wastewater inflow prediction. In the past decades, along-

side the development of artificial intelligence, numerous

data-driven models (Table 1) have been applied to predict

the inflow of WWTPs (Boyd et al. 2019; Kim et al. 2006;

Szelag et al. 2017; Wei et al. 2013; Wei and Kusiak 2015;

Djebbar and Kadora 1998; Zhang et al. 2018). For instance,
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El-Din and Smith (2002) used artificial neural networks

(ANNs) to predict wastewater inflow during storm events.

Moreover, Kim et al. (2016) proposed a k-nearest neighbor

(k-NN) method to predict the influent characteristics of

WWTPs. Although these methods can better solve the

nonlinear problems in inflow prediction, there are still

some drawbacks. For example, the ANN method often has

over-learning and low speed of convergence problems

(Wang et al. 2015; Yeh and Li 2002). The k-NN method is

affected by the search range and could be computationally

expensive as the size of the problem increases (Pono-

marenko et al. 2014; Zhe Zhou et al. 2015). Additionally,

these methods cannot provide information on each input

variable’s contribution to the inflow (Wang et al. 2015). In

order to solve these problems, alternative and effective

methods are still required.

More recently, random forest (RF) has gained a lot of

attention as an effective predictive modeling technique. RF

is an ensemble classifier, proposed by Breiman in 2001, and

comprises a collection of tree-structured classifiers (Breiman

2001). RF can be regarded as a modified version of bagging,

which uses a similar but improved way of bootstrapping

(Gislason et al. 2006). It has certain advantages compared to

the traditional bagging method in terms of accuracy and

computational intensity (Breiman 2001; Gislason et al.

2006). In addition, there are variable importance measure-

ments in the RF method, which help to determine each input

variable’s contribution. As a promisingmethod, RF has been

applied in a wide range of areas. For instance, Pal (2005)

used a RF classifier for land cover classification. His study

concluded that the RF classifier, compared with Support

Vector Machines (SVMs), requires less user-defined

parameters and is easier to define the parameters. Dı́az-

Uriarte and Alvarez de Andrés (2006) investigated the use of

RF for gene selection and classification based on microarray

data. The RF model showed a comparable performance to

other methods such as diagonal linear discriminant analysis

(DLDA), K-nearest neighbor (KNN), and SVMs. Abdel-

Rahman et al. (2013) proposed a spectral band selection

method for predicting sugarcane leaf nitrogen concentration

usingRF regression algorithm. The results showed that sugar

leaf nitrogen concentration can be predicted by RF regres-

sion algorithm with a coefficient of determination (R2) value

of 0.67. Szelag et al. (2017) used several nonlinear models

including RF for wastewater inflow prediction and their

results indicated that RFmodel is competitive in comparison

with SVM and KNN. Dai et al. (2018) successfully applied

optimized random forest regression model for deformation

monitoring of concrete dam and Zahedi et al. (2018) used the

random forest regression model for predicting solid particle

erosion in elbows. The RF method has been proven to be an

effective method for building predictive models in many

previous studies. However, the performance of using RF

models in wastewater inflow prediction still needs to be

demonstrated and improved through more case studies.

Therefore, the objective of this study is to explore the

potential of RF forwastewater inflow prediction. This entails

the following four tasks: (1) developing a data-driven model

based on random forest for wastewater inflow prediction; (2)

applying the developed RF model and predict the daily

inflow at twoWWTPs in Ontario, Canada; (3) evaluating the

performance of the proposedmodel using different statistical

criteria; (4) applying a uncertainty analysis approach to

provide probabilistic inflow predictions for more robust

decision support. This study will provide valuable support

for WWTP management, as well as an insight into the

uncertainties involved in wastewater treatment systems.

2 Methodology

2.1 Random forest

2.1.1 The principle of random forests

The RF method was proposed by Breiman, who was

inspired by the papers on written character recognition, the

random subspace method, and random split selection (Amit

Table 1 Typical models for wastewater inflow prediction

S/

n

Study Method

1. Djebbar and Kadora (1998) Artificial neural networks (ANN)

2. El-Din and Smith (2002) ANN

3. Kim et al. (2006) Autoregression integrated moving average (ARIMA)

4. Wei et al. (2013) and Wei and

Kusiak (2015)

Multi-layer perceptron (MLP), dynamic neural networks (DNN)

5. Kim et al. (2016) K-nearest neighbor (KNN)

6. Szelag et al. (2017) Support vector machine (SVM), random forest (RF), KNN, kerner regression (K)

7. Zhang et al. (2018) Recurrent neural networks (RNN), nonlinear autoregressive with exogenous inputs (NARX), long

short-term memory (LSTM)
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and Geman 1997; Dietterich 2000; Ho 1998). A random

forest is an ensemble classifier comprising a collection of

tree-structured classifiers h x;Hkð Þ; k ¼ 1; . . .f g, where the

Hkf g are independent and identically distributed random

vectors, and x is an input vector (Breiman 2001). Each tree-

structured classifier is a decision tree (DT). Each DT is

independently constructed during the training process using

a bootstrap sample of the original data set, and each node

of the DT is split using the best variable among a subset of

predictors (Liaw and Wiener 2002). After the ensemble

classifier is constructed and finalized, a simple majority

vote or an average value is taken for prediction.

2.1.2 Regression trees

A regression tree is a prediction model that can be

described as a decision tree, and it deals with the prediction

of an output target y, given a vector of input variables x

(Loh 2014). The output variable y of a regression tree can

be continuous or discrete (e.g., the value of inflow rate in

this study or the number of stations). A regression tree

consists of a root node, internal nodes, and leaf nodes. A

classification and regression tree (CART) approach with

mean squared errors (MSE) as the node impurity criterion

was used when growing a regression tree in this study. The

MSE is calculated as follows:

MSE ¼ 1

n

Xn

i¼1

yi � ŷið Þ2 ð1Þ

where n is the number of samples; yi is the observed value

on sample i; and ŷi is the predicted value on sample i. In

this study, ŷi equals the mean value of the samples in the

node. Thus, MSE can be regarded as the variance of the

samples in the node.

In this study, there was no pruning for each tree.

Therefore, each leaf node was labeled with one predicted

value. While there are various software applications that

can be used to build RFs, in this study, the implementation

of RF is conducted by Scikit-learn in Python (Fabian et al.

2011). The building process of random forests is summa-

rized as follows and these trees are adopted for wastewater

inflow prediction in this study:

1. k new training date sets are created by conducting the

bootstrapping method on the original training set.

2. A regression tree is grown for each new training data

set.

3. After k regression trees are formed, each regression

tree produces one predicted value, and the mean value

of these k values is taken as the final prediction.

2.1.3 Variable importance

RF became popular because of its numerous appealing

properties, such as the significant advantages over other

existing data-driven methods in terms of assessing variable

importance (Grömping 2009; Tyralis et al. 2019a). Vari-

able importance illustrates each input variable’s contribu-

tion to the target during the node split (Wang et al. 2015).

There are four different methods to determine the variable

importance in a random forest. Readers are referred to

Breiman (2002) for more details. In this study, the sum of

impurity criterion decreases is used to measure the variable

importance. At every node split, one variable is used to

form the split and as a result, there is a decrease in the

splitting criterion. The sum of all decreases in all trees due

to a given variable, normalized by the total number of

trees, is the sum of impurity criterion decreases (Breiman

2002). The importance of a node j on feature f in a DT k

(Ikjf ) is computed as:

Ikjf ¼ Cj �
Mleft jð Þ
Mj

� Cleft jð Þ �
Mright jð Þ

Mj

� Cright jð Þ ð2Þ

where Cj is the measure of the impurity of the node j;

Mleft jð Þ and Mright jð Þ are the number of instances in the left

and right subset of node j, respectively;Mj is the number of

the instances in the node j; and Cleft jð Þ and Cright jð Þ are the

impurity of the left and right subset of node j, respectively.

The variable importance of feature f (Ff ) can then be

calculated as:

Ff ¼
Pk

1

P j
1 Ikjf

k
ð3Þ

where k is the number of regression trees; and j is the total

number of nodes in a DT.

2.2 Model development

The representativeness of training datasets is important to

the effectiveness and overall performance of a RF model

(Wang et al. 2015). To reflect the impacts of weather

conditions and domestic water usage patterns on wastew-

ater inflow, numerous weather observations and date/time

variables are selected as predictor variables. Unlike one-

step ahead or multiple-step ahead predictions (Papachar-

alampous et al. 2018, 2019), in this study, the historical

weather data are used for model training and testing. For

instance, when inflow at time t were predicted, historical

weather features at time t were used as model inputs. While

for real-world applications, forecasted weather data would

be used. The weather features include maximum temper-

ature (�C), minimum temperature (�C), mean temperature

(�C), heating degree days (�C), cooling degree days (�C),
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total rain (mm), total snow (mm), total precipitation (mm),

and accumulated precipitation (mm); the date/time vari-

ables are months of the year, and days of the week. One-hot

encoding is applied on date/time variables firstly and then

they are fed to RF model as categorical variables. Including

date/time variables as input features is able to reflect data

pattern, especially for time sequences date (González and

Zamarreño 2005; Singh et al. 2012). For instance, water

usage during weekends and holidays of domestic residents

is different, which has a close relationship with the influent

flow rate at wastewater treatments. More details regarding

the weather features are given in Sect. 3.2. It is worth

mentioning that the selection of weather features changes

from one study area to another due to the different char-

acteristics of each plant (Tehrany et al. 2013). In this study,

the weather features were selected separately for each

WWTP based on a correlation analysis and a literature

review. A list of the selected weather features is given in

Table 2. In this study, 75% of the data in the original

dataset are selected randomly to generate a training dataset,

while the other 25% are used to form the corresponding

testing dataset. In comparison with selecting training set

sequentially for a time series dataset, random selection can

avoid neglecting some major data patterns. For instance,

predicting the wastewater inflow in winter based on sam-

ples only from summer would lead a poor performance.

The number of trees (k), and the number of features

tested at each split (m) are the two most important

parameters when building a RF model. For regression

problems, Probst and Boulesteix (2018) suggested that the

expected out-of-bag MSE and mean absolute error

decrease when increasing k; meanwhile, the first 100 trees

usually achieve the biggest performance gain. In this study,

the performance of the RF model becomes stable after the

first 300 trees and it was found that k ¼ 300 sometimes

results better or equivalent performance in comparison

with k ¼ 3000 in terms of MSE curve. Therefore, to

maintain satisfactory model performance while saving the

computation time when we later use proposed model in

real-world, three different numbers (300, 1000, 3000) are

first assigned to k, and three different numbers (M, Sqrt Mð Þ
and log2 M), where M is the total number of input features,

are considered for m. Subsequently, the best combination

of k and m for each WWTP can be identified using a grid

search and a threefolds cross validation. Then the best

combination of parameters is used to build a random forest

for predicting wastewater inflow. A flowchart of the

training and testing processes is shown in Fig. 1.

2.3 Evaluation of modeling performance

Four statistical criteria, including mean absolute percent-

age error (MAPE), root mean square error (RMSE), coef-

ficient of determination (R2), and Nash–Sutcliffe efficiency

(NSE) are used to evaluate the performance of the RF

model. MAPE is defined by Eq. 4.

MAPE ¼ 100%

n

Xn

i¼1

yi � ŷi
yi

����

���� ð4Þ

where n is the number of samples; yi is the observed value

on sample i; ŷi is the predicted value on sample i.

RMSE defined by Eq. 5 is the squared root of the MSE,

which prevents positive and negative errors to cancel each

Table 2 The selected input

features for the two WWTPs
Feature category Feature WWTP

Weather features Maximum temperature (�C) Humber, confidential plant

Minimum temperature (�C) Humber, confidential plant

Mean temperature (�C) Humber, confidential plant

Heating degree days (�C) Humber, confidential plant

Cooling degree days (�C) Humber

Total rain (mm) Humber, confidential plant

Total snow (mm) Humber

Total precipitation (mm) Humber, confidential plant

2-day accumulate precipitation (mm) Confidential plant

3-day AP Confidential plant

4-day AP Confidential plant

5-day AP Confidential plant

6-day AP Confidential plant

7-day AP Confidential plant

Date Features Month (Jan–Dec) Humber, confidential plant

Workdays (Mon–Sun) Humber, confidential plant
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other out in order to express the error metric in the same

units as the original data (Bennett et al. 2013).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � ŷið Þ2
s

ð5Þ

R2, given by Eq. 6, is the squared of Pearson product-

moment correlations, and measures the correlation of the

observed and modeled values. R2 ranges from 0 to 1, with 1

corresponding to the strongest correlation.

R2 ¼
Pn

i¼1ðyi � �yÞ ŷi � ~yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi � �yð Þ22

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ŷi � ~yð Þ22

q

2
64

3
75

2

ð6Þ

where ~y is the mean of predicted values; and �y is the mean

of observed values.

NSE (Nash and Sutcliffe 1970) defined by Eq. 7 is a

widely used criterion for calibration and evaluation of

hydrological models (Gupta et al. 2009). The range of NSE

can vary from negative infinity to 1, which indicates a

perfect fit.

NSE ¼ 1�
1
n

Pn
i¼1 yi � ŷið Þ2

1
n

Pn
i¼1 yi � �yð Þ2

ð7Þ

2.4 Probabilistic prediction

Let y be the output target and x be a vector of input vari-

ables. In a RF regression model that includes k trees, each

end node of a tree includes one predicted value under the

no prune scenario. The predicted value of tree i is

expressed as yi. Let the probability distribution of the

variable y be

P y ¼ yif g ¼ pi ¼
1

k
; i ¼ 1; 2; . . .k ð8Þ

For the traditional conditional mean approach, the final

predicted result y is estimated using the mean of yi which is

generated by k trees and it can be expressed as follows:

E yjxð Þ ¼
Xk

i¼1

yipi; i ¼ 1; 2; . . .k ð9Þ

However, the conditional mean shows only one aspect

of the distribution of a target y and ignores other features;

thus, this deficiency promotes the development of proba-

bilistic prediction (Nicolai Meinshausen 2006). In fact, a

probability distribution function (PDF) and a cumulative

distribution function (CDF) of the target y can be generated

using the predicted results from k trees. Meanwhile, the

probability of target y that does not exceed one certain

threshold Yð Þ can be calculated.

P y� Y jxð Þ ¼
Xk

i¼1

ðpijyi � YÞ; i ¼ 1; 2; . . .k ð10Þ

Moreover, an interval prediction based on the quantiles

of target y can be built. To evaluate the accuracy of the

predicted intervals, a criterion which is specifically for

scoring predicted interval is introduced as follows (Gneit-

ing and Raftery 2007; Dunsmore 1968; Winkler 1972). For

a central 1� að Þ � 100% prediction interval, where a is the
quantile level and a 2 0; 1ð Þ, the upper and the lower

bounds of this prediction interval are the predictive quan-

tiles at levels 1� a
2
and a

2
, respectively. And the scoring

criterion is expressed as:

Sinta l; u; xð Þ ¼ u� lð Þ þ 2

a
l� xð Þ1 x\lf g

þ 2

a
x� uð Þ1 fx[ ug ð11Þ

where u and l are values representing the 1� a
2
and a

2

quantiles, respectively, and x is the observed value.

Fig. 1 Flow chart of the training and testing process
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3 Case study

3.1 Study area

Two wastewater treatment plants in Ontario, Canada (i.e., the

Humber WWTP and one confidential WWTP), were used to

demonstrate the applicability and performance of the pro-

posedRFmodel.TheHumberWWTPis situatedon themouth

of the Humber River, and is Toronto’s second largestWWTP.

It serves a population of approximately 680,000 with a

capacity of 473,000 m3/d (www.toronto.ca/services-pay

ments/water-environment/). The confidentialWWTP serves a

population of approximately 141,500, and it consists of pre-

liminary treatment, primary treatment, secondary treatment

and tertiary treatment. This confidentialWWTP is designed to

collect only sanitary sewage. However, a significant amount

of flow in the sanitary sewer system originates from sources

like downspouts and illegal sump pump connections during

storm events, and infiltration during rainfall events.

3.2 Data

The influent flow data was obtained from Hydromantis

Environmental Software Solutions, Inc., a software devel-

opment company in the water and wastewater treatment

sector. For the Humber WWTP, daily flow data from

January 2, 2015 to December 31, 2017 were used. For the

confidential WWTP, flow daily data from November 1,

2015 to October 30, 2016 were collected. Time-series flow

plot for the Humber WWTP and the confidential WWTP

are presented in Fig. 2.

The weather data were obtained from Weather Canada

(https://weather.gc.ca/canada_e.html). The weather data

were collected and matched with the corresponding flow

data with the same data length and frequency. The weather

variables include maximum temperature (�C), minimum

temperature (�C), mean temperature (�C), heating degree

days (�C, defined by Eq. 12), cooling degree days (�C,
defined by Eq. 13), total rain (mm), total snow (mm), and

total precipitation (mm).

HDD ¼ 1dayð Þ
X

days

Tb � Tmð Þþ ð12Þ

CDD ¼ 1dayð Þ
X

days

Tm � Tbð Þþ ð13Þ

where Tb is the base temperature; Tm is the daily mean

temperature; and the plus signs indicate that only positive

values count (Büyükalaca et al. 2001).

4 Result analysis and discussion

4.1 Modeling performance

A RF model was built for each of the two WWTPs using

the approach described above. For the Humber station, the

original dataset had a total of 1080 samples. Outliers in the

original dataset were detected using the three-standard

deviation (3r) method and samples that included missing

values were deleted, which resulted in a total of 1053

samples. After pre-processing, 789 data points were

selected randomly to form the training set, and the

remaining 264 data points were used for testing. The model

with the best training results had 3000 trees, and the

number of the features tried at each split m was equal to

log2 M. At the confidential WWTP, flow data from

Fig. 2 Time-series flow graph for the Humber (a) and the confidential plant (b)
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November 1, 2015 to October 30, 2016 were collected.

Outliers in the data were identified manually after con-

sulting the engineers at the WWTP, and samples with

missing values were deleted. The pre-processing resulted in

a total of 359 data points. 269 data points were randomly

selected as training data, and the remaining 90 points were

used as testing data. After using the grid search method, it

was found that the best performance model had the number

of the trees k equal to 1000, and the number of features

tried at each split m was equal to M. The results of MAPE,

RMSE, R2 and NSE, as well as the scatter plots of the

predicted and observed flows generated by the RF model

for each plant are illustrated in Fig. 3.

Generally, the effectiveness of hydrologic models can

be estimated by statistical parameters, such as NSE and R2.

The required minimum value of NSE is 0.5, and R2 with

values greater than 0.5 are considered acceptable (Mello

et al. 2008; Moriasi et al. 2007). In addition, scatter plots

were employed as NSE alone is not an adequate indicator

(Jain and Sudheer 2008). In this study, according to the

values of NSE and R2, the proposed RF models for the

Humber station and the confidential station are considered

satisfactory.

Furthermore, to evaluate the performance of the pro-

posed RF model, other algorithms used in previous studies,

including multi-layer perceptron (MLP) and autoregression

integrated moving average (ARIMA) are compared with

RF. MLP is a classical artificial neural networks model. It

has been used in many disciplines and has been proved to

be a useful predictive model (Olmedo et al. 2018). ARIMA

is a time series analysis model that has been used for

several decades and has been used for wastewater inflow

prediction (Boyd et al. 2019). Although RF, MLP, and

ARIMA are all able to predict wastewater inflow, there are

some significant differences in terms of categories of input

variables and formats of inputs. For instance, ARIMA is an

autoregression model which heavily depends on prior data

and thus has a higher requirement about the data

Fig. 3 Scatter plots of RF: a training of the Humber station, b testing of the Humber station, c training of the confidential plant, d testing of the

confidential plant
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continuity. Additionally, among these three methods, only

the RF model can address continuous and categorical input

variables simultaneously (Tyralis et al. 2019a). In this

study, to compare performance of different models, MAPE

and R2 are used. The performance of the MLP model for

each WWTP is presented in Fig. 4

Overall, the results illustrate that RF can predict the

wastewater inflows competently. Compared with ARIMA,

the RF model for the confidential station shows outstanding

performance. Although the RF model for the Humber sta-

tion is not as good as the confidential station with regards

to NSE and R2, the MAPE value (6.623) is lower than that

of the ARIMA model (8.012) (Abunama and Othman

2017). Additionally, the performance of RF models in this

study are more stable among different stations when

compared with the ARIMA model by Boyd et al. (2019). It

is worth mentioning that RF’s capability of capturing

extreme values (high and low values) is not as good as

MLP in this study, although the overall results of RF are

slightly better than MLP. This may be because the range of

prediction results of RF model is determined by the range

of training dataset. The RF model in this study can not

produce a prediction result which exceeds the range of

training data. To better predict the extreme values, there

are some methods that could be further tested in future

studies. For example, improving data quality and including

more peak flow events while training the model could be

helpful. In this study, randomly selecting training data

points from time series dataset instead of selecting

sequentially is a way to increase the possibility of covering

more peak points at different timestamps. Additionally,

developing separate models for dry and wet seasons, as

well as wavelet transformation, could also help enhance

the model’s performance in capturing the peak values

(Jothiprakash and Kote 2011; Tiwari and Chatterjee 2011).

4.2 Variable importance analysis

The variable importance was calculated using the sum of

the MSE decrease as described in Sect. 2.1.3. This provides

Fig. 4 Scatter plots of MLP: a training of the Humber station, b testing of the Humber station, c training of the confidential plant, d testing of the

confidential plant
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valuable support for decision makers to understand each

variable’s contribution to the flow volume. Figure 5 shows

the variable importance of each station. For the Hum-

ber station, it is shown that 2-day accumulative precipita-

tion (2DAP) and the 3-day accumulative precipitation

(3DAP) are the main contributing factors. This is consistent

with the work of El-Din and Smith (2002), where the

authors suggested that the influent flow to a WWTP may

increase substantially during storm events. However, the

results of variable importance for the confidential plant

imply a very different pattern. The month of the year has

the highest variable importance. It is worth mentioning that

the input variables used for these two stations are different.

When using the Humber input variables for the prediction

of the confidential plant, although month of the year is still

the most important variable, the testing results are worse,

with a R2 value of 0.589. If month of the year is not

included as an input, the goodness of fit would be even

worse. This illustrates that the selection of input variables

has a significant impact on the model performance. Vari-

able importance metrics (VIMs) can help select the most

relevant input information (Wang et al. 2015). For exam-

ple, variables with VIMs around zero could be excluded

(Tyralis et al. 2019a). In addition, the integrated tool pro-

posed by Tyralis et al. (2019b) which uses random forests

and linear models can also help find important predictors.

The RF model could also perform better if recently lagged

predictors are used (Tyralis and Papacharalampous 2017).

It is recommended to carefully select input variables

through literature review, system characterization, and

correlation analysis when building a RF model.

4.3 Probabilistic prediction and uncertainty
analysis

As an example, the PDF and CDF graphs at a randomly

selected point from the confidential plant’s testing dataset

are presented in Fig. 6. Following the traditional RF

modeling approach as described in Sect. 2.1.2, the pre-

dicted value is 2383.7 m3/h. Using the proposed proba-

bilistic prediction approach for the final prediction value,

the PDF graph illustrates that the probability at around

2350 m3/h is the highest. Furthermore, the CDF graph

shows that the cumulative probability that inflow is less

than or equal to 2300 m3/h is zero, while that for an inflow

of greater than or equal to 2450 m3/h is one. This implies

that the range of the predictive values is [2300, 2450] m3/h.

Additionally, with the CDF graph, the probability that the

predicted inflow exceeds a certain threshold can be asses-

sed. For instance, from the CDF graph shown in Fig. 7, the

corresponding accumulative probability of flow at

2400 m3/h is approximately 0.7. Thus, the probability that

the predicted inflow exceeds 2400 m3/h is approximately

0.3. To summarize, the CDF graph can provide probability

information about the risk of extreme inflow for each time

step. Hence, knowing the probability of extreme events

occurring will better support with the management and

operation of WWTPs.

To provide more information about the inflow for

WWTPs, the predicted daily inflow interval prediction

results for the Humber station and the confidential station

during the testing period are presented in Fig. 7. Results of

the scoring criterion for interval prediction mentioned in

Fig. 5 Variable importance for Humber (a) and confidential plant (b)
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Sect. 2.4 is presented in Table 3. Additionally, to cancel

the effects of measurement unit, the average interval score

divided by an average inflow rate is presented as well.

Overall, though the predicted intervals are slightly large

for some data points, the interval prediction results capture

almost all the observed flow values within the interval

ranges. For the Humber station, among the 264 samples

used for testing, 247 samples of their observed values fall

into its corresponding interval generated by the RF model,

accounting for 93.56% of the total testing samples. For the

confidential plant, 78 observed values of the total 89

samples fall into its corresponding intervals, accounting for

87.64% of the total testing samples. Moreover, it can be

observed from Fig. 7 that all the upper and lower bounds of

interval prediction for Humber seem like relatively

stable in comparison to the confidential plant and the

interval coverage of Humber is higher than that of the

confidential station. For the confidential plant, the large

variance of bounds may be explained by the measurement

unit. Most of the observed influent flow values of Humber

fall into the range from 150 MLD to 350 MLD, whereas for

the confidential plant, the observed influent flow values

change from 1750 to 4000 m3/h. The interval prediction

was generated by results from k trees, and not all the trees

were built using proper samples. Thus, some trees may

become disturbances, which may lead to a large variance.

After cancelling the unit effect, the interval prediction for

the confidential station shows slightly better performance

(10.60%) than that of the Humber (13.88%).

This work is the first attempt to analyze the uncertainty

of predicted wastewater inflow using this probabilistic

method. In this case study, most of the testing points fell

into the predicted interval. The interval prediction results

combined with CDF graph analysis can not only provide

range solutions of the predicted wastewater inflows, but

also identify the probability of inflows exceeding a certain

threshold. Thus, this strategy offers an excellent support for

decision-makers and operators of WWTPs, especially

Fig. 6 Probability distribution function (a) and accumulative distribution function (b)

Fig. 7 Range prediction for the Humber station (a) and confidential plant (b)

1790 Stochastic Environmental Research and Risk Assessment (2019) 33:1781–1792

123



during extreme weather events and domestic water con-

sumption rush hours.

5 Conclusions

In this study, a RF model was applied for wastewater

inflow prediction at WWTPs. A RF model is an ensemble

model which comprises a collection of DTs. This model

shows its significant potential for wastewater inflow pre-

diction, as it analyzes each input variable’s contribution

and provide valuable probabilistic prediction results. The

proposed model could address the nonlinear relationships

between the influent flow of WWTPs and various influ-

encing factors such as weather features, and domestic water

usage patterns. In addition, a new probabilistic prediction

method was applied to quantify the uncertainties with RF

predictions and thus, provide more robust support for the

operation and management of WWTPs.

The proposedmodelwas applied to predict the daily influent

flow at the Humber and the confidential WWTPs in Ontario,

Canada. The R2 values for the Humber station and the confi-

dential plant for training were 0.957 and 0.971, respectively;

while those for testing were 0.584 and 0.722, respectively. The

results demonstrate that the RF models could perform well for

wastewater inflow prediction. Compared to other inflow pre-

dictionmodels such as theARIMAandMLP, theRFmodel has

the advantage of determining each variable’s contribution, an

important factor for decision-makers. Furthermore, using the

proposed uncertainty analysis approach, the PDF and CDF of

wastewater inflow at each time step were generated. This can

provide decision-makers withmore information about the risks

of extreme inflows. Performance of the RF regression model

could be enhanced by increasing the quality and quantity of

input data. For future studies, the RF model’s capability for

predictions with a higher temporal resolution (e.g., hourly

prediction) should be further investigated.
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