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Abstract
Given the limitations of current approaches for disease relative risk mapping, it is necessary to develop a comprehensive

mapping method not only to simultaneously downscale various epidemiologic indicators, but also to be suitable for

different disease outcomes. We proposed a three-step progressive statistical method, named disease relative risk down-

scaling (DRRD) model, to localize different spatial epidemiologic relative risk indicators for disease mapping, and applied

it to the real world hand, foot, and mouth disease (HFMD) occurrence data over Mainland China. First, to generate a

spatially complete crude risk map for disease binary variable, we employed ordinary and spatial logistic regression models

under Bayesian hierarchical modeling framework to estimate county-level HFMD occurrence probabilities. Cross-vali-

dation showed that spatial logistic regression (average prediction accuracy: 80.68%) outperformed ordinary logistic

regression (69.75%), indicating the effectiveness of incorporating spatial autocorrelation effect in modeling. Second, for

the sake of designing a suitable spatial case–control study, we took spatial stratified heterogeneity impact expressed as

Chinese seven geographical divisions into consideration. Third, for generating different types of disease relative risk maps,

we proposed local-scale formulas for calculating three spatial epidemiologic indicators, i.e., spatial odds ratio, spatial risk

ratio, and spatial attributable risk. The immediate achievement of this study is constructing a series of national disease

relative risk maps for China’s county-level HFMD interventions. The new DRRD model provides a more convenient and

easily extended way for assessing local-scale relative risks in spatial and environmental epidemiology, as well as broader

risk assessment sciences.

Keywords Disease mapping modeling � Local relative risk assessment � Spatial odds ratio � Spatial risk ratio �
Spatial attributable risk � Hand, foot, and mouth disease
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DRRD Disease relative risk downscaling

EM Expectation maximum

GDP Gross domestic product

GIS Geographic information science

HFMD Hand, foot, and mouth disease

INLA Integrated nested Laplace approximation

kNN k-nearest neighbors

LS Logarithmic score

OR Odds ratio

PA Prediction accuracy

PST Progressive spatiotemporal

RF Random forest

RR Risk ratio or relative risk

SAR Spatial attributable risk

SD Standard deviation

SMR Standardized mortality ratio

SOR Spatial odds ratio

SRR Spatial risk ratio

SSH Spatial stratified heterogeneity

STVC Spatiotemporally varying coefficients

SVD Singular value decomposition

WAIC Watanabe Akaike information criterion

1 Background

Disease mapping is widely used by spatial epidemiologists,

medical geographers, and biostatisticians to highlight areas

with elevated or lowered risk, understand geographical

patterns and variations of disease, and further obtain dis-

ease etiological clues (Waller and Carlin 2010). In tradi-

tional epidemiology, ratio and difference are common ways

for comparing the relative magnitude of disease risk

between two groups in case–control or cohort studies and

address the additive and multiplicative impact of exposures

(Cummings 2009). The crude risk indicators like incidence

rate or mortality, are maybe important in themselves, but

the utility of these indices increases multiple-fold when

their ratio is obtained relative to a comparison group.

Therefore, the crude risk indicators are always converted to

relative risk indicators to give more accurate results in

epidemiological assessment (Indrayan and Malhotra 2017).

The most widely applied relative risk indicators include

odds ratio (OR), risk ratio (RR), and attributable risk (AR)

(Schechtman 2002), among which OR and RR quantify the

strength of the association between exposures and disease

outcomes, which is more significant for etiology (Li et al.

2005; Schmidt and Kohlmann 2008), and AR reflects

information about reducing the risk of exposures, playing a

more critical role in disease prevention (Whittemore 1983).

In work presented here, we focus on disease mapping

methods especially employing those geospatial-based

epidemiologic relative risk indicators to generate the so-

called disease relative risk maps.

There have been several statistical ways on mapping

disease relative risks (Berke 2005; Bithell 2000; Richard-

son et al. 2004; Ugarte et al. 2006), although they all

adopted the same word ‘‘relative risk’’ to name the pro-

duced disease maps, the actual connotation of ‘‘relative

risk’’ estimated by these methods were not exactly the

same. Herein, we introduce three common ways for disease

relative risk mapping for now.

A classical approach in mapping disease mortality or

incidence rate data assumes that the number of disease

outcomes follows a Poisson distribution, and estimates the

relative risk in each spatial unit, which is known as the

standardized mortality ratio (SMR) (Goicoa et al. 2018;

Ugarte et al. 2006) or standardized incidence ratio (SIR)

(Martı́nez-Bello et al. 2018). Unlike classical epidemiol-

ogy, spatial SMR is obtained over the entire study area by

grouping various geographical regions, instead of different

age or gender (Adin et al. 2018; Roquette et al. 2018).

Furthermore, as for rare diseases and small areas, a direct

SMR map could be very unstable (Mollié 1996). A variety

of statistical methods have been developed for producing

smoothed estimates of the SMR map (Meza 2003; Ugarte

et al. 2006). The smoothed SMR map may be a reliable

measure of relative risk, nevertheless, it still has limita-

tions. On the one hand, the spatial SMR estimator is only

suitable for specific types, i.e., spatially disease rate or

cases variables. However, it could do nothing for spatially

disease binary data such as presence/absence or death/

alive. On the other hand, SMR is a ratio indicator of which

the epidemiological meaning is similar to effect indicator

RR (Cummings 2009; Schechtman 2002), but the control

group for calculating spatial SMR is the entire study area,

which may hide sub-level regional heterogeneity, espe-

cially for a large scale geospatial study.

At present, the advances in spatial statistics and geo-

graphic information science (GIS) have provided more

ways to produce different types of disease maps to offer

rich local-scale information for policy-making (Lai et al.

2008; Lawson 2013). The spatial regression model is

another category of disease relative risk mapping method,

which was widely applied for areal data using Bayesian

ideas, especially under the Bayesian hierarchical modeling

(BHM) framework (Blangiardo et al. 2013; Rue et al.

2017). BHM is a powerful analytical technique to naturally

represent the spatial information provided by neighboring

regions as prior knowledge and to give robust posterior

estimates of the local parameter in each spatial unit (Ugarte

et al. 2014). The exponential form of the estimated local

parameter is the so-called relative risk indicator, named as

RR or OR according to different disease data distribution.

For instance, as for hand, foot, and mouth disease (HFMD)
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concerned in this study, Zhang et al. (2018) fitted a spatial

relative risk (RR) map for HFMD incidence in Henan,

China using a Bayesian spatiotemporal hierarchical model.

Song et al. (2018a) further concerned the mapping issue of

excessive zero to produce the spatial RR map of HFMD

incidence in Mainland China with spatiotemporal zero-in-

flated Bayesian hierarchical models. Moreover, Song et al.

firstly generated a series of spatial odds ratio (OR) maps for

HFMD occurrence and HFMD-climate associations in

Sichuan, China by proposing a new Bayesian local

regression method named Spatiotemporally Varying

Coefficients (STVC) model (Song et al. 2019). Unfortu-

nately, there are still several defects of implementing

BHM-based spatial regression models for disease relative

risk mapping. On the one hand, the estimated spatial local

parameters are belonging to only one part of the regression

process, which are not enough to represent the total disease

risk effects that also include fixed effects such as covariates

and spatial intercepts, thus the spatial-model-based

smoothed RR/OR maps are not real maps representing

disease total relative risks. On the other hand, the expo-

nential calculation form is not based on the original epi-

demiologic theory, thus Bayesian spatial regression disease

mapping method could only obtain two types of spatial

indicators, i.e., RR and OR, not for the others, such as AR.

Considering the above issues, it is more reasonable to

calculate local-scale spatial relative risks by directly

drawing lessons from the original epidemiologic theories

and formulas. The difficulty arising from this idea is how to

define a suitable spatial case–control study framework. In

particular, case–control studies start by identifying cases

from those who have had the disease of interest as the case

or exposed group, and identifying controls from those who

have not as the control or unexposed group. Today, scan

statistics and density estimation methods are applied to

calculate the local-scale relative risk indicator (herein is

risk ratio, RR), under the case–control studies. For

instance, Bithell defined a relative risk function for point

data (Bithell 2000), giving the risk of being affected by the

disease incurred at a location (case group), which is typi-

cally estimated by kernel method (Bowman and Azzalini

1997), relative to the average risk in the region as a whole

(control group) (Bithell 1990). Berke separated the popu-

lation at risk into exposed and unexposed (or lesser

exposed) groups by using spatial scan statistic to estimate

RR for disease mapping for both spatial point and regional

count data (Berke 2005). However, no matter for scan

statistics or density estimation, there is no standard way to

select the scan radius or search radius, which profoundly

affects the case and control groups, as well as significantly

leads to mapping uncertainties (Li et al. 2019b). Thus, to

decrease uncertainties, a better way to select cases as the

spatial control group is according to the real original

observed data, not by estimation approaches. Furthermore,

these estimation methods lack considering the spatial

stratified heterogeneity (SSH) impact (Wang et al. 2016) to

define various spatial control groups. Generally, at small

extents and fine-scale spatial resolutions, as well as at large

extents and coarse resolutions, spatial patterns may appear

to be homogeneous, whereas, at intermediate spatial

extents and resolutions (e.g., administrative division,

landscape, land use types, and climate zones), spatial

heterogeneity emerges (Fortin et al. 2012). This interme-

diate difference is defined as the SSH impact (Wang et al.

2016). Ignoring SSH impact within spatial control groups

may hide the true disease risk distribution, and overlook

outliers for disease control and prevention at the local

scale, especially for large geospatial studies (Huang et al.

2014; Xu et al. 2019).

Under these circumstances, it is crucial to develop a

general disease mapping approach not only for obtaining

various epidemiologic relative risk indicators at the

geospatial scale, e.g., spatial OR, spatial RR, and spatial

AR, but also for different spatial disease outcomes, e.g.,

rate, binary, or cases variables.

To fill this gap in current disease mapping studies, we

proposed a three-step statistical method in this work,

named disease relative risk downscaling (DRRD) model,

aiming to localize various spatial epidemiologic relative

risk indicators simultaneously, as well as for different kinds

of disease outcome data, such as binary, rate, or cases

variables, jointly with the consideration of the SSH impact

and covariate factors. In this study, we illustrated our

newly proposed disease mapping method by using a real-

world example, i.e., China’s hand, foot, and mouth disease

(HFMD) occurrence data to demonstrate its effectiveness.

For one reason is that so far, there are no real relative risk

maps of HFMD that have ever been published over entire

Mainland China at the county level (Bo et al. 2014; Song

et al. 2018a). The other reason is that disease occurrence

data, which is a two-value binary variable, is a more dif-

ficult case for downscaling relative risks compared with

rate or cases data, which is also unsolved well by the three

disease mapping methods aforementioned.

Pediatric hand, foot, and mouth disease is an emerging

worldwide infectious disease occurring mainly in children

under 5 years old and can lead to death (Koh et al. 2016).

In China, the leading infectious HFMD has posed a severe

threat to public health security since 2008 (Wang et al.

2011; Xing et al. 2014). We collected the county-level

HFMD occurrence data, in conjunction with various cli-

mate and socioeconomic factors for our experiments,

aiming at generating a series of China’s national HFMD

risk maps by using three DRRD-based spatial epidemio-

logic relative risk indicators, i.e., spatial OR (SOR), spatial

RR (SRR), and spatial AR (SAR).
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2 Methods

2.1 Data and preprocessing

For the study area of whole Mainland China, we acquired

geospatial county-level HFMD occurrence data (1 and 0),

and its related climate and socioeconomic variables in

April 2009. April was the most serious month with the

maximum number of disease cases in the year of 2009. The

HFMD occurrence data in children aged between 0 and

9 years were provided by the China Information System for

Disease Control and Prevention (CISDCP) (Huang et al.

2014). The monthly climate data was based on the raw data

collected from 727 climate stations throughout Mainland

China from the China Meteorological Data Service Center

(CMDC) (http://data.cma.cn/en) (Bo et al. 2014). Data of

yearly socioeconomic variables was integrated from the

China County Statistical Yearbook, China Statistical

Yearbook for Regional Economy, and China City Statis-

tical Yearbook (Song et al. 2018b). We collected six cli-

mate and fourteen socioeconomic variables as candidate

environmental-related covariates for China’s HFMD

occurrence (Song et al. 2018a). We performed z-score

standardization for the twenty variables to make them

dimensionless. Then we screened the most influencing

covariates into modeling from the twenty environmental-

related variables through multicollinearity assessment

(Vatcheva et al. 2016) and forward stepwise regression

(Wilkinson 1979). Expressly, we first calculated the vari-

ance inflation factor to exclude those variables with higher

multicollinearity by setting 10 as the threshold value, and

then we employed the forward stepwise regression to

exclude those variables that were not statistically signifi-

cant, in which we set 0.05 and 0.1 as the alpha cut (Bo et al.

2014; Song et al. 2018a). Hence, a total of six factors were

selected as our final covariates for modeling in this study,

as shown in Fig. 1.

Figure 1 illustrates the original spatial maps of HFMD

occurrence condition and six environmental covariates,

including ambient temperature, air pressure, population

density, per capita household savings, per capita social

consumption, and per capita industrial output values,

across Mainland China at the county level in April 2009. In

addition, according to the published national standards of

Chinese geographical division, Mainland China is gener-

ally divided into seven geographical divisions, as shown in

Fig. 1a, which includes North, East, South, Central,

Northeast, Southwest, and Northwest China. The Chinese

seven geographical divisions were applied as a second

spatial level to represent the spatial stratified heterogeneity

impact in this work.

2.2 Disease relative risk downscaling (DRRD)
model

First of all, we introduce basic applicable conditions of the

DRRD model, involving unit for basic data collection,

geographical study area, and disease outcome variables, as

discussed below.

Spatial data collection unit: In DRRD modeling frame-

work, as well as in spatial epidemiology, the basic disease

data unit is usually collected within a geospatial areal unit

representing the overall population risk in a space area,

such as a county, city, or regular grid. This is unlike in

traditional epidemiology, in which a basic collection unit is

an individual person within a specific population group

(Lawson et al. 2016).

SSH-based geographical study area: Besides the basic

spatial unit as the minimum spatial scale, the geographical

study area should be able to be divided into several regions

at an upper coarse level, such as provinces, ecological

zones, or climate divisions, in order to consider the spatial

stratified heterogeneity (SSH) impact to design more rea-

sonable various spatial control groups under a spatial case–

control study (Wang et al. 2016).

Disease outcome variable types: Generally, DRRD

model is capable of taking three types of disease outcomes

into consideration, i.e., rate variable (e.g., incidence rate,

mortality, or morbidity), binary variable (e.g., yes/no,

presence/absence, or death/alive), and cases variable. If it

exists missing values in the original disease data, estima-

tion methods (Song et al. 2018b) are requested to generate

a complete disease crude risk map. We fully discuss how

missing data issue is related to our DRRD model, and the

choices of methods on estimating missing data in Sect. 4.

Furthermore, among three types of disease outcome

variables, the disease binary variable is the most difficult

case for downscaling spatial relative risk indicators, due to

the fact that no local variations exist in the original two-

value data. Using binary data from a real-world example,

i.e., China’s HFMD occurrence case, our method suc-

cessfully address this issue. Figure 2 illustrates the overall

three-step framework of the DRRD model, and how it

worked for China’s HFMD occurrence case. In general, the

DRRD model contains three consecutive core steps, and

within each step, clear tasks are required: (1) In the first

step, estimating a complete disease crude risk map without

missing data areas is a must. In this case, since the original

HFMD occurrence data was a two-value binary variable,

we employed the logistic regression method combined with

various climate and socioeconomic covariates, to fit the

local disease occurrence probability as a crude risk in each

geographic unit, also to fill areas with missing values. (2)

In the second step, as discussed above, defining spatial
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123

http://data.cma.cn/en


Fig. 1 a County-level hand,

foot, and mouth disease

(HFMD) occurrence data over

Mainland China in April 2009,

and its related climate and

socioeconomic covariates:

b ambient temperature, c air

pressure, d population density,

e per capita household savings,

f per capita social consumption,

and g per capita industrial

output values
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Fig. 2 Three steps of disease relative risk downscaling (DRRD)

modeling flow-chart for disease binary outcome variable using

China’s county-level hand, foot, and mouth disease (HFMD)

occurrence data as a case study. SOR spatial odds ratio, SRR spatial

risk ratio, SAR spatial attributable risk, and SSH spatial stratified

heterogeneity
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control groups accounting for the SSH impact is recom-

mended. For the study area of China, we chose Chinese

seven geographical divisions as the second upper spatial

level to represent the SSH impact and to further obtain their

baseline risk values based on the first-step outputs. (3) In

the third step, based on the former two steps’ outputs,

calculating local values of various spatial relative risk

indicators in each geographic unit according to the newly

developed local-scale calculation formulas. In this work,

we were successful in downscaling three spatial epidemi-

ologic relative risk indicators, i.e., spatial OR (SOR),

spatial RR (SRR), and spatial AR (SAR), for China’s

national HFMD county-level risk mapping. The statistical

modeling, formulas derivation, and other detailed settings

of the three-step DRRD model for China’s HFMD case are

introduced one by one in the next three subsections.

2.2.1 Estimating complete disease crude risk map

The main task with the first step modeling is twofold.

Firstly, to obtain/estimate area-specific disease crude risks

at the local scale in order to collect different risk levels in

both geographical case and control groups, so as to further

retrieve spatial relative risks. Secondly, the disease crude

risk map should be complete without any missing area,

which is essential to make sure that the final outputs, i.e.,

disease relative risk maps, are also complete. Under these

conditions, the ecological regression modeling method

accounting for various covariate variables could be a pri-

ority approach to deal with both of the two essential

requirements aforementioned.

For HFMD occurrence data of this case, it is a more

difficult situation compared with other types of disease

data, due to the fact that the original disease data is a two-

value binary variable without local spatial variations. It is

reasonable to assume that the risks in different spatial

counties are in different-level occurrence risk, even they

have the same value (1 or 0). The logistic regression model

is the primary method to estimate such local-scale risk

variations, i.e., occurrence probabilities, beyond two-value

binary variables (Peng et al. 2002). Herein, disease

occurrence probability is considered as a surrogate indi-

cator of crude disease rate. We employed two alternative

logistic regression models using both climate and socioe-

conomic covariates as influencing variables to fit the local-

scale disease probability risk in each spatial unit as follows.

Firstly, the form of an ordinary logistic regression model

(herein referred to as model 1) is given as follows (Harrell

2015):

In
Pi

1 � Pi

� �
¼ b0 þ

XK
k

bkXk; Piðyi ¼ 1jb0; bkÞ ð1Þ

where the basic spatial area is expressed as i, the estimated

probability of HFMD occurrence is expressed as Pi, the

potential explanatory variables are expressed as Xk, and the

fitting regression coefficients are expressed as b0 and bk.
The epidemiologic OR indicator is able to be directly

calculated in logistic regression by OR = eb. Specifically,

OR[ 1 indicates increased risk between the exposure

variable and disease, OR\ 1 indicates decreased risk

between the exposure variable and disease, and OR = 1

indicates unrelated risk between the exposure variable and

disease (Bland and Altman 2000; Szumilas 2010).

Secondly, a spatial logistic regression model is

employed as an alternative approach (herein referred to as

model 2) to estimate complete disease crude risk map with

the consideration of spatial autocorrelation, which is fre-

quently encountered in spatial disease data, and the neglect

of such spatial property could result in a biased and under-

performing model in health risk assessment. In this study,

the predictor in a spatial logistic regression model is

decomposed additively into components regarding both

covariates fixed effects and spatial random effects (Yang

et al. 2019a), as follows:

In
Pi

1 � P

� �
¼ b0 þ li þ mi þ

XK
k

bkXk;

Piðyi ¼ 1jb0; bk; li; miÞ
ð2Þ

where the estimated probability of HFMD occurrence in

the spatial area i is expressed as Pi, the fixed effects’

coefficients are expressed as b0 and bk, and the spatial

random effects’ coefficients are expressed as li and mi.
Regarding spatial terms, li is the unstructured spatial

component with a Gaussian prior assumption mi �Nð0; d2
mÞ,

and mi is the structured spatial component with the condi-

tional autoregressive (CAR) prior assumption, formulated

as (Lee 2011):

li lj6¼i

�� �N
1

mi

X
i� j

li;
r2

mi

 !
ð3Þ

where two spatial units with adjacency relations are

expressed as i * j, the count of spatial units j adjoining the

spatial unit i is expressed as mi and r2 is the variance term.

This structured prior assumption is widely achieved by

using the Besag model (Besag 1974).

Taking advantage of spatial regression modeling, the

smoothed relative risk indicator could be obtained by using

the exponential form of spatially structured coefficients li,
i.e., ORi ¼ expðliÞ. As in logistic regression, the relative

risk is called as odds ratio (OR), which is especially for

disease binary response variable. Many researchers have

utilized such model-smoothed epidemiologic indicator for

HFMD risk mapping (Song et al. 2018a, 2019; Zhang et al.
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2018), whereas its main limitation is that the spatially

structured coefficients li are only in one part of the

regression process, which is not enough to represent the

total disease risk impacts that also include other compo-

nents such as fixed effects of covariates or random effects

of spatial heterogeneous intercepts.

2.2.2 Designing spatially case–control experiments

For the second step, the primary goal here is to define a

spatially epidemiologic case–control experiment, of which

the core task is how to specify a suitable spatial control

group. In each geographical unit, we usually treat the first-

step local-scale disease crude risk as the area-specific

spatial case group (Richardson et al. 2004; Ugarte et al.

2006). With regards to design a more reasonable spatial

control group, herein, we suggest accounting for the vital

SSH impact by introducing an additional coarse-scale

geographical level to obtain various spatial control groups

(Wang et al. 2016), which is often ignored by previous

disease mapping studies (Adin et al. 2018; Roquette et al.

2018), so as to replace the classical one and overall control

group of the entire study area.

The original HFMD occurrence data were collected

from the historical disease reported system (CISDCP), thus

this work was under a spatially case–control experiment

design. Follow the above guidelines, for HFMD spatial

case groups, we specified the first-step fitted disease

occurrence probability risk Pi as spatial case groups.

Herein, disease occurrence probability Pi is considered as a

surrogate indicator of crude rate for disease binary variable.

Then, we specified Chinese geographical division as the

SSH-based spatial control groups for the study area of

Mainland China. For each regional division k as a spatial

control group, we selected n samples satisfying a double-

screening requirement, i.e., for each spatial sample q, there

should be no disease occurrence in the originally historic

reported data, and it should also be predicted correctly as a

non-occurrence area with the first-step logistic regression

model. At last, the reference risk Pk in each spatial control

group is formulated as below:

Pk ¼
1

n

Xn
q¼1

PqðkÞ ð4Þ

Various spatial control groups within different districts,

rather than a single spatial control group of the entire study

area in traditional disease mapping studies, is more rea-

sonable and suitable, especially for large scale geospatial

data.

2.2.3 Localizing relative risk indicators

For the last step, the main task herein is to calculate local-

scale spatial epidemiologic relative risk indicators in each

geographical unit for advanced disease mapping, under a

spatially case–control study. The difficulty lies in how to

define the new downscaling local-scale formulas that must

base on the classical epidemiological theories and

formulas.

In this case, we choose three indicators as references for

HFMD mapping, i.e., risk ratio (RR), attributable risk (AR),

and odds ratio (OR) that are widely used to measure the

risk of a disease exposed to exposures in traditional epi-

demiology. Traditional global scale relative risk indices

RR, AR, and OR are calculated based on research data in

Table 1 (Schechtman 2002).

In a classical epidemiologic cohort study, we could

calculate RR and AR directly using Eqs. (5) and (6) (Li

et al. 2005; Whittemore 1983). While, in a classical epi-

demiologic case–control study, the real occurring rate is

unavailable as there are no observed numbers in both

exposure and control groups, thus, we calculate OR instead

of RR to quantitatively characterize relative risk levels, by

using Eq. (7) (Bland and Altman 2000; Cummings 2009).

Epidemiologic RR (known as risk ratio, relative risk):

RR ¼ P1

P0

¼ aðcþ dÞ
cðaþ bÞ ð5Þ

Epidemiologic AR (known as attributable risk, rate

difference):

AR ¼ P1 � P0 ¼ a

ðaþ bÞ �
c

ðcþ dÞ ð6Þ

Epidemiologic OR (known as odds ratio, occurring

ratio):

OR ¼ a

aþ c

�
c

aþ c

� ��
b

bþ d

�
d

bþ d

� �
¼ ad

bc
ð7Þ

In traditional epidemiology, the basic study unit is an

individual within a population group, thus, these classical

population-based relative risk indicators are calculated as a

single value for a population group, which are the so-called

Table 1 Summary table of

research data in a traditional

epidemiologic cohort or case–

control study

Yes (1) No (0) Total Rate

Exposed group a b a ? b P1 = a/(a ? b)

Unexposed group c d c ? d P0 = c/(c ? d)

Total a ? c b ? d a ? b ? c ? d Ratio: RR, AR, OR
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global scale indicator that cannot be downscaled for map-

ping directly.

However, in spatial epidemiology, as well as in our

DRRD modeling framework, the basic study unit is a

geospatial unit representing the overall population risk in a

specific spatial area, and more importantly, for a same

geographical study region, the spatial samples within a

region are constant and stationary. For instance, in our case

of China as the study area, 2310 spatial counties at most

were collected for designing a spatial case–control study in

the year 2009 (Song et al. 2018a). Thus, with this under-

lying difference from a traditional population-based case–

control study, we are able to collect disease occurring rate

P in each geospatial unit. Especially for OR, from the

perspective of spatial epidemiology, we can build its con-

nection with disease occurring rate P, as shown in Eq. (8).

OR ¼ ad

bc
¼ a

b

.c

d
¼ P1= 1 � P1ð Þ

P0= 1 � P0ð Þ ð8Þ

where P1 is the disease crude risk in the spatial case group,

i.e., disease occurrence probability, and P0 is the disease

crude risk in the corresponding spatial control group. The

calculation of spatial RR and spatial AR is the same as

traditional ones.

Based on formulas (4), (5), (6), and (8), and further by

taking advantage of the SSH-based spatially case–control

experimental design, we infer three new kinds of local-

scale formulas for each given geographical unit i, to cal-

culate spatially epidemiologic relative risk indicators,

namely, spatial OR, spatial RR, and spatial AR, as shown in

Eqs. (9), (10), and (11), respectively.

Spatial odds ratio (SOR):

SORi ¼
Pi=ð1 � PiÞ
Pkð1 � PkÞ

¼ Pi=ð1 � PiÞ
1
n

Pn
q¼1 PqðkÞ 1 � 1

n

Pn
q¼1 PqðkÞ

� �

ð9Þ

Spatial risk ratio (SRR):

SRRi ¼
Pi

Pk
¼ Pi

1
n

Pn
q¼1 PqðkÞ

ð10Þ

Spatial attributable risk (SAR):

SARi ¼ Pi � Pk ¼ Pi �
1

n

Xn
q¼1

PqðkÞ ð11Þ

where local SORi, SRRi, and SARi are the downscaled

spatial relative risk indicators, unit i is the target geo-

graphic unit, unit q is the sample in the spatial control

group k, term Pi is the disease occurrence probability in

geographical unit i, and term Pk is the average probability

of geographical units in the spatial control group of the

corresponding geographical division.

For local SOR indicator, a SORi value greater than 1

indicates that the geographical unit i is a risky area, and a

SORi value less than 1 indicates that geographic unit i is a

relatively safe area. The larger the value of SORi, the

riskier of the area. For instance, it is common to describe a

spatial area with a SOR value of 2 in terms of a twice risk

of disease occurrence compared with that with a SOR value

of 1. The local SRR has the same explanation of local SOR

map, but with different overall range and geographically

local variations. Local SOR and SRR maps may detect

different additional risk distribution for the same disease

crude risk map.

For local SAR indicator, SARi represents the sensitivity

of the selected covariates in each geographic unit i. The

higher the SARi value, the more contribution that those

selected covariates have made in this area, which indicates

that those selected covariates are useful to fit the additional

disease risk in this area. A SARi value of zero indicates that

those selected covariates are not reprehensive enough to fit

the local disease risk in unit i.

2.3 Model inference and evaluation

The logistic regression model 1 and model 2 were built

under the Bayesian hierarchical modeling (BHM) frame-

work in R software (Bakka et al. 2018). The integrated

nested Laplace approximation (INLA) (Rue et al. 2009)

was adopted as the Bayesian inference method to estimate

the posterior disease occurrence probabilities in this study

(Schrödle and Held 2011), due to its advantage of rela-

tively short computation time (Rue et al. 2017). We

assessed model 1 and model 2 under a cross-validation

design by randomly removing 10%, 20%, and 30% sam-

ples. For each model, we calculated various indices to

qualify model performance, which is summarized as fol-

lows (Song et al. 2019). First, the deviance information

criterion (DIC) (Spiegelhalter et al. 2002) and Watanabe

Akaike information criterion (WAIC) (Watanabe 2010) are

two widely utilized indices to describe Bayesian model

fitness, which both are the smaller, the better. Second, a

logarithmic score (LS) extracted from leave-one-out cross-

validation is employed to depict Bayesian model predictive

ability (Held et al. 2010), which is also the smaller, the

better. Last, for the logistic regression, the confusion

matrix is earned to measure the actual prediction accuracy

(PA), including PA(1) for disease-presence counties, PA(0)

for disease-absence counties, and PA(1,0) for all counties

within the study area (Yang et al. 2019b).
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3 Results

3.1 Model evaluation and disease crude risk map

Table 2 summaries the model performance of both ordi-

nary (model 1) and spatial (model 2) logistic regression for

mapping HFMD occurrence probabilities over China.

Through six selection criteria statistics listed in Table 2,

model 2 surpassed model 1 in all three cross-validation

experiments, indicating the effectiveness of concerning

spatial autocorrelation impact in estimating disease

occurrence probabilities. Notably, regarding actual pre-

diction accuracy for all counties in China, model 2

(80.68%) was able to improve 10.93% on average com-

pared with model 1 (69.75%). Therefore, we chose the

optimal spatial logistic regression model for the first-step

modeling in DRRD to generate the complete HFMD

occurrence probability risk map in China.

An immediate outcome of spatial logistic regression

(model 2) is a summary of posterior estimated regression

parameters for those selected environmental covariates,

including mean, standard deviation (SD), 2.5% and 97.5%

confidence intervals (CI), and their overall OR values, as

shown in Table 3. We found that both climate and

socioeconomic variables had positive influences on

increasing HFMD occurrence risk over China in April

2009. HFMD occurrence risk increased with increasing

ambient temperature (OR = 4.95), air pressure (OR =

1.29), population density (OR = 2.23), per capita house-

hold savings (OR = 1.21), per capita social consumption

(OR = 1.47), and per capita industrial output values

(OR = 1.15). Among the six environmental covariates,

ambient temperature is the most important explanatory

variable with OR value close to five, followed by popula-

tion density with OR value greater than two, while OR

values of all the other four variables are less than two.

The final output of model 2 is a new estimated crude risk

map of HFMD revealing the local variations of disease

occurrence probabilities across Mainland China, as shown

in Fig. 3a. More importantly, model 2 also estimated local

disease occurrence risk for those missing data areas that

were presented in Fig. 1, which was quite essential to

generate complete disease risk maps. We further obtained

the clustered hot spot map based on Fig. 3a to detect which

regions were with significant clusters of the high-risk hot

spot and low-risk cold spot, as further shown in Fig. 3b.

Note that ‘‘not significant’’ regions do not necessarily

indicate absence or presence of risk, just that the risks in

these regions were not significant enough to form a cluster.

The probability risk map of Fig. 3a shows prominent

spatially clustered characteristics, which suggested that the

spatial autocorrelation component was reasonable and

necessary to be accounted for disease mapping modeling.

The estimated probability of HFMD occurrence at the

county level reveals not only the overall spatial trends but

also the local details of epidemic risk, even in those regions

where there were no HFMD case records. For instance,

from Fig. 1, we found that East China was hit hardest by

HFMD generally, but we further found that there are more

local variations of the HFMD occurrence risk in East China

in Fig. 3a. Such local HFMD risk variations can also be

found in the other six divisions. Further in Fig. 3b, we

detected that high-risk hot spots were mostly concentrated

in three divisions, which are Central, East, and South

China, and primarily distributed in provinces including

Beijing, Tianjin, Shandong, Henan, Guangdong, and

Sichuan, among which officials need to pay more attention

in practice. Correspondingly, low-risk cold spots were all

distributed in the other four divisions, i.e., North, North-

east, Norwest, and Southwest China.

As a complete comparison, in Fig. 3c, d, we further

generate the model-smoothed relative risk (OR) map,

which represents the spatial structured autocorrelation

random effects estimated by the selected spatial logistic

regression (model 2), and its hot spot map, respectively.

Overall, the model-smoothed OR map of Fig. 3c had a

similar but much more smoothed geographical pattern

compared with the final estimated disease occurrence

Table 2 Summary of model performance for estimating China’s

HFMD occurrence probabilities (model 1: ordinary logistic regres-

sion; model 2: spatial logistic regression; DIC deviance information

criterion, LS logarithmic score, WAIC Watanabe Akaike information

criterion, PA prediction accuracy)

Cross-validation Model DIC LS WAIC PA(1) PA(0) PA (1, 0)

10% test dataset Model 1 2743.51 0.6928 2743.51 0.6519 0.8065 0.6955

Model 2 1623.43 0.4100 1623.79 0.8354 0.7903 0.8227

20% test dataset Model 1 2438.64 0.6928 2438.63 0.6512 0.7292 0.6682

Model 2 1420.58 0.4037 1420.99 0.8285 0.6458 0.7886

30% test dataset Model 1 2134.18 0.6929 2134.18 0.7173 0.7687 0.7288

Model 2 1298.96 0.4219 1299.30 0.8187 0.7755 0.8091
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probability map in Fig. 3a. Besides the over-smoothing

phenomenon, the regional risk levels were different in

some divisions, e.g., North, Northwest, and Northeast dis-

tricts were detected with a higher risk in Fig. 3c. This is

due to the fact that the model-smoothed OR map is pro-

duced using only one part of a conventional spatial

regression process, i.e., the spatially structured CAR

component. Even though such spatial-model-based

smoothed relative risk map has been widely applied,

without considering some other important components,

e.g., fixed effects of observed covariates, this type of

relative risk map cannot be used to represent the real and

total risk of disease outcome.

3.2 Spatial control groups mapping

With the first-step disease probability risk map and the

new-designed spatially case–control experiment, we fur-

ther obtained the SSH-based spatial control group map of

HFMD in China, as shown in Fig. 4. We found that East

and South China were with higher average disease occur-

rence risk, followed by Central China and Southwest

Table 3 Odds ratio (OR) values

and estimated posterior

regression parameters of the

climate and socioeconomic

factors on HFMD occurrence

Covariates OR Mean SD 0.025 CI 0.975 CI

Ambient temperature 4.95 1.5988 0.1678 1.2728 1.9311

Air pressure 1.29 0.2564 0.0868 0.0861 0.4267

Population density 2.33 0.8446 0.0940 0.6620 1.0309

Per capita household savings 1.21 0.1872 0.1061 - 0.0213 0.3952

Per capita social consumption 1.47 0.3829 0.1114 0.1645 0.6016

Per capita industrial output values 1.15 0.1386 0.1006 - 0.0585 0.3362

Fig. 3 a Disease occurrence probability (P) map and b its clustered hotspot map, c model- smoothed relative risk (OR) map and d its clustered

hotspot map, for county-level hand, foot, and mouth disease (HFMD) occurrence across Mainland China in April, 2009
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China, while North, Northeast, and Northwest China were

at relatively lower risk levels. Utilizing the entire study

area as the control group with a single value may under-

estimate high-risk areas in the lower-risk zone, e.g.,

Northwest China division, and hide super-high-risk areas in

the higher risk zone, e.g., East China division. For instance,

when in comparison with nearby counties within the same

division, some counties might not be indeed at a low-risk

level in Fig. 3a, especially in those relatively lower risk

divisions in Fig. 4, so were in those higher risk divisions in

Fig. 4, counties with super higher risk need to be further

detected in Fig. 3a. Thus, it is considerable to utilize var-

ious divisions by taking consideration of the SSH impact,

other than a single group of the whole study area as the

spatial control group, to further improve mapping accuracy

and detect hidden risk areas, especially for a sizeable

geospatial study area such as China.

3.3 Disease relative risk maps

At the last step of the DRRD modeling framework, we

obtained the three types of relative risk maps for HFMD

across Mainland China with new downscaled indicators

SOR, SRR, and SAR, as shown in Figs. 5a, c and 6,

respectively. We also obtained corresponding hot spot

maps of local SOR and local SRR maps to show significant

spatial clusters, which were illustrated in Fig. 5b, d,

respectively. The local SOR, SRR, and SAR relative risk

maps revealed not only spatially local risks but also strong

spatially clusters. More importantly, compared with the

crude probability risk map of Fig. 3, these new relative risk

maps were capable of detecting new risk clusters and

outliers, which may offer new insights to develop policies

for China’s HFMD control and prevention.

Regarding the SOR map and its hot pot map in Fig. 5a,

b, we further detected new high-risk clustering regions

compared with Fig. 3, mainly distributing around the so-

called Hu Line (Heihe-Tengchong Line). Hu Line is a

widely accepted geographic line to generally divide China

into two big zones with remarkable differences in popu-

lation density, natural environment, and socioeconomic

conditions. However, we were unable to precisely detect

these new HFMD high-risk regions around the Hu Line by

merely using the crude risk map of Fig. 3. Moreover, with

Fig. 5a, we can identify considerably super-high-risk

counties in those higher risk divisions including East,

Central, and South China, for instance, Shanghai, Hubei,

and Guangdong provinces. However, these super-high-risk

counties cannot be clearly identified in Fig. 3, due to the

probability map did not consider SSH impact, thus hiding

local variations in high-risk divisions.

Fig. 4 Spatial control group map of HFMD considering the spatial stratified heterogeneity (SSH) impact over Mainland China
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The SRR map and its hot pot map of Fig. 5c, d had a

similar spatial explanation of SOR-related maps. We also

detected new high-risk clusters concentrated around Hu

Line, but with a broader and more significant range in the

SRR map. More importantly, the core difference between

two relative risk maps was that the SOR map was useful to

detect super-high-risk areas especially in those divisions

with higher average risk. Whereas, unlike SOR map, SRR

map was useful to detect high-risk areas in those divisions

with lower average risk, such as Northwest and Northeast

China, which couldn’t be detected clearly by utilizing

either the probability risk map of Fig. 3 or the SOR map of

Fig. 5a. In other words, the SOR map reflects more details

of the local variation in high-risk regions, while the SRR

map reflects more details of the local variations in low-risk

regions. For practical disease control and prevention,

decision-makers may combine different kinds of disease

risk maps to highlight noteworthy areas with additional or

hidden risks.

At last, regarding the SAR map of Fig. 6, it represents

disease risk contribution attributable to the selected risk

factors (i.e., various climate and socioeconomic variables

for HFMD). The higher the local SAR value, the better,

indicating that the selected risk factors were appropriate

and effective with more explanatory ability in disease

mapping modeling. The SAR map is also a representation

of the uncertainty map to show the reliability of the model

prediction at the local scale. For instance, in those divisions

with higher local SAR values, including South, East, and

Central China, we confirmed that the selected risk variables

were useful and significantly affect the disease occurrence

risk (25–88.7% contribution) at the local scale. For parts

with blue-green color in North, Northeast, and Northeast

China where local SOR and SRR values were lower, local

SAR values were still high, which means the risks of

HFMD occurrence in these areas were lower compared

with the others, the explanatory ability of the risk variables

was well acceptable (10–25% contribution). However,

geographical divisions with lowest local SAR values

(\ 10%) were mainly distributed in Northwest China,

indicating that we may need to introduce more potential

Fig. 5 Spatial odds ratio (SOR) and spatial risk ratio (SRR) maps of county-level HFMD occurrence across Mainland China: a local SOR map,

b SOR hot spot map, c local SRR map, and d SRR hot spot map
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risk factors in modeling to fit the noticeable local differ-

ences in this division further individually.

4 Discussion

Above all, with regards to HFMD environmental patho-

genesis in China, both climate and socioeconomic variables

were found to be related to rising disease occurrence

probability. First, our study revealed that higher tempera-

ture could be an important influential factor for helping

spread the virus of HFMD (Guo et al. 2016; Song et al.

2018a; Xiao et al. 2017; Zhao et al. 2018), besides, higher

air pressure had an enhancing impact on disease occur-

rence. Second, we identified that three socioeconomic

variables (i.e., per capita household savings, per capita

social consumption, and per capita industrial output values)

had positive influences on disease occurrence probability,

indicating that the economic development was significantly

associated with HFMD occurrence over China. Former

literature also supported this finding by utilizing similar

factors, e.g., per capita GDP (Huang et al. 2014; Li et al.

2018; Song et al. 2018a), the income of citizens (Xu et al.

2019), or a ratio of urban to rural population (Zhang et al.

2018). In addition, for demographic aspect, we found that

the higher population density may lead to an ideal

environment for easy spreading of virus related to HFMD,

which is also consistent with former studies (Bo et al. 2014;

Hu et al. 2012; Li et al. 2018).

Regarding disease mapping and to our best knowledge,

this study is the first one to generate real and various kinds

of disease relative risk maps for HFMD occurrence, not to

mention within the whole study area of Mainland China, as

well as at the most fine-scale administrative county level

(Bo et al. 2014; Song et al. 2018a), which should be of

great significance for locally disease control and prevention

of HFMD in China. As for China’s HFMD case, three new

kinds of disease relative risk maps fitted by the DRRD

model were capable of offering new information from

different perspectives. First, local SOR and SRR maps

were similar in explanation, and with both two kinds of

maps, we detected new risk clusters around the Hu Line

with prominent variations in nature and socioeconomic

variations across Mainland China. More importantly, the

local SOR map of HFMD was effective to identify locally

super-high-risk areas in geographical divisions with higher

average risk, e.g., East, South and Central China. While,

unlike SOR mapping, the local SRR map of HFMD was

effective to highlight locally hidden-high-risk areas in

geographical divisions with lower average risk, e.g., North,

Northeast, and Northwest China. At last, the local SAR

map further showed that our selected climate and

Fig. 6 Spatial attributable risk (SAR) map of HFMD occurrence attributable to climate and socioeconomic factors across Mainland China
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socioeconomic factors were effective to explain locally

disease occurrence risk in all six geographical divisions,

except for Northwest China, in which more environmental

factors should be further introduced to extract local varia-

tions. Three kinds of national HFMD relative risk maps

could help decision-makers to develop specific county-

level strategies for control and surveillance, and to monitor

progress achieved by ongoing efforts aimed at the elimi-

nation of HFMD in China.

Going beyond the findings associated with HFMD

aforementioned, the most important contribution of this

study is that we proposed a sophisticated but generally

applied method, i.e., DRRD model, for advanced disease

relative risk mapping. This study is a pilot study on

applying this framework to a real-world and large-scale

disease mapping study. The DRRD model downscales

spatial epidemiology relative risk indicators at the local

scale using a three-step progressive statistical strategy,

which is fully discussed as follows.

In the first step of DRRD, obtaining a complete disease

crude risk map without any missing area is a priority in the

DRRD modeling framework. The challenges of the HFMD

occurrence data we applied, in this case, were twofold.

Firstly, disease binary data should be the most chal-

lenging example among different disease data distribution

due to that the original occurrence data is a two-value

variable without any local variations (Harrell 2015; Peng

et al. 2002). This first task was implemented by con-

structing logistic regression, in particular, a spatial logistic

regression model that incorporates items of both spatial

autocorrelation and various environmental covariates,

under a Bayesian hierarchical modeling (BHM) framework

(Yang et al. 2019b). The BHM method is effective in

taking into account locally spatial associations as prior

information and estimating posterior values to fill areas

with missing data (Rue et al. 2017; Ugarte et al. 2014). The

evidence on considering spatial autocorrelated random

effects in a regression for estimating spatial disease

occurrence probability is summarized as blow. First of all,

theoretically speaking, spatial agglomeration is a common

disease phenomenon, thus disease data usually have spatial

structures, particularly spatial autocorrelation, and the

neglect of such spatial autocorrelation could result in a

biased and under-performing model in epidemiological and

public health risk assessment (Miller 2004; Wu et al.

2004). Second, for HFMD case, the literature review shows

that strong spatial autocorrelation effects, e.g., disease

geographical clusters, existed across whole Mainland

China at the county level (Bo et al. 2014; Song et al.

2018a). Moreover, in this study, the cross-validation eval-

uation results in Table 2 suggest that the spatial logistic

regression surpassed the ordinary logistic regression by

improving 10.93% prediction accuracy, indicating it is

necessary and promising to account for spatial autocorre-

lation in regression modeling. Last but not least, the model-

based coefficients map of spatial autocorrelated compo-

nent, as shown in Fig. 3c, showed a similar geographical

pattern compared with the disease occurrence probability

map in Fig. 3a, further indicating the availability of taking

into account spatial autocorrelation in regression modeling.

Secondly, missing data is a common issue existing in

large scale geospatial medical research (Lawson et al.

2016). The DRRD modeling framework considers disease

missing data as an important issue, and the first-step

modeling of DRRD is specifically applied to fill missing

data to generate a complete crude risk map. Herein, we

summarized some advanced and useful missing data esti-

mation methods based on different situations. Generally,

with sufficient explanatory covariates information avail-

able, we could employ multiple ecological regression to

estimate disease missing data. For instance, we may utilize

logistic ecological regression for disease binary variable

(Bo et al. 2014; Song et al. 2019), or Poisson ecological

regression for disease cases and rate variables (Adin et al.

2018; Song et al. 2018a), among which, spatial types of

regression could help increasing model fitness and predict

ability by further incorporating spatial structured random

effects, e.g., spatial autocorrelation, as priors (Bakka et al.

2018).

Furthermore, when neither samples nor auxiliary data,

e.g., explanatory covariates information, are available for

missing data estimation, which is a more difficult but

common situation, model-based imputation methods could

be employed to estimate missing data, such as k-nearest

neighbors (kNN) (Troyanskaya et al. 2001), expectation

maximum (EM) (Xiong et al. 2015), singular value

decomposition (SVD) (Yuan et al. 2019), random forest

(RF) (Tang and Ishwaran 2017), and progressive spa-

tiotemporal (PST) (Song et al. 2018b). It’s worth men-

tioning that for a large-scale spatiotemporal official

statistics dataset, the recently proposed PST method out-

performed the other four imputation methods aforemen-

tioned, by taking advantage of sophisticatedly

incorporating additional spatiotemporal information, as

well as progressively utilizing covariates information

(Song et al. 2018b).

In the second step of DRRD, defining spatial control

groups considering the SSH impact is reasonable and

highly suggested, especially for a large scale spatial case–

control experiment. For the HFMD case, we chose Chinese

seven geographical divisions as the second SSH-based

spatial level to obtain different spatial control groups for

every local county. SSH is especially useful for analyzing

small area data that are grouped in larger regions (Wang

et al. 2016), such as the county-level HFMD area data

within the Chinese geographical division. We found that
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East, South and Central China were with much higher risk

baseline than North, Northeast, and Northwest China,

which further suggested that the traditional assumption (a

single control group) that the baseline is the same over the

whole study area for disease relative risk mapping may be

unreasonable (Berke 2005; Bithell 2000; Meza 2003).

Ignoring SSH impact could lead to mapping issues such as

smoothing super-high-risk areas in higher-baseline regions,

or overlooking hidden-high-risk areas in lower-baseline

regions. Thus, the second step of the DRRD model should

be designed to solve these issues by accounting for the

SSH-based spatial control groups.

In the third step of DRRD, following the classical epi-

demiological relative risk assessment theories and basic

formulas, we further developed three new local-scale spa-

tial epidemiological indicators, namely, SRR, SOR, and

SAR, for advanced disease relative risk mapping in order to

detect new regions with invisible and hidden crude risks.

For China’s HFMD case, local SOR and SRR maps showed

similar macro-scale geographical patterns, but with dif-

ferent local spatial heterogeneity, e.g., the local SOR map

could detect super-high-risk areas in the higher risk divi-

sions, whereas the local SRR map could detect hidden-

high-risk areas in lower risk divisions. Local SAR map

made the disease presence risk assessment complete, which

represents the sensitivity of selected variables in different

geographical units. Compared with crude probability risk

map, all three kinds of relative risk maps could offer extra

local spatial information to detect additional risk clusters/

outliers, as has been thoroughly discussed above, which

could offer new insights into Chinese HFMD detection,

control, and prevention at both regional and local scales.

In summary, our newly proposed DRRD model may

provide an easy and general way to localize various spatial

epidemiological indicators for mapping disease relative

risks to detect additional clusters or outliers of disease

outcomes, which has some notable advantages. First of all,

the DRRD model is applicable for different types of dis-

ease outcomes by changing first-step regression models to

obtain various types of disease crude risk maps, e.g., we

may employ Poisson regression for disease cases variables.

Second, to the best knowledge, the DRRD model is the first

method indeed considering the SSH impact for disease

relative risk mapping, by providing a feasible way to define

various spatial control groups, especially useful and nec-

essary for large-scale geospatial studies. Last but not least,

on account of DRRD model is following classical epi-

demiology theories, thus, besides three spatial relative risk

indicators that have been localized in this study, future

improved DRRD model could localize more epidemio-

logical indicators, such as spatial AR % or PAR %. Under

these conditions, the DRRD model is a more general and

convenient approach compared with previous disease rel-

ative risk mapping methods.

To end our discussion, we need to mention that there

might be underreported HFMD cases in CISDCP reporting

system in a few counties, which could lead to disease

mapping uncertainties (Hu et al. 2012). Furthermore,

introducing large-scale environmental remote sensing (He

et al. 2016, 2017) and air pollution (Du et al. 2019; Yu

et al. 2019) covariates data may improve model interpre-

tation ability for producing disease risk maps with higher

prediction accuracy. Finally, the DRRD model only works

for spatial areal data at present, whereas not for spatial

point data which needs to be further interpolated to a

continuous surface (He et al. 2019; Shi et al. 2019). Our

future work for this research is to test our proposed DRRD

model with different types of disease data, various infec-

tious diseases or public health events, and more meaning-

fully, with more epidemiological risk assessment indicators

(Li et al. 2019a).

5 Conclusions

In this article, we propose a new disease relative risk

mapping approach in a general way, named disease relative

risk downscaling (DRRD) model, with the aim of provid-

ing a guideline for epidemiologists and public health

researchers to localize various spatial epidemiological

indicators into local scales for exploring additional risk

areas of disease outcomes. We successfully applied this

sophisticated model for China’s HFMD case by generating

three spatial relative risk indicators, i.e., SOR, SRR, and

SAR. The immediate outcome of this work is a series of

complete county-level disease relative risk maps of HFMD

covering the whole Mainland China, which should be the

first of its kind. These new maps expanded the limited

knowledge of the complex local-scale risks of HFMD,

revealing additional spatially clustered areas over China,

such as the Hu-line region of China. Notably, the local

SOR map could detect super-high-risk areas in the higher

risk divisions of East, South, and Central China, and the

local SRR map could detect hidden-high-risk areas in

lower risk divisions of North, Northeast, and Northwest

China. The local SAR map further revealed that locally

HFMD risks were significantly attributable to climate and

socioeconomic factors in all geographical divisions of

China except Northwest China. More importantly, the

proposed DRRD model is more natural expanded for var-

ious researches, not only due to it is based on the original

epidemiological formulas, but also as it takes into account

of the imperative SSH impact within a spatially case–

control experimental design. The DRRD model could be a

new alternative method for local-scale relative risk
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assessment and advanced disease mapping, as well as

offers new insights into broader spatial and environmental

epidemiology.
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