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Abstract
Stochastic weather generators are statistical models widely used to produce climate time series with similar statistical

properties to observed data. They are also used as downscaling tools to generate climate change scenarios for impact

studies. Precipitation is one of the main variables simulated by weather generators and is also a key variable for impact

studies, especially for hydrology. Precipitation is usually simulated by multiple precipitation models which have been

proposed for simulating site-specific precipitation. However, these models’ performance in simulating watershed-aver-

aged extreme precipitation, especially in representing hydrological extremes, has not been well-investigated. Accord-

ingly, this study compares the performance of six probability distributions (exponential, gamma, skewed normal, mixed

exponential, hybrid exponential/Pareto, and Weibull distributions) and a polynomial curve-fitting method in generating

precipitation for simulating hydrological extremes over three basins using a set of extreme indices. The results show that

except for the exponential distribution (EXP), all of the methods produce the distribution of observed precipitation at the

daily, monthly and annual scales reasonably well for all three river basins. Although the three-parameter hybrid

exponential/Pareto distribution (EXPP) overestimates precipitation extremes, other three-parameter models produce

extremes accurately. The three-parameter mixed exponential (MEXP) distribution outperforms other models for simu-

lating precipitation extremes. However, with respect to representing hydrological extremes, the MEXP distribution is not

the best model. When simulating extreme streamflows with synthetic weather data, the EXP distribution shows the worst

performance, while the curve fitting method (PN) performs the best. The inferiority of the EXPP distribution in

generating extreme precipitation does not propagate to extreme flow simulations. Meanwhile, the performance of WEB

is moderate in terms of representing hydrological extremes. Overall, finding the model that best reproduces precipitation

for simulating hydrological extremes is not as clear-cut, since the performance of each model is extreme-indices

dependent. Taking all of the indices into account, the MEXP and the PN appear to be superior in representing extreme

precipitation and hydrological extremes.
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1 Introduction

Long-term precipitation series are usually indispensable for

analyzing risk-based hydrological extremes, such as pre-

cipitation and flood frequency analysis. However, long

periods of observed data are usually not available, espe-

cially in northern river basins. To solve this problem,

stochastic weather generators have been developed to

produce arbitrary lengths of consecutive precipitation data

with similar characteristics of the observed data. Even for

ungauged regions, weather data can also be generated by

interpolating weather generator parameters from adjacent

gauged sites (Baffault et al. 1996; Semenov and Brooks
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1999; Wilks 2008). More importantly, weather generators

are usually implemented as downscaling tools to generate

climate change scenarios for impact studies.

Weather generators usually produce daily precipitation

amounts using probability distributions (Woolhiser and

Roldán 1982; Harmel et al. 2000; Wan et al. 2005; Jama-

ludin and Jemain 2007; Liu et al. 2011; Li et al.

2013b, 2014; Chen and Brissette 2014b). They usually

include single distributions (e.g. exponential, gamma,

Weibull and skewed normal distributions) and mixed dis-

tributions (e.g. mixed exponential, hybrid exponential and

Pareto distributions). Several studies have evaluated these

distributions for their accuracy in generating daily precip-

itation amounts, especially for extremes at specific sites.

For example, Todorovic and Woolhiser (1975) found that

the exponential distribution was suitable to produce small

and medium precipitation, but not for extremes. While

gamma distribution accurately generates low-to-moderate

values of precipitation, it underestimates the likelihood of

large precipitation (Furrer and Katz 2008). Extreme fre-

quency underestimation was also observed when using the

Weibull distribution (Safeeq and Fares 2011). However,

various studies have shown that mixed distributions out-

perform single distributions at simulating extreme precip-

itation (Li et al. 2012; Chen and Brissette 2014b). For

example, Jamaludin and Jemain (2007) compared mixed

exponential, mixed gamma, mixed Weibull distributions

and their single counterparts and found that the mixed

distributions consistently outperform their single counter-

parts at generating precipitation extremes. More recently,

Chen et al. (2015) compared the abilities of gamma, mixed

exponential, and hybrid exponential and Pareto distribu-

tions in producing entire ranges of precipitation distribu-

tion, and found mixed distributions perform better than the

gamma distribution for simulating the upper tail of distri-

bution. Furthermore, Chen et al. (2015) also used a poly-

nomial curve fitting approach for capturing extreme

precipitation events. A comparison with multiple methods

showed the curve fitting method is more accurate than

probability distributions at producing the entire range of

daily precipitation, especially for extremes.

Precipitation extremes vary drastically in temporal and

spatial scales (French et al. 1992; Venugopal et al. 1999),

resulting in different performance of each method in gen-

erating regional precipitation extremes. For example, Wan

et al. (2005) tested exponential, gamma, skewed normal

and mixed exponential distributions over 657 stations in

Canada, and found that gamma and mixed exponential

distributions perform better in winter and warmer months,

respectively. Li et al. (2014) found that the skewed normal

distribution is appropriate at generating extreme precipi-

tation for the Loess Plateau of China. In addition, the

precipitation generator is usually used as a downscaling

tool for assessing climate change impacts on hydrology.

For hydrological climate change impact studies, the cli-

mate change scenarios generated by a weather generator

have been used as inputs to a hydrological model at the

watershed scale (Dibike and Coulibaly 2005; Zhang and

Liu 2005; Minville et al. 2008; Chen et al. 2010, 2011).

When using a lumped hydrological model for impact

studies, watershed-averaged precipitation scenarios are

required. Even though the performance of precipitation

models has been extensively investigated in many studies,

they are usually only evaluated for a specific site, rather

than at the watershed scale. The performance of precipi-

tation models may be different between station and

watershed scales, because the appropriate selection of

distribution may be changed when averaging station data to

watershed mean. For example, extreme precipitation events

averaged in watersheds may not be that extreme as those at

stations, particularly for large watersheds. Thus, it is nec-

essary to specifically evaluate the performance of these

models for simulating watershed-averaged precipitation,

especially for extremes. Moreover, the performance of

precipitation models in representing hydrological simula-

tions also needs further investigation.

The performance of precipitation models in representing

hydrological extremes has been evaluated in only a few

studies. For example, Khalili et al. (2011) compared

exponential distribution based single-site and multi-site

weather generators for hydrological modelling and found

that the exponential distribution performs reasonably well

with respect to representing the monthly flow, while

underestimating extreme flow in summer and autumn. Li

et al. (2013b) investigated the effectiveness of six proba-

bility distributions for hydrological modelling and found

that the skewed normal distribution performs better than

other models at producing runoff volumes, whereas the

mixed exponential distribution shows the best performance

at producing extremes. Chen et al. (2017) found that the

gamma distribution-based model is appropriate at simu-

lating hydrological median and extremes. Even though the

above studies attempted to evaluate the performance of

precipitation models in representing hydrological extremes,

only one or two extreme metrics were used. Studies that

specifically investigate the performance of multiple pre-

cipitation models in representing hydrological extremes,

combine with evaluations using multiple extreme metrics

are rare indeed.

The objectives of this study are to (1) evaluate the

performance of multiple precipitation models in generating

extreme precipitation at the watershed scale, and (2)

evaluate the performance of these models in representing

hydrological extreme by using a hydrological model. In

addition, the spatial scale effects of precipitation models

are investigated by using three river basins with different
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drainage areas, as the watershed-averaged precipitation

extremes may be affected by watershed size.

2 Data and methods

2.1 Study area and data

Three river basins with different drainage areas located in

the Xiangjiang watershed are used in these studies (Fig. 1).

It is to insure that they have similar precipitation condi-

tions. The differences in averaged precipitation extremes

may be mainly a result from the differences in drainage

areas. The streamflow data of the three sub-basins are

recorded at the Daxitan, Xiangxiang and Ganxi control

stations, which have drainage areas of 3132 km2,

6053 km2 and 9972 km2, respectively. The climate of the

Xiangjiang watershed is dominated by a tropical monsoon

with maximal precipitation occurring in May and June. The

mean annual precipitation and temperature are presented in

Table 1 for all three river basins.

Daily precipitation, maximum and minimum tempera-

ture (1976–2005) collected from China Meteorological

Data Service Center were used to assess the performance of

precipitation models. Mean annual precipitation magni-

tudes vary between 1300 and 1500 mm for all three river

basins. The temperature is similar for all three river basins.

When evaluating streamflow simulations with synthetic

precipitation, observed daily streamflows are required for

calibrating the hydrological model. The daily streamflow

time series were provided by the Department of Water

Resources of Hunan Province for the same period.

Streamflow has significant seasonal characteristics, with

peak flow series occurring in June during the rainy season

(April–September).

2.2 Precipitation generator

Daily precipitation amounts are generated by six para-

metric distributions and a curve-fitting method. Since

precipitation time series are required to drive a hydrolog-

ical model, a Markov chain based model (Hann et al. 1976;

Richardson 1981; Wilks 1989, 1999, 2008; Furrer and Katz

Fig. 1 Location of three river basins in the Xiangjiang watershed and their precipitation gauge control stations
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2008; Chen et al. 2010; Chen and Brissette 2014a, b) is first

applied to generate the sequence of precipitation occur-

rence for each calendar month. In order to fairly compare

all precipitation generators, the same precipitation occur-

rence is used for all precipitation models. The results may

not be exact the same when using various sequences. Thus,

it is necessary to run the same order Markov chain seven

times to generate different sequences to feed different

precipitation models. Previous studies (e.g. Chen et al.

2010; Li et al. 2013a) have shown that the first-order

Markov chain performs reasonable well with respect to

reproduce the sequence of precipitation occurrence. Some

other studies (Chen and Brissette 2014a; Acharya et al.

2017; Vu et al. 2018) also used the second or third-order

Markov chains, the advantage, however, is limited.

Having found the precipitation occurrence, precipitation

amounts on wet days are modeled using six probability

distributions and a curve-fitting method. The six parametric

distributions include one-parameter exponential distribu-

tion (EXP), two-parameter gamma (GAM) and Weibull

(WEB) distributions and three-parameter skewed normal

(SN), mixed exponential (MEXP) and hybrid exponential/

Pareto (EXPP) distributions. The six precipitation models

can also be classified into four single distributions (EXP,

GAM, WEB and SN) and two mixed distributions (MEXP

and EXPP). In addition, a second-order polynomial-based

curve fitting method (PN) is also used for comparison

(Chen et al. 2015). More details of these methods are

presented in the supplementary material. The parameters of

the probability distributions and the curve-fitting method

are estimated by the maximum likelihood method for every

two-week period over 30 years, except for the SN distri-

bution where the method of moments is applied for

parameter estimation. In order to obtain the true expec-

tancy of a weather generator, the length of 100 years is

generate using each method. Short time series could result

in biases due to the random nature of the stochastic pro-

cess. Previous studies (e.g. Richardson 1981; Furrer and

Katz 2008) have shown that 100 years is sufficient to

represent the true expectancy of a weather generator.

It is worth noting that random number control is

required to avoid the generation of outliers when using SN

and EXPP distributions (Chen and Brissette 2014b). As for

SN, random number control is particularly necessary

because negative values exist when the absolute skew

coefficient amount is greater than 4.5 (Meyer 2011; Li et al.

2013b). Unreasonable extreme precipitation events may be

generated by the EXPP distribution because the GP dis-

tribution in EXPP produces a positive tail index, leading to

the overestimation of extreme precipitation (Li et al.

2013b; Chen and Brissette 2014b). According to previous

studies, an appropriate solution is to insure synthetic pre-

cipitation amounts lower than the probable maximum

precipitation (PMP) (Chen and Brissette 2014b; Chen et al.

2015).

Temperatures are required to drive a hydrological model

to simulate streamflow time series. Maximum and mini-

mum temperatures are generated by a WeaGETS (Chen

et al. 2012) weather generator, which produces daily tem-

perature time series using a first-order linear autoregressive

model (Richardson 1981).

2.3 Hydrological modeling

The Xin’anjiang (XAJ) model is used for hydrological

simulations in this study (Zhao 1992). XAJ is a conceptual-

lumped hydrological model widely applied in humid and

semi-humid regions of China for hydrological modeling

and forecasts (Li et al. 2009, 2012; Shi et al. 2011). The

XAJ model consists of three sub-models: a three-layer

evapotranspiration sub-model, a runoff generation sub-

model and a runoff routing sub-model (Li et al. 2009; Zhao

1992; Lü et al. 2013). The runoff is separated into three

water sources: surface flow, interflow and subsurface flow.

The model includes 16 free parameters with four parame-

ters that account for evapotranspiration, three for runoff-

yield, four for separation and five for confluence.

The XAJ model requires daily precipitation and evap-

oration as inputs. Since the gauged evaporation is not

available, it is calculated by Hargreaves and Samani’s

scheme (1985) using observed maximum and minimum

temperature. The gauged daily streamflow time series is

needed for model calibration and validation. As For

observed flow, a 20-year observed streamflow time series

(1976–1995) is used for model calibration and a 10-year

time series (1996–2005) is used for model validation.

Table 1 General information of the three river basins

River basin Gauge

station

Area

(km2)

Mean annual

precipitation (mm)

Mean annual

Tmax (�C)
Mean annual

Tmin (�C)
Mean annual

flow (m3/s)

*1 Daxitan 3132 1492 21.23 13.53 88

*2 Xiangxiang 6053 1364 21.33 13.46 263

*3 Ganxi 9972 1559 20.78 13.62 115
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Model parameters are optimized using the Shuffled Com-

plex Evolution Method (Duan et al. 1993) with the Nash–

Sutcliffe coefficient (NSE) as an objective function. The

NSEs are 0.90, 0.85 and 0.86 for calibration and 0.87, 0.89

and 0.87 for validation over the Daxitan, Xiangxiang and

Ganxi river basins, respectively. Overall, the XAJ model

performs reasonably well for all three river basins, with

NSEs being greater than 0.85.

2.4 Statistical analysis

The precipitation models are first evaluated with respect to

reproducing the mean, standard deviation (Std), interquartile

range (IQR) and skewness coefficients (CS) of daily, monthly

and annual precipitation. The mean relative errors and mean

absolute relative errors are calculated for these statistics. The

precipitation models’ performance in representing extreme

precipitation is evaluated using three extreme indices: annual

maximum daily precipitation (Rx1day), and total annual pre-

cipitation resulting fromevents exceeding the 95th (Rx95TOT)

and the 99th percentile (Rx99TOT). The Kolmogorov–Smir-

nov (KS) test is used to test the similarity of distributions

between observed and synthetic data at a significant level of

P = 0.05. Using synthetic precipitation, daily and monthly

streamflows are simulated by the XAJ model and compared to

observed streamflow. To avoid errors resulting from the

hydrological model, streamflow generated using observed

weather data are used to represent observed flow (Li et al.

2013b). Five extreme hydrological indices are also used to

evaluate the synthetic precipitation in representing streamflow.

These indices are the mean duration of high pulses (HPD), the

number of high pulses (HPC), the annual maximum 1-day flow

(Qx1day), the annual maximum 3-day flow (Qx3day) and the

annualmaximum7-day flow (Qx7day).Among them, theHPD

and HPC are two high pulse-based indices. A high pulse is

defined as flow series in a year exceeding the 75th percentile of

annual flow.

3 Results

3.1 Precipitation amount generation

3.1.1 Annual and monthly precipitation characteristics

Table 2 shows the relative error of the mean and standard

deviation (Std) of the monthly and annual precipitation

simulated by all seven precipitation models. All models

produce the mean of annual and monthly precipitation very

well, with absolute relative errors (AREs) consistently less

than 6%. Among the seven precipitation models, the PN

method produces the mean of the monthly (and yearly)

streamflows with the largest error. Although little

differences exist among the models in term of generating

mean values, there are significant differences in generating

the Stds of monthly and annual precipitation. The differ-

ence between the Stds of observed and generated annual

precipitation over basin *3 is larger than that over the other

two river basins. The performances of the SN and PN

models are superior in producing the Std for all river

basins, especially for basin *2. Furthermore, the KS test

shows that the EXP- and PN-generated precipitation time

series are significantly different from observed time series

for basin *1 and basin *2. In general, the three-parameter

distributions perform better than the one- and two-param-

eter distributions for all three river basins.

3.1.2 Daily precipitation characteristics

Figure 2 presents four statistical metrics (mean, Std, IQR

and CS) of observed and generated daily precipitation. All

seven models perform similarly with respect to reproduc-

ing the mean values of daily precipitation for all three river

basins. The EXP underestimates the Std by more than 20%,

whereas the other models simulate the Std of daily pre-

cipitation with relative errors (REs) ranging between - 10

and 10% for all three river basins. In terms of the IQR,

among all the models, the EXPP performs the worst with a

mean relative error (MRE) of IQR ranging between 13.13

and 22.53% for all three river basins. The GAM, SN and

MEXP models generate CS of daily precipitation accu-

rately, with AREs less than 3%. WEB and EXPP appear to

be worse than the other models, especially for basin *1

with REs of 25.05% and 93.06%, respectively. The over-

estimation of CS may be because some models generate

too many high values, especially when using the EXPP.

3.2 Extreme precipitation events

Figure 3 presents three extreme indices (Rx1day,

Rx95pTOT and Rx99pTOT) of observed daily precipita-

tion and synthetic daily precipitation generated by seven

precipitation models. Generally, the EXP performs the

worst in simulating extreme indicates, with REs of medium

values of - 30.56%,- 24.75% and - 21.52% for Rx1day,

Rx95pTOT and Rx99pTOT, respectively. The WEB and

MEXP models perform better than the others, with AREs

of medians being less than 19% for the three extreme

indices. When using the EXPP, the medium values of

Rx1day are overestimated by more than 10% for all river

basins, whereas those of Rx95TOT are accurately simu-

lated with RE being less than 5%. Generally, none of the

models generate the inter-annual variation of extreme

indices accurately for all three river basins, even though

SN and MEXP perform better than the other models for

both Rx1day and Rx99TOT. The EXPP and PN models
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overestimate the inter-annual variation of Rx1day with

MREs of 43.20% and 73.74%, respectively, across all three

river basins.

Table 3 presents the KS test results for three precipita-

tion extreme indices for all seven precipitation models and

three river basins. The KS test rejects the null hypothesis

that the generated and observed data are from the same

distribution if the value is equal to one in Table 3. The

EXP model appears to be the worst with most times of

rejection. Additionally, MEXP and WEB perform the best

when the KS test accepts the null hypothesis for all indices

and basins. In general, the performances of the three-pa-

rameter models are similar to those of the two-parameter

distributions but superior to that of the one-parameter

distribution.

3.3 Monthly flow modeling

Figure 4 shows the mean and standard deviation (Std) of

monthly streamflows generated using synthetic and

observed climate data series. All seven models produce

monthly mean streamflows reasonably well for all three

river basins, with MREs ranging between - 17.14 and

5.45%. EXP and SN appear to be worse than other models,

with mean absolute relative errors (MAREs) ranging

between 13.13 and 17.14% for the three river basins.

Although PN shows the best performance in terms of

producing mean monthly flow, it poorly simulates the July

mean flow for basin *2 with a RE of 47.84%. In terms of

generating the Std of monthly flow, the MAREs of basin *2

are obviously larger than those of the other two river

basins. In particular, EXP appears to be the worst model

with the largest MARE of standard deviation: 52.12% for

basin *2. The performances of the three-parameter MEXP

and SN models are better than that of the two-parameter

GAM, but worse than that of the WEB model for all three

basins. The PN model performs the best at simulating the

Std of monthly streamflows, especially for basin *2.

3.4 Extreme hydrological events

The observed and simulated mean duration of high pulses

(HPD) and the number of high pulses (HPC) are presented

in Fig. 5. Generally, the HPD is reasonably represented by

all seven precipitation models for basin *3, with median

values of REs ranging between - 1.14% (WEB) and

12.84% (EXPP). However, HPD is not well-represented for

basin *1 and basin *2, with REs ranging from 19.67 to

30.32%, and from - 37.37 to - 15.71%, respectively.

More specifically, the GAM and EXPP models perform

Table 2 Mean and standard deviation (Std) of annual and monthly observed precipitation and precipitation generated by seven models (EXP,

GAM, WEB, SN, MEXP, EXPP and PN) for three river basins

Time scale River basin Source Observed precipitation Relative error (%)

EXP GAM WEB SN MEXP EXPP PN

Yearly Basin *1 Mean 1492 1 2.1 - 0.2 0.1 0.6 - 0.7 2.6

Std 186 - 22 10.8 4.3 - 4.3 - 10.8 2.7 - 2.7

KS test# – 0 0 0 0 0 0 0

Basin *2 Mean 1364 - 1 - 0.3 - 0.4 1.7 - 1.7 - 2.3 5.6

Std 185 - 12.9 - 9.7 - 5.9 2.7 - 4.8 12.4 2.7

KS test# – 0 0 0 0 0 0 1

Basin *3 Mean 1559 1.2 1.2 0.5 2.3 0.9 0.8 4.4

Std 277 - 45.5 - 48 - 39.4 - 33.9 - 36.1 - 35.4 - 39

KS test# – 0 0 0 0 0 0 0

Monthly Basin *1 Mean 124.32 - 0.5 0.7 - 1.6 - 1.4 - 0.8 - 2.1 1.1

Std 84.55 - 16.4 - 4.4 - 7.9 - 10.8 - 10.1 - 9.5 - 5.3

KS test# – 1 0 0 0 0 0 0

Basin *2 Mean 113.64 - 1 - 0.3 - 0.5 1.7 - 1.7 - 2.3 5.7

Std 79.3 - 12.6 - 11.2 - 7.1 - 3.8 - 10 - 5.2 - 1.8

KS test# – 1 0 0 0 0 0 1

Basin *3 Mean 129.95 - 0.4 - 0.4 - 1.1 0.7 - 0.7 - 0.8 2.8

Std 85.4 - 18.5 - 15.7 - 11.5 - 12 - 11.9 - 9 - 8.7

KS test# – 0 0 0 0 0 0 0

The relative error is presented for generated precipitation

KS test: The result is 0 if the observed and synthetic data are from the same distribution, and is 1 otherwise
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worse than the others at producing the HPD for basin *2

and basin *3, respectively. In addition, the inter-annual

variation of simulated HPD using generated precipitation

series is larger than that of the observed HPD. WEB

appears to be superior at producing the median HPD, and

SN is superior at simulating the inter-annual variation of

the HPD. Furthermore, most of the models underestimate

the mean value of HPC for all three river basins, except the

GAM, SN and PN models for basin *2. The HPC is well-

reproduced by all of the models for basin *2 and basin *3,

with AREs less than 16%, but for basin *1, the AREs are

more than 22%. The EXP model is arguably the worst at

representing the HPC of annual discharge, especially for

basin *1.

The distributions of the Qx1day, Qx3day and Qx7day

series are shown in Fig. 6 as box plots. Generally, the EXP

model cannot adequately produce Qx1day, Qx3day and

Qx7day series for basin *2 and basin *3 with its RE of

medians ranging between - 51.31 and - 26.81%, even

though it performs better for basin *1 with RE less than

14%. WEB, EXPP and PN represent Qx1day similarly and

accurately for all three basins, especially for basin *1 with

AREs less than 4%. The MEXP performs better than the

single EXP, GAM and SN distributions, but worse than the

single WEB distribution. Additionally, the MEXP model

performs the worst at representing the inter-annual varia-

tion of Qx1day, Qx3day and Qx7day, with REs ranging

between - 58.14 and - 23.46%. In general, PN is the best

model at representing the medium and inter-annual varia-

tion of Qx1day, Qx3day and Qx7day.

4 Discussion

This study assessed the performance of seven precipitation

models in generating precipitation time series for simu-

lating extreme flow. For simulating precipitation distribu-

tion at the daily, monthly and annual scales, all the models

perform similarly and reasonably well for all three river

basins, with the exception of EXP. Compared to models

with two or one parameter(s), the three-parameter models

have advantages in terms of generating precipitation

extremes, with the exception of EXPP. This is as expected,

as complex models usually include a component/parameter

that specifically considers the upper tail of daily precipi-

tation distribution (Chen et al. 2015). A relatively poor

performance was observed for the EXPP model because it

generates a few unreasonable high values. The main

problem with the EXPP was identified in a few studies (e.g.

Li et al. 2013b; Chen et al. 2015). Although a PMP-based

Fig. 2 Mean, standard deviation

(Std), interquartile range (IQR)

and skewness coefficients (CS)

of observed and generated daily

precipitation from seven models

(EXP, GAM, WEB, SN, MEXP,

EXPP and PN) for a basin *1,

b basin *2, c basin *3
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method was used to control the random numbers, the val-

ues generated by EXPP still vary in a very large range. This

may be explained if the threshold value of PMP was not

appropriate, so the use of this distribution to simulate daily

precipitation should be interpreted with caution. The WEB

method performs better than the other single distributions

Fig. 3 Boxplots of Rx1day, R95pTOT and R99pTOT extreme indices

of observed and generated daily precipitation for three river basins.

Colored red represents one-parameter distribution, yellow for two-

parameter distributions, blue for three-parameter distributions and

green for the curve-fitting method

Table 3 KS test results for

extreme precipitation indices

with a significance level of

P = 0.05

River basin Index KS test

EXP GAM WEB SN MEXP EXPP PN

Daxitan (*1) Rx1day 1 0 0 0 0 1 0

Rx95TOT 1 0 0 1 0 0 0

Rx99TOT 1 0 0 0 0 0 0

Xiangxiang (*2) Rx1day 1 1 0 0 0 1 1

Rx95TOT 1 0 0 0 0 0 0

Rx99TOT 1 0 0 0 0 0 0

Ganxi (*3) Rx1day 1 0 0 0 0 1 1

Rx95TOT 1 0 0 0 0 0 0

Rx99TOT 0 0 0 0 0 0 0

Number of passing 1/9 8/9 9/9 8/9 9/9 6/9 7/9

KS test: The value is 0 if the observed and synthetic data comes from the same distribution and 1 otherwise
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with respect to reproducing extreme precipitation. Unlike

this study, results from Safeeq and Fares (2011) show that

the WEB distribution fails to reproduce precipitation

extremes with the underestimation of extreme events.

Overall, this study shows the MEXP distribution to be the

best model at generating daily precipitation, which is

consistent with most previous studies (Woolhiser and

Roldán 1982; Wilks 1999; Wan et al. 2005). The combi-

nation of two exponential distributions contributes to its

good performance.

The same seven models were further compared to assess

their performance in generating daily precipitation time

series for simulating streamflow time series, especially for

hydrological extremes. In general, the precipitation time

Fig. 4 Mean and standard

deviation (Std) of observed and

generated monthly streamflows

for three river basins

Fig. 5 The mean duration

(boxplots) and the number

(inverted bar) of observed high

pulses and high pulses

simulated with the precipitation

generated by seven models for

a basin *1, b basin *2 and

c basin *3
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series generated by all seven models can reasonably rep-

resent the monthly mean discharge. However, with the

exception of PN, they perform poorly at representing the

variation of monthly flow. In addition, the performance of

each model at generating extreme precipitation did not

fully translate to generate extreme flow events. For

example, while the MEXP is the best model at reproducing

extreme precipitation indices, it underestimates the

extreme flow indices. The EXPP and PN models somewhat

overestimate extreme precipitation indices, while they

reasonably represent the extreme flow indices. This may be

because EXPP and PN generate a large amount of events

with low precipitation. The best model for reproducing

precipitation to simulate hydrological extremes may be

dependent upon the chosen index. In this study, WEB

appears to be the best model at reproducing high pulses,

while PN performs the best at generating annual mean

1-day, 3-day and 7-day maximum flows. In general, taking

into account all of the chosen criteria, it appears that the PN

model is the best choice for all three river basins.

Generally, the performance of these models in generat-

ing daily precipitation at the river basin scale was similar to

that at the station scale. In terms of generating precipitation

extremes, EXP was always the worst model for the

underestimation of extremes for each station and each

basin. Combining the results of this study and those of

previous similar studies (Chen et al. 2012; Chen and

Brissette 2014b; Acharya et al. 2017), the MEXP appears

to be superior in reproducing extreme precipitation at river

basin and multiple station scales. In terms of spatial scale

effects, the drainage area of watersheds does not appear to

have an impact on the performance of precipitation models

in generating extreme precipitation. However, this study

only evaluates the performance of different precipitation

models in generating watershed-averaged precipitation for

streamflow simulations over monsoon-characterized

watersheds in China. For watersheds with different climatic

and hydrological characteristics, the performance of vari-

ous precipitation models may not be the same. For exam-

ple, a previous study (Li et al. 2013b) has shown that the

Fig. 6 Boxplots of annual maximum 1-day (Qx1day), 3-day (Qx3day), 7-day (Qx7day) observed and simulated flows for three river basins
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MEXP distribution performs the best at simulating

streamflow for watersheds characterized by snowfall in the

winter. Even for watersheds with similar climate, various

watershed characteristics may also show different sensi-

tivities to precipitation inputs. Moreover, the performance

of precipitation models may also be dependent on evalua-

tion metrics. There is no single model that performs better

than other models for all evaluation metrics. All these

could be avenues for future studies.

5 Conclusion

The study investigates the performances of seven precipi-

tation models in generating daily precipitation for simu-

lating hydrological time series, especially extremes over

three sub-basins in the Xiangjiang watershed. The follow-

ing conclusions are drawn:

1. All seven models produce mean precipitation reason-

ably well. However, the three-parameter models gen-

erally perform better than the two-parameter and one-

parameter distributions for simulating precipitation

variance, with the exception of EXPP. Especially, the

one-parameter EXP performs the worst at simulating

the entire range of daily precipitation distribution.

2. MEXP is the best model at simulating extreme

precipitation. In addition to MEXP, WEB and SN

perform well at generating the medium value and the

inter-annual variation for precipitation extremes,

respectively. EXPP model performs more poorly than

the others at simulating annual maximum precipitation

at the basin scale.

3. Generally, the three-parameter models perform better

than the one- and two-parameter models at represent-

ing hydrological extremes. In particular, PN shows the

best performance with respect to simulating hydrolog-

ical extremes among all precipitation models, even

though WEB model also shows reasonable perfor-

mance in representing high pulse.

4. The results of this study show that the most appropriate

model cannot be determined when using different

extreme indices. Overall, MEXP and PN outperform

the other models in representing extreme precipitation

and hydrological extremes.
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