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Abstract
This paper proposes a new collocation method for estimating parameters of a partial differential equation (PDE), which

uses Gaussian process (GP) as a basis function and is termed as Gaussian process for partial differential equation (GPPDE).

The conventional method of estimating parameters of a differential equation is to minimize the error between observations

and their estimates. The estimates are produced from the forward solution (numerical or analytical) of the differential

equation. The conventional approach requires initial and boundary conditions, and discretization of differential equations if

the forward solution is obtained numerically. The proposed method requires fitting a GP regression model to the obser-

vations of the state variable, then obtaining derivatives of the state variable using the property that derivative of a GP is also

a GP, and finally adjusting the PDE parameters so that the GP derived partial derivatives satisfy the PDE. The method does

not require initial and boundary conditions, however if these conditions are available (exactly or with measurement errors),

they can be easily incorporated. The GPPDE method is evaluated by applying it on the diffusion and the Richards

equations. The results suggest that GPPDE can correctly estimate parameters of the two equations. For the Richards

equation, GPPDE performs well in the presence of noise. A comparison of GPPDE with HYDRUS-1D software showed

that their performances are comparable, though GPPDE has significant advantages in terms of computational time. GPPDE

could be an effective alternative to conventional approaches for finding parameters of high-dimensional PDEs where large

datasets are available.

Keywords Gaussian process � Partial differential equation � Inverse problem � Diffusion equation � Richards equation �
Parameter estimation

Abbreviations
AGM Adaptive gradient matching

GM Gradient matching

ASMO Adaptive surrogate modeling based

optimization

ASMO-PODE ASMO-parameter optimization and

distribution estimation

GP Gaussian process

GPODE Gaussian process ordinary differential

equation

GPPDE Gaussian process for partial differential

equation

ODE Ordinary differential equation

PDE Partial differential equation

List of symbols
a Air-entry pressure head soil hydraulic parameter

k Diffusivity

k Set of parameters of PDE

/ ½l; rs�
U ½l; rs; ry�
rs Hyperparameter of GP (scale parameter of kernel

function)

ry Hyperparameter of GP (noise in GP model)

h Volumetric soil moisture

hr Residual soil moisture

hs Saturated soil moisture

H Relative saturation;
h� hr
hs � hr

I Identity matrix

IðkÞ Fisher information matrix
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k Soil hydraulic conductivity

ks Saturated soil hydraulic conductivity

kð�Þ Covariance/kernel function

K Covariance matrix

l Hyperparameter of GP (length scale of kernel

function)

m Number of independent variables

my Mean of Gaussian process

n Pore-size distribution soil hydraulic parameter

N Number of observations

R Real space

t Temporal dimension

x Independent variable/a spatial dimension

x Vector of training independent variables

x0 Vector of testing independent variables

X Design matrix of dimension N � m

y State variable

y Column vector of state variable

~y Observation

~y Column vector of N observations

z A spatial dimension

1 Introduction

A differential equation relates a function with its derivatives

(Newton 1736). The function and its derivatives represent a

state variable and its rate of change, respectively. The dif-

ferential equations have important application in science,

engineering, economics and biology (Strang 2014; Vyshe-

mirsky and Girolami 2007). Ordinary Differential Equa-

tions (ODEs) contain one or more functions of an

independent variable and their derivatives, whereas Partial

Differential Equations (PDEs) contain multivariate func-

tions of independent variables and their partial derivatives.

In hydraulics and hydrology, differential equations are

often used to represent conservation equations. The con-

ventional method for estimating parameters of a differen-

tial equation is to minimize an error function [e.g. L1-

Norm, L2-Norm or L-infinity-Norm of the error; though

use of L2-Norm is more common (Kool et al. 1985)],

where error is the difference between the observations and

their estimates. The estimates are obtained from the for-

ward solution (numerical or analytical) of the differential

equation. This method of parameter estimation is referred

to as inverse problem. There are many methods of error

minimization (Rao 2009; Deb 2012), but gradient based

methods are usually preferred (McLaughlin and Townley

1996; Simunek et al. 2005).

The conventional approach of parameter estimation

requires initial and boundary conditions (which are not

readily available and difficult to impose in forward

solutions), and discretization of differential equations if the

forward solution is obtained numerically. Further, the

computational time of the conventional approach increases

significantly with increase in the dimensionality of the state

variable and the number of unknown parameters. If the

initial and boundary conditions are not available, they are

considered as parameters in the conventional approach,

augmenting the parameter set, which further increases their

computational burden. Moreover, sometimes the data may

not be sufficient to estimate the augmented parameter set.

A number of studies have attempted to estimate the

parameters without explicitly solving differential equations.

These methods belong to the general class of collocation

methods (Varah 1982; Poyton et al. 2006; Ramsay et al.

2007). The collocation methods for parameter estimation of

differential equation require fitting of either a polynomial or

a spline to the observations of the state variable, and

adjusting the differential equation parameters such that the

polynomial spline interpolated values of the state variable

and its derivatives satisfy the differential equation rela-

tionship. Since the collocation methods do not solve the

forward problem, the initial and boundary conditions are

not required (Ramsay et al. 2007). The Gaussian process

(GP) based methods, which also fall under the category of

collocation method, have been developed and successfully

applied to estimate the parameters of ODEs (Calderhead

et al. 2008; Dondelinger et al. 2013; Wang and Barber

2014; Macdonald and Husmeier 2015). These methods

require fitting a GP regression model to the observations of

the state variable and estimating their derivatives using the

property that derivative of a GP is also a GP, and finally

adjusting the ODE parameters so that the GP derived

derivatives satisfy the differential equations.

Calderhead et al. (2008) proposed the first GP based

method for ODE parameter estimation and termed it gra-

dient matching (GM) method. The GM method consists of

two steps (1) fitting a GP regression model to the observed

values of the state variable and evaluating the state variable

and its derivatives using the fitted GP model, and (2)

matching the estimates of the state derivative obtained

from the GP model and obtained analytically from the

given ODE relation by using the Product of Experts

approach. A Product of Experts combines probability dis-

tributions of individual experts by taking their products

(Mayraz and Hinton 2001; Hinton 2002). Thus in the GM

method, there are two distributions for the state derivative,

one from derivative of the fitted GP model and another

from the ODE relation. Using these two distributions, the

Product of Experts forms a new distribution. This new

distribution is used to sample the parameters of the ODE.

The GM method lacks any feedback mechanism from

the ODE back to the GP model. Dondelinger et al. (2013)

proposed a sampling modification for the GM method, and
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termed their proposed method as Adaptive Gradient

Method (AGM). In the AGM method, sampling of the GP

regression model parameters and the ODE parameters are

not done in two stages, rather these parameters are simul-

taneously sampled. The posterior distribution for the GP

model and the ODE parameters are obtained by

marginalizing over the state derivative and conditioning on

the state variable. Sampling starts by initializing the GP

parameters and then the ODE parameters are sampled

using the Product of Experts. Next, fixing the ODE

parameters to their estimated values, GP parameters are

sampled using the Product of Experts. The sampling is

repeated until the GP and the ODE parameters converge.

Wang and Barber (2014) proposed an alternate approach

to AGM which they termed Gaussian process ordinary

differential equation (GPODE). The GM and AGM meth-

ods were based on the idea that derivative of a GP is a GP,

but the GPODE approach harnesses the fact that the state

variable can be represented as a GP if the state derivative is

a GP (in other words, the integral of a GP is also a GP). In

the GPODE method, the posterior distribution of the

unknown parameters is obtained by marginalizing over the

state variable and conditioning on the state derivatives.

Similar to the AGM method, the GPODE method also

samples the GP and the ODE parameters simultaneously,

rather than in two steps. A critical review of GPODE by

Macdonald et al. (2015) points out an anomaly in the

graphical representation of the method and its logical

construct. Specifically, they demonstrated that GPODE

suffers from intrinsic identifiability problem. Readers are

referred to Macdonald et al. (2015) for further details.

The GP based gradient matching methods discussed

above are applicable only to ODEs, where the state

derivatives can be expressed as an explicit function of the

state variable and the independent variables. However, for

many ODEs, the state derivatives can not be expressed as

an explicit function and it would not be possible to cal-

culate the state derivative analytically as done in the GP

based gradient matching methods (GM, AGM and GPODE

have been demonstrated on the ODEs: Lotka–Volterra and

Signal Transduction Cascade; wherein the gradients are

explicit functions of state variables). Similarly for the

PDEs, the partial derivatives of the state variable are not

explicit functions and hence these GP based methods can

not be applied to find PDE parameters. This study proposes

Gaussian process for partial differential equation (GPPDE)

method which addresses the above mentioned limitation.

Recently Raissi et al. (2017b) have proposed a GP based

method for estimating the parameters of linear non-ho-

mogeneous PDEs. Their method is based on the ideas

presented by Graepel (2003) and Särkkä (2011) to encode

physics of a differential equation into the covariance

function of the GP regression model. Raissi et al. (2017b)

method assumes that the state variable and the forcing term

in a differential equation are GPs. Since a linear operation

on a GP results in another GP (Solak et al. 2003), the cross-

covariance function of the state variable and the forcing

term can be expressed in terms of the parameters of the

differential equation. Thus, the parameters of the differ-

ential equation are turned into parameters of the GP which

are estimated when fitting the GP regression model to the

observations of the state variable and the forcing term. A

limitation of this method is that it cannot be applied to

nonlinear differential equations and to equations in which

the forcing term is constant. Raissi et al. (2017a, 2018)

used the same method for solving differential equations

using noisy multi-fidelity data for linearized PDE. In

addition, Cockayne et al. (2016) and Bilionis (2016) have

also discussed the possibility of approximating the solu-

tions of linear PDEs using GP.

In the context of Bayesian parameter estimation, GP

regression model has been used as a surrogate to dynamical

systems described by differential equations. In hydrology,

Wang et al. (2014) proposed an Adaptive Surrogate

Modeling based Optimization (ASMO) method that uses

GP regression as a surrogate model and demonstrated its

applicability by estimating parameters of Hartman Func-

tion and Sacramento Soil Moisture Accounting hydrolog-

ical model. Gong and Duan (2017) proposed ASMO-

Parameter Optimization and Distribution Estimation

(ASMO-PODE) method as an improvement over ASMO

method. The ASMO-PODE method uses an adaptive

resampling strategy that significantly reduces the compu-

tation cost of estimating parameters. They demonstrated

the effectiveness of ASMO-PODE by estimating parame-

ters of a land surface model. Zhang et al. (2016) used GP

regression to construct a locally accurate surrogate model

and showed that it significantly reduces the computational

cost for groundwater contaminant source identification

problem.

The use of GP regression as a surrogate model in the

above cited studies is different from the way it is used in

the proposed GPPDE method. The surrogate models are

trained on the forward simulations of the differential

equations, and hence a method for forward solution is

required. The surrogate GP models do not explicitly satisfy

initial and boundary conditions, and it is not straight for-

ward to account for measurement errors and mismatch

between forward solution and GP regression in the

parameter estimation. GPPDE, on the other hand, uses the

gradient matching approach in which the estimates of the

state variable and its derivatives are directly used to

approximate parameters of the dynamical systems descri-

bed by PDEs. It relies on the key observation that any

linear transformation of a GP, such as differentiation and

integration is still a GP. Since GP regression model in
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GPPDE is trained on observations, a forward solution of

PDE is not required. The method can work even when

initial and boundary conditions are not available, however,

if these conditions are available, GPPDE can incorporate

them. Further, if measurement errors are known they can

be used in training the GP regression model.

To the best of our knowledge gradient matching meth-

ods for estimating parameters of PDE have never been used

in water resources. The purpose of this paper is to propose

a new GP based method for estimating parameters of both

linear and non-linear PDEs and demonstrate its application.

The application of the new GPPDE method is demon-

strated on two PDEs (the groundwater diffusion and the

Richards equations) using synthetic data. The diffusion

equation is a parabolic PDE that describes the spatio-

temporal variation of groundwater level in homogeneous

aquifers. The Richards equation is a nonlinear parabolic

PDE that describes the movement of water in unsaturated

zone. Flow in unsaturated zone is one of the most complex

flows in nature. The numerical solution of the Richards

equation is computationally expensive, and a universally

robust and accurate solution methodology is yet to be

discovered (Farthing and Ogden 2017).

This paper is organized in six sections: the first section

discusses differential equations and the conventional

approach to estimate their parameters. The section also

reviews the GP based parameter estimation methods for

differential equations, presents their advantages over the

conventional approach and discusses their limitations. The

second section provides mathematical formulation of the

proposed GPPDE method for estimating parameters of

PDEs. The third section briefly explains the groundwater

diffusion equation and the Richards equation. The fourth

section describes the data used to demonstrate the GPPDE

method. The fifth section presents and discusses the results

from the GPPDE method. The sixth section summarizes

and concludes the paper.

2 Mathematical formulation

The objective of the proposed GPPDE method is to esti-

mate parameters of a PDE, given the observations of state

variable. GP, like other regression methods, does not rely

on physics but on the data to fit, which it tends to statis-

tically fit the response surface. That’s why GPPDE method

is able to estimate parameters of a PDE if the initial and

boundary conditions are not available or available with

measurement error. This section describes the mathemati-

cal formulation of the GPPDE method. In the following

subsections, we will discuss the formulation and training of

the GP regression model, provide expressions for its partial

derivatives, explain the procedure for incorporating

derivative information in the GP regression model, and

present the methodology for estimating PDE parameters.

2.1 Gaussian process

Gaussian process (GP) is a kernel based non-parametric

approach for supervised (regression and classification

problem) and unsupervised (clustering problem) learning

(Rasmussen and Williams 2006). In the field of geostatis-

tics, GP was independently derived and termed as kriging

(Krige 1951; Matheron 1963). In water resources, GP has

been used as a regression model (Marrel et al. 2009; Sun

et al. 2014; Holman et al. 2014; Zhang et al. 2016). A brief

mathematical formulation of GP (using the properties of

conditional Gaussian distribution) for a regression problem

is provided below.

In this paper, the following notations are used. All

vectors are column vectors and are represented by lower

case bold letters. Matrices are represented by upper case

bold letters. Italic letters represent scalars. Identity matrix

is represented by I.

GP assumes that the data points follow multivariate

Gaussian distribution in which the covariance function is

homogeneous and stationary, and depends only on the

distance between the two points. A covariance function,

also known as kernel, provides a measure of closeness

between a training point ðxÞ and a test point ðx0Þ, nota-
tionally given by k x; x0ð Þ. In the present study, Gaussian

covariance function is used, which is given by

kðx; x0Þ ¼ rs
2 exp � 1

2

Xm

j¼1

xj � x0j

� �2

l2j

0

B@

1

CA; ð1Þ

where m is the dimension of the input space or the number

of independent variables in x, xj 2 x, lj is the length scale

for the jth independent variable xj, and rs is the scale

parameter of the covariance function. Together, they are

referred as hyperparameters and are represented by

/ ¼ ½l1; . . .; lm; rs�. The Gaussian covariance function, also

known as squared exponential covariance function, is

infinitely differentiable and hence very smooth. It is

probably the most widely used covariance function in GP

regression models. The choice of covariance function

depends on the physical process being modelled. Readers

are referred to Chapter 4 of Rasmussen and Williams

(2006) for a detailed discussion on other covariance func-

tions and their properties.

For the formulation of GP, the conditional property of

the Gaussian distribution is used, i.e., if two sets of random

variables are jointly Gaussian, then the distribution of one

set conditioned on the other set is also Gaussian
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(section 2.3 of Bishop (2006); Appendix A.3 of Rasmussen

and Williams (2006)). Let the training dataset be given by,

D ¼ xi; ~yið Þ j i ¼ 1; . . .;N; xi 2 Rm; ~yi 2 Rf g; where, xi
is an input vector (independent variable) in m-dimensional

space, ~yi is the corresponding observed value of the

dependent variable and N is the number of observations.

All training input vectors are arranged in N � m training

data matrix ðXÞ and the observations are collectively rep-

resented by N � 1 vector, ~y. The observations have inde-

pendent and identically distributed noise, which is assumed

to be normally distributed with mean zero and standard

deviation ry

~yi ¼ yi þN 0; r2y

� �
ð2Þ

where yi is the true value of the state variable at location xi
and all yi’s are collected in vector y. The vector of the state

variable y, follows a Gaussian distribution with mean

my Xð Þ and covariance matrix K, represented as

y�N my Xð Þ;K
� �

ð3Þ

where y is N � 1 vector, K ¼ k X;Xð Þ is a N � N positive

definite covariance matrix and my Xð Þ is N�1 vector of the

mean of GP at training data points X (also referred as a

priori mean function). In most cases the a priori mean may

not be available, but the GP model is powerful enough to

capture trends in data even if the mean of GP is taken as

zero or a constant value (Rasmussen and Williams 2006).

The GP model prediction y�ð Þ at new test points ðX�Þ is
given by

y� �N my X�ð Þ;K��
� �

ð4Þ

where K�� ¼ k X�;X�ð Þ and X� is the testing data matrix, in

which, testing points are arranged in rows. The joint dis-

tribution of ~y and y� is given by Eq. (5), in which, my Xð Þ
and my X�ð Þ are the vectors of mean values, evaluated for

design matrix X and test matrix X�, respectively, and K� ¼
k X;X�ð Þ (The elements of K�; kij are covariance between

the ith training point and the jth test point)

~y

y�

� �
�N

my Xð Þ
my X�ð Þ

� �
;

Kþ r2yI K�

KT
� K��

" # !
: ð5Þ

The predictive distribution p y�jX�;/; ry;X; ~y
� �

, based on

the conditional property of the Gaussian distribution, is

given by

p y�jX�;/; ry;X; ~y
� �

¼ N y�jl;Rð Þ ð6Þ

where

l ¼ E y�jX�;/; ry;X; ~y
� 	

¼ my X�ð Þ þKT
� Kþ r2yI
� ��1

~y� my Xð Þ
� � ð7aÞ

R ¼ cov y�jX�;/; ry;X; ~y
� �

¼ K�� �KT
� Kþ r2yI
� ��1

K� þ r2yI
ð7bÞ

2.2 Estimation of hyperparameters

Estimation of hyperparameters is still an open problem and

there are many approaches for it (Rasmussen and Williams

2006). Generally, the nomenclature hyperparameter is used

for the parameters of a covariance function, but in the

present study, the noise ry has also been considered as one

of the hyperparameters. Collectively they are represented

as, U ¼ l1; . . .; lm; rs; ry
� 	

and termed as hyperparameters

of GP. In the present study, the approach of maximum

marginal likelihood (Rasmussen and Williams 2006) is

used for estimating the hyperparameters. A probabilistic

graph for the GP regression model is given in Fig. 1a. The

marginal likelihood function is obtained by marginalizing

(integrating out) the state variable y from the joint distri-

bution of ~y and y, given the hyperparameters

p ~yjX;/; ry
� �

¼
Z

p ~y; yjX;/; ry
� �

dy

¼
Z

p ~yjy;X; ry
� �

p yjX;/ð Þdy
ð8Þ

where the likelihood p ~yjy;X; ry
� �

in above equation using

Eq. (2) is given by

p ~yjy;X; ry
� �

¼ N ~yjy; r2yI
� �

¼ 1

ð2pÞN=2rNy
exp � 1

2r2y
~y� yð ÞT ~y� yð Þ

( )

ð9Þ

and p yjX;/ð Þ is a GP and from Eq. (3) it is given by

p yjX;/ð Þ ¼ N yjmy Xð Þ;K
� �

¼ 1

2pð ÞN=2 Kj j1=2

� exp � 1

2
y� my Xð Þ
� �T

K�1 y� my Xð Þ
� �
 �

:

ð10Þ

Combining Eqs. (8)–(10) and taking logarithm of

p ~yjX;/;ry
� �

, gives
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log p ~yjX;Uð Þ ¼ � 1

2
~y� my Xð Þ
� �T

K�1
y ~y� my Xð Þ
� �

� 1

2
log Ky

�� ��� N

2
log 2p

ð11Þ

where Ky ¼ Kþ r2yI. The hyperparameters of GP, U, are

estimated by maximizing the log marginal likelihood

Eq. (11). Maximization using a gradient based approach

requires the partial derivatives of Eq. (11) with respect to

hyperparameters, which are given by

o

oUi

log pð~yjX;UÞ

¼ 1

2
~y� my Xð Þ
� �T

K�1
y

oKy

oUi

K�1
y ~y� my Xð Þ
� �

� 1

2
tr K�1

y

oKy

oUi


 �
; i ¼ 1; 2; . . .;mþ 2

ð12Þ

The derivatives of Ky with respect to the hyperparameters

li, rs and ry are given in ‘‘Appendix 1’’ section. In this

study, the log marginal likelihood function is maximized

using Broyden–Fletcher–Goldfarb–Shanno (BFGS)

algorithm (Fletcher 2013; Nocedal and Wright 1999). The

initial estimates of the length scales ðl1; . . .; lmÞ is taken as

the standard deviations of the predictors ðXÞ, and the initial

values for the scale hyperparameter ðrsÞ and noise

parameter ðryÞ are taken as the standard deviation of the

state variable (y) divided by
ffiffiffi
2

p
.

2.3 Derivatives of Gaussian process

The proposed GPPDE method requires derivatives of the

state variable (fitted by a GP model) with respect to inde-

pendent variables. Since derivative is a linear operator, the

derivative of a GP is another GP (Solak et al. 2003). This

section provides formulation of partial derivatives of GP at

test points ðX�Þ.
The GP relation Eq. (7a) could be straightforwardly

differentiated with respect to test input variable (see

‘‘Appendix 2’’ section). For a constant mean GP, the first

order derivative is given by pð _yGPjy;UÞ ¼ pð _yGPjmy;UÞ
¼ N ð _l; _RGPÞ

φ

y

ỹσy

(a)

y0

yλ

ỹγ

(b)

φ

yỹ

σy

ẏGP ẏODE λ

γ

(c)

φ

yỹ

σy

(·)|GP

λ

(d)

Fig. 1 Probabilistic graphs for a
GP, b ODE, c the gradient

matching (GM) model as

proposed by Calderhead et al.

(2008), where, c is variance of

the state derivative and k

represents parameters of ODE,

d proposed GPPDE model. The

shaded nodes represent

observations of the state

variable, the non-shaded nodes

represent random variables, the

directed links represent

dependencies and the undirected

dashed link represent Product of

Experts between the two

variables connected by the link
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_l ¼ o

ox�
i

E y�jX�;/; ry;X; ~y
� 	

¼ _K
T

� Kþr2yI
� ��1

~y� my Xð Þ
� � ð13aÞ

_RGP ¼ K
�;�
�� � _KT

� Kþ r2yI
� ��1

_K� ð13bÞ

where _RGP is the covariance matrix of _yGP (Calderhead

et al. 2008). Matrix _K� is populated by mixed covariance

function between the state variable and their first order

partial derivatives, cov y;
o

ox�i
y�


 �
¼ o

ox�i
k x; x�ð Þ; also

known as cross-covariance between the state variable and

its derivative. The elements of matrix K
�;�
�� are mixed

covariance function between partial derivatives

cov
o

oxi
y;

o

ox�j
y�


 �
¼ o2

oxiox�j
k x; x�ð Þ, also known as auto

covariance of the state derivative.

The second order derivative of GP is given by (see

‘‘Appendix 2’’)

€yGP ¼ o2

ox�2
i

E y�jX�;/; ry;X; ~y
� 	

¼ €K
T

� Kþr2yI
� ��1

~y� my Xð Þ
� �

ð14Þ

where the matrix €K� is populated by mixed covariance

function between the state variable and its second order

partial derivative, cov y;
o2

ox�2
i

y�

 !
¼ o2

ox�2
i

k x; x�ð Þ.

2.4 Incorporating derivatives information in GP

In some applications, along with the observations of the

state variable, information about the derivatives of the state

variable may also be available. To incorporate derivative

information in the GP regression model, Eq. 3 can be

changed to

yN�1

_yM�1


 �
�N

my

m _y

� �
;

KN�N
_KN�M

_K0
M�N

€KM�M

" # !
ð15Þ

where _y ¼ oy

oxj
is the derivation of the state variable with

respect to the jth independent variable and M represents

number of derivative observations. The a priori mean of the

derivatives is represented by M � 1 vector m _y. The com-

ponents of the covariance matrix are _K ¼ ok �ð Þ
oxj


 �

N�M

and €K ¼ o2k �ð Þ
oxjox

0
j

 !

M�M

.

To predict the state variable or its derivatives at a new

test point ðX�Þ, the conditional property of the Gaussian

distribution as used in Eq. (5) can be applied to Eq. (15).

The expressions for the predictive distributions are given in

Solak et al. (2003) and Wu et al. (2017). The methodology

presented above can be easily extended to incorporate

higher order derivatives in the GP regression model.

2.5 PDE parameter estimation

Let the PDE be given by an implicit function

f x1; . . .;xm;y;
oy

ox1
; . . .;

oy

oxm
;

o2y

ox1ox1
; . . .;

o2y

ox1oxm
; . . .;k


 �
¼ 0,

where, y is the state variable, xj ðj¼ 1; . . .mÞ are indepen-

dent variables and k is a set of PDE parameters. The

GPPDE method uses a GP to model the observations of the

state variable and estimate its derivatives involved in the

PDE. The residual error in the PDE at an observed point is

given by

� ¼ f

 
x1; . . .; xm; y

GP;

oy

ox1
; . . .

oy

oxm
;

o2y

ox1ox1
; . . .;

o2y

ox1oxm
; . . .

�
 ����
GP

; k

!
ð16Þ

where the notation
�
�
����

GP
, incorporates all the partial

derivatives of the state variable, means that the arguments

are evaluated using the GP relation given in Sect. 2.3.

Figure 1 uses probabilistic graphs to represent a GP

regression model, an ODE, the GM model of Calderhead

et al. (2008) and the proposed GPPDE model.

The parameter set k can be obtained by assuming a

distribution for the residual errors and then applying either

the method of maximum likelihood or the Bayesian esti-

mation method using MCMC sampling. These methods not

only provide a point estimate of k but also an estimation

interval. However, to keep the parameter estimation sim-

ple, we have obtained k by minimizing the sum of square

of residual error (SSRE), given as

SSRE ¼ �T� ¼
X

8obs:
f




x1; . . .; xm; y

GP;

oy

ox1
; . . .;

oy

oxm
;

o2y

ox1ox1
; . . .;

o2y

ox1oxm
; . . .


 �����
GP

; k

�2�

ð17Þ

where obs. denotes observations. The minimization is per-

formed using Nelder–Mead simplex algorithm (Lagarias

et al. 1998). The GP regression model provides standard

error for the estimated state variables and its derivatives.

This uncertainty information is propagated to SSRE by

weighting each term in the Eq. (17), where weights are

inversely proportional to the variance of the terms.
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The confidence interval of the estimated parameters is

obtained by Cram-rRao bound, which provides a lower

bound on the variance of any unbiased estimator (Rao

2008). The confidence interval corresponding to estimated

parameter set k̂ is given by k̂� c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag Iðk̂Þ

� �r
, where Iðk̂Þ

is the Fisher information matrix evaluated at estimated

values of parameters ðk̂Þ (in the present case it is taken as

the Hessian matrix of SSRE) and c is z-critical value for a

standard normal distribution. In the present study, 95%

confidence interval has been estimated, for which the

corresponding critical value is 1.96.

Since the GPPDE method does not solve the PDE (for-

ward problem), the initial and boundary conditions are not

required. However, if the initial and boundary conditions are

available, exactly or with measurement errors, they could be

easily incorporated in the GPPDE model. To impose

Dirichlet boundary conditions, the values of the state vari-

able at the boundaries are considered as observations with no

measurement errors. In the GPPDE model, it is achieved by

assigning a very small value to the noise term ðryÞ for those
boundary observations. If the measurement errors at the

boundaries are known, the same can be assigned to ry.
Similarly, to impose Neumann boundary conditions, the

values of the state derivatives at the boundaries are consid-

ered as observations and the methodology given in Sect. 2.4

is used to learn theGPmodel. The same approach can also be

used to incorporate any combinations of Dirichlet and

Neumann boundary conditions.

3 Application of GPPDE method

The proposed GPPDE method is applicable to PDEs and

system of PDEs. In this study, we demonstrate its utility by

applying it to one-dimensional groundwater diffusion

equation and one-dimensional Richards equation. The

mathematical representation of these equations is given in

the following subsections.

3.1 Groundwater diffusion equation

The groundwater diffusion equation is a second order para-

bolic PDE that describes the spatio-temporal variation of

groundwater level in homogeneous aquifers. It requires one

initial and twoboundary conditions for forward solution.One-

dimensional form of the groundwater equation is given as

oh

ot
¼ k

o2h

ox2
ð18Þ

where h is the groundwater level or head (L; the state

variable), t is time (T), x is distance from the origin of the

coordinate axis (L) and k is the parameter of the equation,

known as aquifer diffusivity ðL2 �T�1Þ. The inverse prob-

lem is to find k given observed values of head at different

location and time. The GPPDE method estimates k by

minimizing the sum of the square of residual errors

(SSRE), defined as

SSRE ¼ �T� ¼
X

8x

X

8t

oh

ot

����
GP

� k
o2h

ox2

����
GP


 �2

ð19Þ

where
oh

ot

����
GP

and
o2h

ox2

����
GP

are obtained from a GP regression

model fitted to observed head values.

3.2 Richards equation

The Richards equation is a nonlinear parabolic PDE that

describes the movement of water in unsaturated zone

(Richards 1931; Celia et al. 1990). Flow in unsaturated

zone is one of the most complex flows in nature. One-

dimensional form of the Richards equation is given by

oh
ot

¼ o

oz
k
oh

oz

� �
þ ok

oz

¼ ok

oz

oh

oz|ffl{zffl}
Term1

þ k
o2h

oz2|ffl{zffl}
Term2

þ ok

oz|{z}
Term3

ð20Þ

where h is volumetric soil moisture ðL3 �L�3; the state

variable), t is time (T), z is vertical dimension (L; positive

upward), k is hydraulic conductivity ðL�T�1Þ and h is

pressure head (L). The hydraulic conductivity (k) and the

pressure head (h) can be related to the soil moisture by van

Genuchten model (van Genuchten 1980), given by

k ¼ ksH
1=2 1� 1�H1=m

� �mh i2
ð21aÞ

H ¼ 1þ ahj jn½ ��m
h\0

1; h	 0



ð21bÞ

H ¼ h� hr
hs � hr

ð21cÞ

where ks is saturated hydraulic conductivity, H is relative

saturation, and hr and hs are residual and saturated soil

moisture content, respectively. The terms a ðL�1Þ, m and n

represent model parameters where, m and n are related as

n 1� mð Þ ¼ 1. The parameters a and n are related to air-

entry pressure head and pore-size distribution, respectively.

Eq. (21a) is known as hydraulic conductivity function and

Eq. (21b) is known as soil water retention function.

In the literature, field observations have been used to

estimate soil hydraulic parameters using inverse solution of

the Richards equation which requires initial and boundary
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conditions (Ritter et al. 2003; Simunek et al. 2005). Since,

initial and boundary condition in real world are not easily

available, the conventional approach becomes cumbersome

(Farthing and Ogden 2017). The proposed GPPDE over-

comes this limitation. In the GPPDE method, the estima-

tion of parameters is done by minimizing SSRE, given by

SSRE ¼ �T�

¼
X

8t0s

X

8z0s

oh
ot

����
GP

� ok

oz

oh

oz|ffl{zffl}
Term1

þ k
o2h

oz2|ffl{zffl}
Term2

þ ok

oz|{z}
Term3

0
BB@

1
CCA

��������
GP

2
664

3
775

2

:

ð22Þ

In the present work, we have estimated only a and n, but

the method can be easily extended to estimate any desired

number of parameters. To apply GPPDE, the terms of �T�

should be expressed in the terms of the state variable ðhÞ,
independent variables (z and t) and derivatives of the state

variable with respect to the independent variables

oh
oz

;
o2h
oz2

and
oh
ot


 �
. This factorization of �T� is provided

in ‘‘Appendix 2’’ section.

We compared the GPPDE estimates of hydraulic param-

eterswith that obtained from conventional approach by using

HYDRUS-1D software (Simunek et al. 2005). The software

first solves the forward problem and then estimates hydraulic

parameters by minimizing the difference between the sim-

ulated and observed values. In the present paper z is dis-

cretized at 1 cm interval. For each iteration HYDRUS

automatically adjusts the time step to achieve fast conver-

gence and the time step varies in the range of

0.00024–0.024 h. The maximum number of iterations

allowed for a given time step is set to 10 for forward solution

of Richards equation using a modified Picard method. The

maximum necessary absolute change in the value of the

water content and pressure head between two successive

iterations during a particular time step are set to 0.001 and

1 cm, respectively. Levenberg–Marquardt algorithm is used

for minimization. If the observations have measurement

error, HYDRUS-1D uses a weighted error function where

weights are inversely proportional to the variance of the

measurement error. However, unlike GPPDE, it cannot

account for measurement error in initial or boundary con-

ditions. Further minute details of implementation of

HYDRUSmodel is available in the HYDRUS’ user manual.

4 Data used in the study

This section describes the data used for testing the GPPDE

method on the diffusion equation and the Richards equa-

tion. Newly developed parameter estimation methods are

usually first tested on synthetic data because the true

parameters are known and sensitivity of these methods to

measurement errors can be evaluated by introducing error

of different levels. Hence, in this work we have tested the

GPPDE method on synthetic data.

4.1 Data used for the groundwater diffusion
equation

Reynolds (1987) reported the water level fluctuations for

three sites in a glacial-outwash valley aquifer near Cort-

land, New York, USA. The data reported by Reynolds for

Site-1 have been used in many studies to demonstrate the

performance of parameter estimation methods in estimat-

ing aquifer diffusivity of the site (Srivastava 2006; Swamee

and Singh 2003). In Reynolds’ study for Site-1, variation of

water level in two different wells were observed, one close

to a stream and other 152 m from the stream. Reynolds

assumed that the water level in the well closer to the stream

represents the water level of the stream. The data of water

level fluctuations are provided in figures of the original

study, which we extracted using WebPlotDigitizer software

(Rohatgi 2011). The variation of water level of the wells

are plotted in Fig. 2. The reported value of the aquifer

diffusivity varies in range of 550–2200 m2 �h�1, depending

on the assumptions and methodologies. The performance

of GPPDE is evaluated for the following two cases.

4.1.1 Synthetic data

Synthetic data are generated by assuming observed water

level of the stream for Site-1 as the left boundary condition

and for the right boundary, it is assumed that there is no

effect of variation in the stream water level on the

0 50 100 150 200

time (h)
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1.5
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e 
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)

Well 1

Well 2

Fig. 2 Observed water levels in two wells at Cortland, New York

based on the data provided by Reynolds (1987). Dashed curve for

well near the stream and the dotted curve for well 152 m from the

stream
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groundwater level at x ¼ 500m, h x ¼ 500m; tð Þ ¼ 0m.

Initial condition is assumed as h x; t ¼ 0ð Þ ¼ 0m. To gen-

erate water level data, an implicit finite difference

scheme was applied with k ¼ 1000m2 �h�1. The synthetic

data are plotted in Fig. 3a. The GPPDE method is

demonstrated on the data generated for five intervals of x,

Dx ¼ ½10; 25; 50; 75; 150�m and for time t 2 ½0; 200� h.

Simulations in the range x 2 [1 150] m are used as

observations for GPPDE analysis. For example, if Dx ¼ 25

m, simulations at x ¼ ½25; 50; 75; 100; 125; 150�m are

treated as observations for GPPDE parameter estimation.

4.1.2 Field data

For estimating aquifer diffusivity at the study site, the field

observations made at the second well ðx ¼ 152 m) is

considered as a response to fluctuations in the stream

water level. For this analysis, we again made the assump-

tion that the groundwater level at x ¼ 500 m is unaffected

by the variations in the stream water level, i.e.

h x ¼ 500m; tð Þ ¼ 0m.

4.2 Data used for the Richards equation

The applicability of GPPDE on the Richards equation is

tested using synthetic data described in this subsec-

tion. Four cases with different combinations of boundary

conditions are studied. Within these four cases, we also

studied the effect of different number of observations and

error levels on GPPDE parameter estimates.

The finite difference scheme for mixed-form of the

Richards equation provided by Celia et al. (1990) is

adopted to generate synthetic data. The synthetic data are

generated with five hydraulic parameters hr ¼ 0:075,

hs ¼ 0:287, a ¼ 0:05 cm�1, n ¼ 2, and ks ¼ 1:5 cm�h�1

with initial condition h z; t ¼ 0ð Þ ¼ � 65 cm, having

boundary conditions as h z ¼ 0; tð Þ ¼ � 65 cm at the bot-

tom and h z ¼ 60; tð Þ ¼ �20:7 cm at the top. The above

initial and boundary conditions are in terms of pressure

head, which translates to volumetric water content as

h z; t ¼ 0ð Þ ¼ 0:137, and h z ¼ 0; tð Þ ¼ 0:137 and

h z ¼ 60; tð Þ ¼ 0:222, respectively, using the van Genuch-

ten (1980) model. The soil moisture is estimated using the

finite difference scheme at internal nodes with Dz ¼ 1 cm

and Dt ¼ 1 h over the interval [0, 50] h.

Using the synthetic data described above, the following

four cases are studied:

1. Case 1 (Top: Dirichlet and Bottom: Dirichlet): The

boundary condition described in previous paragraph

corresponds to Case-1. Figure 5a shows the 3-D plot of

the synthetic data generated for this case.

2. Case 2 (Top: Dirichlet and Bottom: Free drainage):

The top boundary in this case is as described in Case-1,

and the bottom boundary is free drainage which is a

Neumann boundary with
oh
oz

¼ 0.

3. Case 3 (Top: Time Varying Dirichlet and Bottom:

Dirichlet): The top boundary in this case represents

diurnal variation of soil moisture at the soil

surface which is obtained by superimposing the top

boundary in Case-1 with a sinusoidal wave of

amplitude 3 cm and periodicity of 24 h, mathemati-

cally h z ¼ 60; tð Þ ¼ �20:7þ 3 sin
2pt
24


 �
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0
200

0.5

1

150

he
ad

 (
h;

 in
 m

)

1.5

t; in (h)

2

100 100

x; in (m)

2.5

50
0 0

0

0.5

1

1.5

2

(a)

0
200

0.5

1

150

he
ad

 (
h;

 in
 m

)

1.5

t; in (h)

2

100 100

x; in (m)

2.5

50
0 0

0

0.5

1

1.5

2

(b)

Fig. 3 a Synthetically generated observations of groundwater level plotted at a resolution of 1 m, b mean of GP regression fit to the groundwater

profile, trained using data with Dx ¼ 10m
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t 2 ð0; 50� h. The bottom boundary is fixed as in Case-1

ðh z ¼ 0; tð Þ ¼ �65 cmÞ.
4. Case 4 (Top: Time Varying Dirichlet and Bottom: Free

drainage): Time varying top boundary condition is

adopted from Case-3 and a bottom Neumann condition

is adopted from Case-2.

The boundary conditions for these four cases are summa-

rized in Table 1. To study the performance of the GPPDE

method for coarser data, the observations at five intervals

of z ðDz ¼ 1; 2; 3; 4; 5 and 10 cm) are used. Next, to study

the performance of GPPDE on noisy data, zero mean

Gaussian noise of standard deviations 1, 2, 3, 4 and 5% of

the soil moisture observation is added to the synthetic data.

5 Results and discussion

This section presents the results obtained from the pro-

posed GPPDE method for the diffusion and the Richards

equations. In the case of the Richards equation, the GPPDE

parameter estimates are compared with the HYDRUS

estimates.

Coefficient of determination ðR2Þ and Root Mean

Square Error (RMSE) are calculated by the following

equations for evaluating the performance of GP regression,

and parameter estimates by GPPDE and HYDRUS.

R2 ¼ 1�
PN

i¼1 ~yi � ŷið Þ2
PN

i¼1 ~yi � �yð Þ2
ð23Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ~yi � ŷið Þ2

N

s
ð24Þ

where ~yi are observations, ŷi are predicted values, �y is the

mean of the observations, and N is the number of

observations.

5.1 Groundwater diffusion equation

5.1.1 Synthetic data

The synthetic water level data used in this section are

described in Sect. 4.1 and shown in Fig. 3a. The data with

Dx ¼ 1m is used to train GP regression model and the

hyperparameters of GP, U ¼ ½lx; lt; rs; ry� are estimated

using the method explained in Sect. 2.2, where lx and lt are

length scale parameters in spatial (x) and temporal (t)

dimensions, respectively. The estimated values of the

hyperparameters are bU ¼ ½130m; 1:7 h; 0:875; 5:3E�04m�.
The GPPDE method requires estimation of the state vari-

able and its partial derivatives involved in the PDE. Using

the obtained hyperparameters, the state variable (h) is cal-

culated using Eq. (7a) and is plotted in Fig. 3b, which

suggests a good fit. The state derivatives
oh

ot
and

o2h

ox2


 �

are obtained from the methodology given in Sect. 2.3.

The PDE parameter k is obtained by incorporating the

estimates of the state variable and its derivative in SSRE

Eq. 19, and then minimizing the SSRE function. For

Dx ¼ 10m, the GPPDE method estimates k̂ ¼ 999:6�
2:41m2 �h�1 which is close to the true value of diffusivity

(1000 m2 �h�1), suggesting that the GPPDE method can

successfully estimate the aquifer diffusivity ðkÞ.
To study the performance of the GPPDE method for

coarse resolution data, the method is applied on sub-sam-

ples of the synthetic data, i.e. observations at intervals

Dx ¼ ½25; 50; 75; 150�m are used for learning the parame-

ters. The estimates of k for different number of observa-

tions along with their 95% confidence interval are given in

Table 2. It is concluded from the table that with the

decrease in number of observations, the uncertainty in the

estimate of k increases. The length scale parameters ðlx and
ltÞ can be interpreted as characteristic length, which is the

distance required in the input space (along a particular axis)

for the function values to become uncorrelated (Rasmussen

and Williams 2006). Thus, with decrease in the number of

observations in the x-dimension, the lx increases. It is

observed that learning length-scale parameters from sparse

data may sometimes result in an overly complicated

function because of local minima in the marginal log

likelihood function Eq. (11). This is a well known problem

in GP models (Rasmussen and Williams 2006; Tripathi and

Govindaraju 2007). We found in our experiments that if

such a problem occurs, it can be easily detected by visu-

alizing the fitted surface. Further, we realized that with

Table 1 The boundary

conditions used to demonstrate

the application of GPPDE on

the Richards equation

Case Top boundary ðz ¼ 60 cm) Bottom boundary ðz ¼ 0 cm)

1 Dirichlet h ¼ � 20:7 cm Dirichlet h ¼ � 65 cm

2 Dirichlet h ¼ � 20:7 cm
Neumann

oh
oz

¼ 0

3
Dirichlet h ¼ �20:7þ 3 sin

2pt
24


 �
cm; t 2 ð0; 50� h Dirichlet h z ¼ 0; tð Þ ¼ � 65 cm

4
Dirichlet h ¼ �20:7þ 3 sin

2pt
24


 �
cm; t 2 ð0; 50� h Neumann

oh
oz

¼ 0
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some familiarity with the data, length scale parameters can

be easily specified and the results are not sensitive to small

changes in their values. The logarithm of SSRE for Dx ¼
½10; 50; 150�m versus k is plotted in Fig. 4 (the logarithmic

transformation of SSRE is chosen for better visualization).

From the figure and the table, we realize that the GPPDE

method can estimate k with fewer observations, however it

increases estimation uncertainty.

5.1.2 Field data

The GP model is trained with observations at

x ¼ ½0; 152; 500�m. For x ¼ 0m, the time series observa-

tions from the well closer to the stream is used; for

x ¼ 152m, the time series observations from the well away

from the stream is used; and for x ¼ 500m, it is assumed that

the groundwater level is unaffected by any variations in the

streamwater level, ðh x ¼ 500m; tð Þ ¼ 0mÞ. Thewater level
values at x equal to 0 and 500 m are treated as Dirichlet

boundary conditions. The hyperparameters for the fitted GP

model are bU ¼ ½330m; 1:7 h; 0:610; 2:8E�03m�. The esti-

mated aquifer diffusivity is k ¼ 564:8� 29:3m2 �h�1, which

is within the limits of reported values (550–2200 m2 �h�1Þ in

the literature (Reynolds 1987; Swamee and Singh 2003;

Srivastava 2006).

5.2 Richards equation

The following subsections demonstrate the application of

the GPPDE method to estimate soil hydraulic parameters

and compare those estimates with HYDRUS-1D estimates.

To evaluate the performance of the GPPDE method for

coarse resolution data, the method is trained using obser-

vations at six intervals of z ðDz ¼ ½1; 2; 3; 4; 5; 10� cmÞ, as
described in Sect. 4.2. The estimated hyperparameters and

the estimated soil hydraulic parameters of the Richards

equation for the four cases (different boundary conditions)

are presented in Table 3.

5.2.1 Parameter estimation

The first step in the GPPDE method is to fit a GP regression

model to the soil moisture data and obtain the hyperparam-

eters, U ¼ ½lz; lt; rs; ry� using the methodology given in

Sect. 2.2, where lz and lt are length scale parameters of the

covariance function in spatial (z) and temporal (t) dimen-

sions, respectively. Next, the derivatives of the state variable

oh
ot

;
oh
oz

and
o2h
oz2


 �
are obtained using the methodology

given in Sect. 2.3. As the final step, the estimates of the state

variable and its partial derivatives (obtained from the GP

modelling) are incorporated in SSRE Eq. (22) to estimate

soil hydraulic parameters k ¼ ½a; n�.
The synthetic soil moisture data generated using the

Richards equation as described in Sect. 4.2 are plotted in

Fig. 5a. This dataset consists of two Dirichlet boundaries

and intermediate observations at 59 locations in the range

z 2 ½1; 59� cm with Dz ¼ 1 cm and t 2 ½1; 50� h with

Dt ¼ 1 h. The GP regression model is forced to predict

precise Dirichlet boundary conditions using the method-

ology presented in the last paragraph of Sect. 2.5. The

curve obtained from the GP regression model for the

learned hyperparameters bU ¼ ½5 cm; 3 h; 0:188; 9:3E�05�
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Fig. 4 The logarithmic transformed values of SSRE for different

intervals of x as a function of aquifer diffusivity ðkÞ. The vertical

black line represents the true value of k

Table 2 The estimates of

aquifer diffusivity, k, for
different intervals of x, along

with their 95% confidence

interval

S. no. Dx ðmÞ No. of obs Kenrel paramter Noise k̂ ðm2 �h�1Þ
lx ðmÞ lt ðhÞ rs ry ðmÞ

1 10 15 130 1.7 0.875 5.3E�04 999:6� 2:41

2 25 6 180 1.7 0.662 9.5E�04 998:9� 6:20

3 50 3 230 1.7 0.627 2.6E�03 993:5� 13:38

4 75 2 280 1.7 0.660 3.3E�03 993:0� 19:30

5 150 1 330 1.7 0.620 3.8E�03 1005:0� 58:23
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Table 3 Estimates of GP hyperparameters and soil hydraulic parameters obtained from the GPPDE method. The true values of a and n are

0:05 cm�1 and n ¼ 2, respectively

Cases S. no. Dz ðmÞ No.

of obs

Kenrel paramter Noise van Genuchten

lz ðcmÞ lt ðhÞ rs ry ðunits of
h; L3 �L�3Þ

a ðcm�1Þ n

Case-1;

Top: Dirichlet and

bottom: Dirichlet

1 1 59 5 3 0.188 9.3E�05 0.049 ± 1.0E�03 2.008 ± 8.0E�03

2 2 29 6 3 0.085 2.1E�04 0.052 ± 2.0E�03 2.037 ± 1.9E�02

3 3 19 7 3 0.077 3.0E�04 0.052 ± 3.0E�03 2.048 ± 3.3E�02

4 4 14 8 3 0.074 4.6E�04 0.053 ± 5.0E�03 2.058 ± 5.0E�02

5 5 11 9 3 0.073 5.4E�04 0.054 ± 7.0E�03 2.081 ± 7.2E�02

6 10 5 14 3 0.075 1.8E�04 0.050 ± 2.5E�02 2.127 ± 2.94E�01

Case-2;

Top: Dirichlet and bottom:

free drainage

1 1 59 5 3 0.178 9.4E�05 0.050 ± 4.15E�06 2.017 ± 4.88E�05

2 2 29 6 3 0.084 2.1E�04 0.052 ± 2.29E�05 2.040 ± 2.60E�04

3 3 19 7 3 0.078 2.9E�04 0.053 ± 4.84E�05 2.055 ± 5.34E�04

4 4 14 8 3 0.076 4.4E�04 0.053 ± 8.99E�05 2.065 ± 9.73E�04

5 5 11 9 3 0.075 5.1E�04 0.055 ± 1.53E�04 2.087 ± 1.60E�03

6 10 5 14 3 0.081 1.6E�04 0.050 ± 7.67E�04 2.126 ± 8.75E�03

Case-3;

Top: time varying Dirichlet

and bottom: Dirichlet

1 1 59 5 3 0.180 1.4E�04 0.050 ± 5.86E�04 2.035 ± 7.30E�03

2 2 29 6 3 0.088 2.9E�04 0.054 ± 1.54E�03 2.083 ± 1.81E�02

3 3 19 7 3 0.079 4.1E�04 0.055 ± 2.75E�03 2.101 ± 3.15E�02

4 4 14 8 3 0.076 6.1E�04 0.056 ± 4.35E�03 2.120 ± 4.82E�02

5 5 11 9 3 0.074 7.3E�04 0.059 ± 6.72E�03 2.158 ± 7.05E�02

6 10 5 14 3 0.078 2.3E�04 0.053 ± 2.32E�02 2.223 ± 2.82E�01

Case-4;

Top: Time varying Dirichlet

and bottom: free drainage

1 1 59 5 3 0.170 1.4E�04 0.052 ± 4.14E�06 2.053 ± 5.04E�05

2 2 29 6 3 0.086 2.9E�04 0.054 ± 2.22E�05 2.088 ± 2.59E�04

3 3 19 7 3 0.079 4.0E�04 0.056 ± 4.86E�05 2.113 ± 5.46E�04

4 4 14 8 3 0.077 5.8E�04 0.057 ± 9.15E�05 2.130 ± 9.99E�04

5 5 11 9 3 0.076 6.9E�04 0.059 ± 1.58E�04 2.166 ± 1.63E�03

6 10 5 14 3 0.083 2.0E�04 0.054 ± 7.23E�04 2.234 ± 8.51E�03
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Fig. 5 a 3-D plot of the

synthetic soil moisture data for

Case 1, b mean of GP regression

fit to the soil moisture data
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is plotted in Fig. 5b, which is very similar to the true data

ðR2 ¼ 1;RMSE ¼ 8:12E�05Þ.
The top row in Fig. 6a–c shows the variation of the

estimated soil moisture with z, and its first and second order

derivatives with respect to z at time t ¼ 25 h. The bottom

row of Fig. 6d, e shows the variation of the estimated soil

moisture and its derivative with respect to t at height

z ¼ 30 cm. Like the state variable, the partial derivatives

are also GP, which are smooth functions. Figure 6 shows

that the GP estimates have fluctuations present near the

boundaries, which increase for higher order derivatives.

The standard errors of the fitted curves (shown as dashed

lines) also increase near the boundaries. These fluctuations

and increase in the standard error are reflections of higher

uncertainty in the GP fitting near the boundaries.

The estimated values of the hydraulic parameters are

k̂ ¼ ½0:049� 0:001 cm�1; 2:008� 0:008�, which are very

close to the true value k0 ¼ ½0:05 cm�1; 2�. Figure 8a

shows the contours of the logarithmic transformed values

of SSRE as a function of a and n. Again, the logarithmic

transformation is used to aid visualization. The contours

are closely spaced near the vicinity of the true solution and

their intervals are wider for the cases with sparser data. The

estimate of parameters, a and n, for Cases 2, 3 and 4 from

GPPDE method are provided in Table 3. Like Case 1, the

GPPDE model could reasonably estimate k for these cases

as well. The parameter uncertainties for both a and n are

higher for Cases 1 and 3, where bottom boundary condition

imposes a fixed soil moisture (Dirichlet) compared to

Cases 2 and 4, where bottom boundary condition is free

drainage (Neumann). This could be attributed to the abrupt

change in soil moisture near the bottom boundary for

Dirichlet conditions (see Figs. 5, 7).

5.2.2 Sparse observations

To study the performance of GPPDE for coarse resolution

data, it is trained with data obtained at intervals,

Dz ¼ ½1; 2; 3; 4; 5; 10� cm. Figure 6 compares the estimates

of the state variable and its derivatives for different number

of observations ðDz ¼ ½1; 3; 5�mÞ. With increase in Dz
(decrease in number of observations), the standard error of

the estimated state variable and its derivatives increase.

The estimated values are however very close for different

Dz, except near the boundaries. These differences among

the curves are relatively large for space derivatives that the

time derivative because the number of observations have

reduced in the space dimension.

The number of observational depths, the estimates of

hyperparameters and estimated soil hydraulic parameters

for different Dz and boundary conditions are shown in

Table 3. The logarithm of SSRE as a function of a and

n for different z intervals are plotted in subfigures of Figs. 8

and 9 for Cases 1 and 2, respectively.

The training of GPPDE for different Dz showed that the

time length scale hyperparameter ðltÞ do not change
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Fig. 6 GP regression fit to the

synthetic soil moisture data for

Case 1 and its partial

derivatives. The first row shows

the variations along the height

(z) of soil column at t ¼ 25 h—a
soil moisture observations and

GP fit, b first derivative of h
w.r.t. z, c) second derivative of h
w.r.t. z. The second row shows

the variations along the time (t)

at z ¼ 30 cm—d soil moisture

observations and GP fit, e
derivative of h w.r.t. t. The

vertical dashed lines represent

the standard error of the fitted

curves
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because the temporal resolution of data remains the same.

The length scale ðlzÞ increases with increase in Dz, result-
ing in smoother curve for coarse resolution data. The

contour plots of logarithmic SSRE (Fig. 8) show that even

for the sparse data set, the true solution lies in the vicinity

of the lowest contour. However, the differences between

the true and the estimated values of the hydraulic param-

eters increase with decrease in number of observations

(Table 3). The value of contours decreases with increase in

Dz which happens due to smaller number of terms in SSRE

estimates. Further, the contour intervals are wider for

smaller number of observations, suggesting increased

uncertainty in the estimated parameters (also see Table 3).

5.2.3 Measurement errors

Errors of five different levels are added to the soil moisture

observations for investigating the performance of GPPDE

method in the presence of noise. The additive errors are

normally distributed noise with mean zero and standard

deviation 1, 2, 3, 4 and 5% of the soil moisture observa-

tions. Figures 10 and 11 provide the estimates of the

parameters ða and n) for Cases 1 and 2, respectively,

obtained from 100 Monte Carlo simulations. As expected,

higher error levels increase the variability in the estimated

parameters. However, no significant systematic bias is

evident in the estimated parameters with increased error

levels. These figures do not plot HYDRUS estimates,

because HYDRUS consistently estimated a and n close to

the true value for all the error levels.
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synthetic soil moisture data for

Case 2, b mean of GP regression

fit to the soil moisture data
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5.2.4 Perturbed boundary conditions

In applications where boundary conditions are obtained

from observations, the measurement errors may induce

uncertainty in boundary conditions. To test the perfor-

mance of GPPDE and HYDRUS under uncertain boundary

conditions, the Dirichlet boundaries for Cases 1 and 2 are

perturbed with zero mean Gaussian noise and standard

deviations ranging from 1 to 5% of the true soil moisture

value.

Figures 12 and 13 show the box plots of the estimated a
and n for GPPDE and HYDRUS (inverse modelling) for

Cases 1 and 2, respectively. Since HYDRUS simulations

were computationally expensive, results obtained from 60

Monte Carlo simulations are shown.

For Case 1, HYDRUS marginally overestimates a com-

pared to GPPDE estimates, though it has relatively smaller

variability. For n, the variability is smaller for GPPDE esti-

mates at higher error levels. The results for Cases 2 are

similar. Overall, the results suggest that GPPDE and

HYDRUS estimates are onlymarginally different. However,

GPPDE has significant advantages over HYDRUS in terms

of computational time. For example, the computation time

for one run of HYDRUS is 5:787� 0:004 s (based on 100

simulations). Whereas for a MATLAB implementation of

GPPDE on the same sample, the computational time for one

run is ð5:002� 0:065Þ� 10�3 s.

6 Summary and concluding remarks

A Gaussian process (GP) based method for estimating

parameters of PDEs is proposed and termed as Gaussian

process for Partial Differential Equation (GPPDE) method.

Unlike the conventional method, the GPPDE method does

not require setting-up of initial and boundary conditions

explicitly, which is often difficult in real world applica-

tions. However, if the initial and boundary conditions are

known (exactly or with measurement errors), they could be

incorporated in the method.

The new GPPDE method is evaluated by applying it on

the diffusion and the Richards equations. The results

GPPDE
Fig. 12 Figure compares the

performance of GPPDE and

HYDRUS under boundary

conditions perturbed with zero

mean Gaussian noise (standard

deviation equal to 1, 2, 3, 4 and

5% of the boundary values) for

Case 1. The estimates of a and n

obtained from 60 Monte Carlo

simulations are shown as box

plots. The parameters are

obtained for the synthetic soil

moisture data with Dz ¼ 5 cm

GPPDE
Fig. 13 Figure compares the

performance of GPPDE and

HYDRUS under boundary

conditions perturbed with zero

mean Gaussian noise (standard

deviation equal to 1, 2, 3, 4 and

5% of the boundary values) for

Case 2. The estimates of a and n

obtained from 60 Monte Carlo

simulations are shown as box

plots. The parameters are

obtained for the synthetic soil

moisture data with Dz ¼ 5 cm
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suggest that the GPPDE method can correctly estimate

parameters of the diffusion equation for the synthetic data.

It provided a reasonable estimate for the diffusivity of

glacial-outwash valley aquifer, Cortland, New York. The

GPPDE method has also estimated parameters of the

Richards equation satisfactorily for all the four cases of

different boundary conditions investigated in the study.

A comparison of the GPPDE and HYDRUS (a con-

ventional inverse modelling approach) suggested that both

the methods could reasonably estimate soil hydraulic

parameters in the presence of Gaussian noise in the range

1–5%. However, GPPDE has significant advantages in

terms of computational time. We found that for the same

dataset and computer, GPPDE was three orders of magni-

tude faster than HYDRUS. However, to reliably estimate

PDE parameters, GPPDE requires large dataset. Its per-

formance, to a large extent, depends on the accuracy of the

curve fitted to the observations of the state variable.

Accuracy of GP regression fit is also limited by difficulty in

selection of a suitable covariance function.

Several avenues should be explored to further refine the

proposed GPPDE method for PDE parameter estimation.

The GPPDE method can be formulated in the Bayesian

framework that will provide credible intervals for the

estimated values of the parameters. Also, methods should

be developed to relate kernel length-scale parameters to the

characteristic length-scales of the input dimensions based

on the physics of the problem.

Comprehensively, the results suggest that the proposed

method can be an effective alternate to the conventional PDE

parameter estimation methods. It has advantages for large

observational datasets in which the state variable has high

dimensionality. Overall, the approach of interpreting numer-

ical problems of differential equations as probabilistic infer-

ence problems, and solving them using machine learning

methods like GP is an exciting new area of research. It has

potential to provide novel methods for handling observational

uncertainties, which are ubiquitous in water resources prob-

lems but often ignored when used with differential equations.
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Appendix 1: Derivative of Gaussian
covariance function k(x; x0Þ

Gaussian covariance function is given by relation

kðx; x0Þ ¼ rs
2 exp � 1

2

Xm

i¼1

xi � x0i
� �2

l2i

( )
ð25Þ

where li’s and rs are the length and the scale parameters,

respectively.

Derivative of covariance function with respect
to hyperparameters

The derivatives of ky x; x0ð Þ ¼ k x; x0ð Þ þ r2y , where ry is the

noise term, are given by.

ky x; x0ð Þ ¼ rs
2 exp � 1

2

Xm

i¼1

xi � x0i
� �2

l2i

( )
þ r2y ð26Þ

oky

olj
¼ rs

2 exp � 1

2

Xm

i¼1

xi � x0i
� �2

l2i

( )
xi � x0i
� �2

l3j
;

1 6 j 6 m

ð27Þ

oky

ors
¼ 2rs exp � 1

2

Xm

i¼1

xi � x0i
� �2

l2i

( )
ð28Þ

oky

ory
¼ 2ry ð29Þ

Derivatives of covariance function with respect
to arguments

First derivative

ok x; x0ð Þ
ox0j

¼ o

ox0j
rs

2 exp � 1

2

Xm

i¼1

xi � x0ið Þ2

l2i

( )" #
; 1 6 j 6 m

¼ k x; x0ð Þ o

ox0j
� 1

2

Xm

i¼1

xi � x0ið Þ2

l2i

" #

¼ k x; x0ð Þ
xj � x0j
� �

l2j
ð30Þ

Second derivative

o2k x; x0ð Þ
ox02j

¼ o

ox0j
k x; x0ð Þ

xj � x0j
� �

l2j

" #
; 1 6 j 6 m

o2k x; x0ð Þ
ox0j

2
¼ k x; x0ð Þ

xj � x0j
� �

l2j

xj � x0j
� �

l2j

þ k x; x0ð Þ �1

l2j

 !

¼ k x; x0ð Þ
l2j

xj � x0j
� �2

l2j
� 1

" #

ð31Þ

Auto covariance
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o2k x; x0ð Þ
oxjox

0
j

¼ o

oxj
k x; x0ð Þ

xj � x0j
� �

l2j

" #

¼ k x; x0ð Þ
l2j

1�
xj � x0j
� �2

l2j

" # ð32Þ

Appendix 2: Factorization of the Richards
equation

This appendix provides the representation of the Richards

equation in terms of state variable ðhÞ and its partial

derivatives
oh
ot

;
oh
ox

and
o2h
ox2


 �
.

The van Genuchten (1980) model is used to relate

hydraulic conductivity (k), pressure head (h) and relative

saturation ðHÞ as

H ¼ 1

1þ a hj jð Þn½ �m ð33Þ

k ¼ ksH
1=2 1� 1�H1=m

� �mh i2
ð34Þ

where ks is saturated hydraulic conductivity, and hr and hs
are residual and saturated soil moisture content, respec-

tively. The relative saturation terms a ðL�1Þ, m and n

represent model parameters where, m and n are related as

n 1� mð Þ ¼ 1. Term ðHÞ is defined as

H ¼ h� hr
hs � hr

ð35Þ

To write the Richards equation in terms of soil moisture

and its partial derivatives, we need to estimate
oH
oh

,
ok

oH
,
oH
oh

and
oh

oh
. These partial derivatives were estimated as follows.

Differentiating H with respect to h

oH
oh

¼ 1

hs � hr
ð36Þ

Differentiating (34) with respect to H

ok

oH
¼2ksH

1=2 1� 1�H1=m
� �mh i

1�H1=m
� �m�1

H1=m�1
� �� �

þks

2
H�1=2 1� 1�H1=m

� �mh i2

ð37Þ

Rearranging Eq. (34)

1þ a hj jð Þn ¼ 1

H


 �1=m

a hj jð Þ ¼ 1

H


 �1=m

� 1

" #1=n ð38Þ

Again rearranging (33) and differentiating it with respect to

h

1

H
¼ 1þ a hj jð Þn½ �m ð39Þ

o

oh

1

H


 �
¼ m 1þ a hj jð Þnf gm�1

n a hj jð Þn�1
n o

asign hð Þ

ð40Þ
�1

H2

oH
oh

¼ amnsign hð Þ 1þ a hj jð Þnf gm�1 a hj jð Þn�1
n o

ð41Þ

Substituting (38) into (41) (to represent
oH
oh

as a function of

HÞ

oH
oh

¼ � amsign hð Þ
1� m

H2 1

H


 �1=m
( )m�1

1

H


 �1=m

� 1

( )m

¼ � amsign hð Þ
1� m

H �mþ1ð Þ=mþ2 1

H


 �1=m

� 1

( )m

¼ � amsign hð Þ
1� m

H mþ1ð Þ=m 1

H


 �1=m

� 1

( )m

¼ B0H
1þmð Þ=m H�1=m � 1

n om

ð42Þ

where B0 ¼ � amsign hð Þ
1� m

Using Eq. (42),
oh

oh
could be obtained as

oh

oh
¼ oH

oh


 ��1
1

hs � hr
¼ 1

B0

H� 1þmð Þ=m H�1=m � 1
n o�m

ð43Þ

The Richards equation can be factorized into three terms as

oh
ot

¼ o

oz
k
oh

oz

� �
þ ok

oz
ð44Þ

¼ ok

oz

oh

oz|ffl{zffl}
Term1

þ k
o2h

oz2|ffl{zffl}
Term2

þ ok

oz|{z}
Term3

ð45Þ

Term1:
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ok
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oh

oz
¼ Term3

oh

oh
oh
oz

� �
ð46Þ

¼ Term3
oH
oh


 ��1
1

hs � hr

( )
oh
oz

" #
ð47Þ

Term1 is obtained by substituting (42) in (47).

Term2:

o2h

oz2
¼ o

oz

oh

oz


 �

¼ o

oz

oh

oh
oh
oz


 �

¼ o2h

ozoh
oh
oz

þ oh

oh
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o2h
oz2

ð48Þ

Deriving
o2h

ozoh
by differentiating (43) with respect to z.

o

oz

oh

oh


 �
¼� 1

B0

1þm

m
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H� 1þ2mð Þ=m H�1=m�1

n o�moH
oz

þ 1

B0

H� 1þmð Þ=m H�1=m�1
n o�m�1
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� �oH

oz

ð49Þ
o

oz

oh

oh
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¼ 1

B0

oH
oz

�

� 1þ m

m


 �
H� 1þ2mð Þ=m H�1=m � 1

� ��m

þH� 2þ2mð Þ=m H�1=m � 1
� ��m�1

2

664

3

775

ð50Þ

o2h

ozoh
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B0

1

hs � hr

oh
oz

�

� 1þ m

m


 �
H� 1þ2mð Þ=m H�1=m � 1

n o�m

:::

þH� 2þ2mð Þ=m H�1=m � 1
� ��m�1

2
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3
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ð51Þ

Term2 is obtained by substituting (43) and (51) in (48)

Term3:

ok

oz
¼ ok

oh
oh
oz

ð52Þ

ok

oh
¼ ok

oH
oH
oh

ð53Þ

Using (36), (53) and (37), Eq. (52) is expressed as

ok

oz
¼ok

oh
oh
oz

¼ 1

hs�hr
ks
oh
oz

�

2H1=2 1� 1�H1=m
� �mn o
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